Harnessing the cardiovascular benefits of exercise: Are Nrf2 activators useful?

Babatunde Fasipe, Shunchang Li, Ismail Laher

Sports Medicine and Health Science ›› 2021, Vol. 3 ›› Issue (2) : 70-79. DOI: 10.1016/j.smhs.2021.04.002
Review

Harnessing the cardiovascular benefits of exercise: Are Nrf2 activators useful?

Author information +
History +

Abstract

The ability of physical activity to ameliorate cardiovascular disease and improve cardiovascular health is well accepted, but many aspects of the molecular mechanisms underlying these benefits are incompletely understood. Exercise increases the levels of reactive oxygen species (ROS) through various mechanisms. This triggers the activation of Nrf2, a redox-sensitive transcription factor activated by increases in oxidative stress. Activation of Nrf2 mitigates oxidative stress by increasing the nuclear transcription of many antioxidant genes while also mediating additional beneficial effects through the cytoprotective nature of Nrf2 signaling. Understanding the transcriptional patterns of Nrf2 caused by exercise can help in the design of pharmacological mimicry of the process in patients who are unable to exercise for various reasons.

Keywords

Exercise / Oxidative stress / Antioxidants / Nrf-2 / Cardiovascular system

Cite this article

Download citation ▾
Babatunde Fasipe, Shunchang Li, Ismail Laher. Harnessing the cardiovascular benefits of exercise: Are Nrf2 activators useful?. Sports Medicine and Health Science, 2021, 3(2): 70‒79 https://doi.org/10.1016/j.smhs.2021.04.002

References

[[1]]
S. Li, I. Laher. Exercise pills: at the starting line. Trends Pharmacol Sci, 36 (12) ( 2015), pp. 906-917, DOI: 10.1016/j.tips.2015.08.014
[[2]]
S. Li, I. Laher. Exercise mimetics: running without a road map. Clin Pharmacol Ther, 101 (2) ( 2017), pp. 188-190, DOI: 10.1002/cpt.533
[[3]]
V.A. Narkar, M. Downes, R.T. Yu, et al.. AMPK and PPARdelta agonists are exercise mimetics. Cell, 8 (3) ( 2008), pp. 405-415, DOI: 10.1016/j.cell.2008.06.051. 134
[[4]]
K.J.A. Davies. Cardiovascular adaptive homeostasis in exercise. Front Physiol ( 2018), DOI: 10.3389/fphys.2018.00369. Accessed May 01
[[5]]
H. Sies, C. Berndt, D.P. Jones. Oxidative stress. Annu Rev Biochem, 86 ( 2017), pp. 715-748, DOI: 10.1146/annurev-biochem-061516-045037
[[6]]
A.M. Fratta Pasini, C. Stranieri, A.M. Rigoni, et al.. Physical exercise reduces cytotoxicity and up-regulates Nrf2 and UPR expression in circulating cells of peripheral artery disease patients: an hypoxic adaptation?. J Atherosclerosis Thromb, 25 (9) ( 2018), pp. 808-820, DOI: 10.5551/jat.42432
[[7]]
A. Kobayashi, M.I. Kang, Y. Watai, et al.. Oxidative and electrophilic stresses activate Nrf 2 through inhibition of ubiquitination activity of Keap1. Mol Cell Biol, 26 (1) ( 2015), pp. 221-229, DOI: 10.1128/MCB.26.1.221-229.2006
[[8]]
A. Cuadrado, G. Manda, A. Hassan, et al.. Transcription factor NRF 2 as a therapeutic target for chronic diseases: a systems medicine approach. Pharmacol Rev, 70 ( 2018), pp. 348-383, DOI: 10.1124/pr.117.014753
[[9]]
V.R. Muthusamy, S. Kannan, K. Sadhaasivam, et al.. Acute exercise stress activates Nf2/ARE signaling and promotes antioxidant mechanisms in the myocardium. Free Radic Biol Med, 52 ( 2012), pp. 366-376, DOI: 10.1016/j.freeradbiomed.2011.10.440
[[10]]
Q.M. Chen. Maltagliati AJ Nrf2 at the heart of oxidative stress and cardiac protection. Physiol Genom, 50 (2) ( 2018), pp. 77-97, DOI: 10.1152/physiolgenomics.00041.2017
[[11]]
E.L. Donovan, J.M. McCord, D.J. Reuland, et al.. Phytochemical activation of Nrf 2 protects human coronary artery endothelial cells against an oxidative challenge. Oxid Med Cell Longev, 2012 ( 2012), p. 132931, DOI: 10.1155/2012/132931
[[12]]
R.Y. Wang, L.H. Liu, H. Liu, et al.. Nrf 2 protects against diabetic dysfunction of endothelial progenitor cells via regulating cell senescence. Int J Mol Med, 42 ( 2018), pp. 1327-1340, DOI: 10.3892/ijmm.2018.3727
[[13]]
A.M. Wafi, J. Hong, T.L. Rudebush, et al.. Curcumin improves exercise performance of mice with coronary artery ligation-induced HFrEF: Nrf2 and antioxidant mechanisms in skeletal muscle. J Appl Physiol, 126 ( 2019), pp. 477-486, DOI: 10.1152/japplphysiol.00654.2018
[[14]]
H. Zhang, M. Liu, Y. Zhang, X. Li.Trimetazidine attenuates exhaustive exercise-induced myocardial injury in rats via regulation of the Nrf2/NF-κB signaling pathway. Front Pharmacol, 10 ( 2019), p. 175, DOI: 10.3389/fphar.2019.00175
[[15]]
M. Horie, E. Warabi, S. Komine, S. Oh, J. Shoda.Cytoprotective role of Nrf2 in electrical pulse stimulated C2C12 myotube. PloS One, 10 (12) ( 2015), Article e0144835, DOI: 10.1371/journal.pone.0144835
[[16]]
S.E. Purdom-Dickinson, Y. Lin, M. Dedek, et al.. Induction of antioxidant and detoxification response by oxidants in cardiomyocytes: evidence from gene expression profiling and activation of Nrf 2 transcription factor. J Mol Cell Cardiol, 42 (1) ( 2007), pp. 159-176, DOI: 10.1016/j.yjmcc.2006.09.012
[[17]]
A.J. Done, M.J. Newell, T. Traustadóttir.Effect of exercise intensity on Nrf2 signalling in young men. Free Radic Res, 51 (6) ( 2017), pp. 646-655, DOI: 10.1080/10715762.2017.1353689
[[18]]
M. Hancock, A.D. Hafstad, A.A. Nabeebaccus. Myocardial NADPH oxidase-4 regulates the physiological response to acute exercise. Elife, 7 ( 2018), Article e41044, DOI: 10.7554/eLife.41044
[[19]]
E. Kansanen, A.M. Kivela, A.L. Levonen. Regulation of Nrf2-dependent gene expression by 15-deoxy-Δ12,14-prostaglandin J2. Free Radic Biol Med, 47 (9) ( 2009), pp. 1310-1317, DOI: 10.1016/j.freeradbiomed.2009.06.030
[[20]]
E. Kansanen, H.K. Jyrkkänen,Levonen AL. Activation of stress signaling pathways by electrophilic oxidized and nitrated lipids. Free Radic Biol Med, 52 (6) ( 2012), pp. 973-982, DOI: 10.1016/j.freeradbiomed.2011.11.038
[[21]]
K.I. Tong, B. Padmanabhan, A. Kobayashi, et al.. Different electrostatic potentials define ETGE and DLG motifs as hinge and latch in oxidative stress response. Mol Cell Biol, 27 (21) ( 2007), pp. 7511-7521, DOI: 10.1128/MCB.00753-07
[[22]]
J.A. Dempsey, D.C. McKenzie, H.C. Haverkamp, M.W. Eldridge. Update in the understanding of respiratory limitations to exercise performance in fit, active adults. Chest, 134 (3) ( 2008), pp. 613-622, DOI: 10.1378/chest.07-2730
[[23]]
M. Alvarez-Tejado, S. Naranjo-Suárez, C. Jiménez, et al.. Hypoxia induces the activation of the phosphatidylinositol 3-kinase/akt cell survival pathway in PC 12 cells: protective role in apoptosis. J Biol Chem, 276 ( 2001), pp. 22368-22374, DOI: 10.1074/jbc.M011688200
[[24]]
X.Y. Cheng, X.Y. Gu, Q. Gao, Q.F. Zong, X.H. Li, Y. Zhang. Effects of dexmedetomidine postconditioning on myocardial ischemia and the role of the PI3K/Akt-dependent signaling pathway in reperfusion injury. Mol Med Rep, 14 ( 2016), pp. 797-803, DOI: 10.3892/mmr.2016.5345
[[25]]
L.M. Heunks, J. Viña, C.L. van Herwaarden, et al.. Xanthine oxidase is involved in exercise-induced oxidative stress in chronic obstructive pulmonary disease. Am J Physiol, 277 (6) ( 1999), pp. R1697-R1704, DOI: 10.1152/ajpregu.1999.277.6.R1697
[[26]]
J. Viña, A. Gimeno, J. Sastre, et al.. Mechanism of free radical production in exhaustive exercise in humans and rats; role of xanthine oxidase and protection by allopurinol. IUBMB Life, 49 (6) ( 2000), pp. 539-544, DOI: 10.1080/15216540050167098
[[27]]
W. Takabe, N. Alberts-Grill, H. Jo. Disturbed flow: p53 SUMOylation in the turnover of endothelial cells. J Cell Biol, 193 (5) ( 2011), pp. 805-807, DOI: 10.1083/jcb.201104140
[[28]]
D.A. Bloom, A.K. Jaiswal. Phosphorylation of Nrf2 at Ser40 by protein kinase C in response to antioxidants leads to the release of Nrf2 from INrf2, but is not required for Nrf2 stabilization/accumulation in the nucleus and transcriptional activation of antioxidant response element-mediated NAD(P)H:quinone oxidoreductase-1 gene expression. J Biol Chem, 278 (45) ( 2003), pp. 44675-44682, DOI: 10.1074/jbc.M307633200
[[29]]
H.C. Huang, T. Nguyen, C.B. Pickett. Phosphorylation of Nrf2 at Ser-40 by protein kinase C regulates antioxidant response element-mediated transcription. J Biol Chem, 277 (45) ( 2002), pp. 42769-42774, DOI: 10.1074/jbc.M206911200
[[30]]
M.H. Laughlin, J.S. Pollock, J.F. Amann, et al.. Training induces nonuniform increases in eNOS content along the coronary arterial tree. J Appl Physiol, 90 (2) ( 2001), pp. 501-510, DOI: 10.1152/jappl.2001.90.2.501
[[31]]
R. Ramírez-Vélez, J. Bustamante, A. Czerniczyniec, et al.. Effect of exercise training on enos expression, NO production and oxygen metabolism in human placenta. PloS One, 8 (11) ( 2013), Article e80225, DOI: 10.1371/journal.pone.0080225
[[32]]
S. Dhakshinamoorthy, A.G. Porter. Nitric oxide-induced transcriptional up-regulation of protective genes by Nrf2 via the antioxidant response element counteracts apoptosis of neuroblastoma cells. J Biol Chem, 279 (19) ( 2004), pp. 20096-20107, DOI: 10.1074/jbc.M312492200
[[33]]
M. Gleeson. Temperature regulation during exercise. Int J Sports Med, 19 ( 1998), pp. S96-S99, DOI: 10.1055/s-2007-971967
[[34]]
A. Glory, D.A. Averill-Bates. The antioxidant transcription factor Nrf2 contributes to the protective effect of mild thermotolerance (40°C) against heat shock-induced apoptosis. Free Radic Biol Med, 99 ( 2016), pp. 485-497, DOI: 10.1016/j.freeradbiomed.2016.08.032
[[35]]
A. Loboda, M. Damulewicz, E. Pyza. Role of Nrf2/HO-1 system in development, oxidative stress response and diseases: an evolutionarily conserved mechanism. Cell Mol Life Sci, 73 (17) ( 2016), pp. 3221-3247, DOI: 10.1007/s00018-016-2223-0
[[36]]
N. Jessen, R. Pold, E.S. Buhl, et al.. Effects of AICAR and exercise on insulin-stimulated glucose uptake, signaling, and GLUT-4 content in rat muscles. J Appl Physiol, 94 (4) ( 2003), pp. 1373-1379, DOI: 10.1152/japplphysiol.00250.2002
[[37]]
S.A. Hawley, A.E. Gadalla, G.S. Olsen, D.G. Hardie. The antidiabetic drug metformin activates the AMP-activated protein kinase cascade via an adenine nucleotide-independent mechanism. Diabetes, 51 (8) ( 2002), pp. 2420-2425, DOI: 10.2337/diabetes.51.8.2420
[[38]]
B. Sid, C. Glorieux, M. Valenzuela, et al.. AICAR induces Nrf 2 activation by an AMPK-independent mechanism in hepatocarcinoma cells. Biochem Pharmacol, 91 (2) ( 2014), pp. 168-180, DOI: 10.1016/j.bcp.2014.07.010
[[39]]
K. Zimmermann, J. Baldinger, B. Mayerhofer, et al.. Activated AMPK boosts the Nrf2/HO-1 signaling axis--A role for the unfolded protein response. Free Radic Biol Med, 88 (Pt B) ( 2015), pp. 417-426, DOI: 10.1016/j.freeradbiomed.2015.03.030
[[40]]
A. Gajos-Draus, M. Duda, A. Beręsewicz.Cardiac and renal upregulation of Nox2 and NF-κB and repression of Nox4 and Nrf2 in season- and diabetes-mediated models of vascular oxidative stress in Guinea-pig and rat. Physiol Rep, 5 (20) ( 2017), Article e13474, DOI: 10.14814/phy2.13474
[[41]]
A. Eluamai, K. Brooks. Effect of aerobic exercise on mitochondrial DNA and aging. J Exerc Sci Fit, 11 ( 2013), pp. 1-5, DOI: 10.1016/j.jesf.2013.03.003
[[42]]
A. Marcuello, J. González-Alonso, J.L. Calbet, et al.. Skeletal muscle mitochondrial DNA content in exercising humans. J Appl Physiol, 99 ( 2005), pp. 1372-1377, DOI: 10.1152/japplphysiol.00289.2005
[[43]]
A.L. Chang, A. Ulrich, H. Suliman, C.A. Piantadosi. Redox regulation of mitophagy in the lung during murine Staphylococcus aureus sepsis. Free Radic Biol Med, 78 ( 2015), pp. 179-189, DOI: 10.1016/j.freeradbiomed.2014.10.582
[[44]]
L.J. Toime, M.D. Brand. Uncoupling protein-3 lowers reactive oxygen species production in isolated mitochondria. Free Radic Biol Med, 49 ( 2010), pp. 606-611, DOI: 10.1016/j.freeradbiomed.2010.05.010
[[45]]
F.L. Muller, Y. Liu, M.A. Abdul-Ghani, et al.. High rates of superoxide production in skeletal-muscle mitochondria respiring on both complex I- and complex II-linked substrates. Biochem J, 409 ( 2008), pp. 491-499, DOI: 10.1042/BJ20071162
[[46]]
F. Zoccarato, L. Cavallini, S. Bortolami, A. Alexandre. Succinate modulation of H2O2 release at NADH:ubiquinone oxidoreductase (Complex I) in brain mitochondria. Biochem J, 406 ( 2007), pp. 125-129, DOI: 10.1042/BJ20070215
[[47]]
K.M. Holmström, L. Baird, Y. Zhang, et al.. Nrf 2 impacts cellular bioenergetics by controlling substrate availability for mitochondrial respiration. Biol Open, 2 (8) ( 2013), pp. 761-770, DOI: 10.1242/bio.20134853
[[48]]
R.C. Scarpulla. Nuclear control of respiratory chain expression by nuclear respiratory factors and PGC-1-related coactivator. Ann N Y Acad Sci, 1147 ( 2008), pp. 321-334, DOI: 10.1196/annals.1427.006
[[49]]
S. Li, W. Wang, T. Niu, et al.. Nrf 2 deficiency exaggerates doxorubicin-induced cardiotoxicity and cardiac dysfunction. Oxid Med Cell Longev, 2014 ( 2014), p. 748524, DOI: 10.1155/2014/748524
[[50]]
C. Mihl, W.R.M. Dassen, H. Kuipers. Cardiac remodeling: concentric versus eccentric hypertrophy in strength and endurance athletes. Neth Heart J, 16 ( 2008), pp. 129-133, DOI: 10.1007/BF03086131
[[51]]
G. Shanmugam, A.K. Challa, A. Devarajan, et al.. Exercise mediated Nrf 2 signaling protects the myocardium from isoproterenol-induced pathological remodeling. Front Cardiovasc Med, 6 ( 2019), p. 68, DOI: 10.3389/fcvm.2019.00068
[[52]]
ShanmugamG, NarasimhanM, R. L. Conley, et al.. Chronic endurance exercise impairs cardiac structure and function in middle-aged mice with impaired Nrf2 signaling. Front Physiol, 8 ( 2017), p. 268, DOI: 10.3389/fphys.2017.00268
[[53]]
J. Li, T. Ichikawa, L. Villacorta, et al.. Nrf 2 protects against maladaptive cardiac responses to hemodynamic stress. Arterioscler Thromb Vasc Biol, 11 ( 2009), pp. 1843-1850, DOI: 10.1161/ATVBAHA.109.189480
[[54]]
A. Cuadrado, Z. Martín-Moldes, J. Ye, I. Lastres-Becker. Transcription factors NRF2 and NF-κB are coordinated effectors of the rho family, GTP-binding protein RAC1 during inflammation. J Biol Chem, 289 ( 2014), pp. 15244-15258, DOI: 10.1074/jbc.M113.540633
[[55]]
A. Nemmar, S. Al-Salam, P. Yuvaraju, S. Beegam, B.H. Ali.Exercise training mitigates water pipe smoke exposure-induced pulmonary impairment via inhibiting NF-κB and activating Nrf 2 signalling pathways. Oxid Med Cell Longev ( 2018), p. 7459612, DOI: 10.1155/2018/7459612
[[56]]
J.K. Lighthouse, R.M. Burke, L.S. Velasquez, et al.. Exercise promotes a cardioprotective gene program in resident cardiac fibroblasts. JCI Insight, 4 (1) ( 2019), Article e92098, DOI: 10.1172/jci.insight.92098
[[57]]
T.A. Okabe, C. Kishimoto, T. Murayama, M. Yokode, T. Kita. Effects of exercise on the development of atherosclerosis in apolipoprotein E-deficient mice. Exp Clin Cardiol, 11 ( 2006), pp. 276-279
[[58]]
J.K. Williams, J.R. Kaplan, I.H. Suparto, J.L. Fox, S.B. Manuck. Effects of exercise on cardiovascular outcomes in monkeys with risk factors for coronary heart disease. Arterioscler Thromb Vasc Biol, 23 ( 2003), pp. 864-871, DOI: 10.1161/01.ATV.0000067934.12783.6A
[[59]]
W.N. Nowak, J. Deng, X.Z. Ruan, Q. Xu. Reactive oxygen species generation and atherosclerosis. Arterioscler Thromb Vasc Biol, 37 (5) ( 2017), pp. e41-e52, DOI: 10.1161/ATVBAHA.117.309228
[[60]]
M. Torzewski, V. Ochsenhirt, A.L. Kleschyov, et al.. Deficiency of glutathione peroxidase-1 accelerates the progression of atherosclerosis in apolipoprotein E-deficient mice. Arterioscler Thromb Vasc Biol, 27 ( 2007), pp. 850-857, DOI: 10.1161/01.ATV.0000258809.47285.07
[[61]]
S.F. Yet, M.D. Layne, X. Liu, et al.. Absence of heme oxygenase-1 exacerbates atherosclerotic lesion formation and vascular remodeling. Faseb J, 17 ( 2003), pp. 1759-1761, DOI: 10.1096/fj.03-0187fje
[[62]]
R. Kinscherf, H.P. Deigner, UsingerC, et al.. Induction of mitochondrial manganese superoxide dismutase in macrophages by oxidized LDL: its relevance in atherosclerosis of humans and heritable hyperlipidemic rabbits. Faseb J, 11 ( 1997), pp. 1317-1328, DOI: 10.1096/fasebj.11.14.9409551
[[63]]
R. Stocker. Induction of haem oxygenase as a defence against oxidative stress. Free Radic Res Commun, 9 ( 1990), pp. 101-112, DOI: 10.3109/10715769009148577
[[64]]
V.M. Darley-Usmar, A. Severn, V. O'Leary, M. Rogers. Treatment of macrophages with oxidized low-density lipoprotein increases their intracellular glutathione content. Biochem J, 278 (Pt 2) ( 1991), pp. 429-434, DOI: 10.1042/bj2780429
[[65]]
J.A. Araujo, M. Zhang, F. Yin.Heme oxygenase-1, oxidation, inflammation, and atherosclerosis. Front Pharmacol, 3 ( 2012), p. 119, DOI: 10.3389/fphar.2012.00119
[[66]]
T. Jansen, M. Hortmann, M. Oelze, Opitz, et al.. Conversion of biliverdin to bilirubin by biliverdin reductase contributes to endothelial cell protection by heme oxygenase-1-evidence for direct and indirect antioxidant actions of bilirubin. J Mol Cell Cardiol, 49 ( 2010), pp. 186-195, DOI: 10.1016/j.yjmcc.2010.04.011
[[67]]
A. Kawashima, Y. Oda, A. Yachie, S. Koizumi, I. Nakanishi. Heme oxygenase-1 deficiency: the first autopsy case. Hum Pathol, 33 ( 2002), pp. 125-130, DOI: 10.1053/hupa.2002.30217
[[68]]
A. Yachie, Y. Niida, T. Wada, et al.. Oxidative stress causes enhanced endothelial cell injury in human heme oxygenase-1 deficiency. J Clin Invest, 103 ( 1999), pp. 129-135, DOI: 10.1172/JCI4165
[[69]]
H. Zhu, Z. Jia, Y.R. Li. Nrf 2 signaling in macrophages. React Oxyg Species (Apex), 2 (6) ( 2016), pp. 417-420, DOI: 10.20455/ros.2016.875
[[70]]
H.K. Jyrkkänen, E. Kansanen, M. Inkala, et al.. Nrf 2 regulates antioxidant gene expression evoked by oxidized phospholipids in endothelial cells and murine arteries in vivo. Circ Res, 103 ( 2008), p. e1, DOI: 10.1161/CIRCRESAHA.108.176883
[[71]]
R.T. Morris, M.J. Laye, S.J. Lees, et al.. Exercise-induced attenuation of obesity, hyperinsulinemia, and skeletal muscle lipid peroxidation in the OLETF rat. J Appl Physiol, 104 ( 2008), pp. 708-715, DOI: 10.1152/japplphysiol.01034.2007
[[72]]
C. Bierl, B. Voetsch, R.C. Jin, D.E. Handy, J. Loscalzo.Determinants of human plasma glutathione peroxidase (GPx-3) expression. J Biol Chem, 279 ( 2004), pp. 26839-26845, DOI: 10.1074/jbc.M401907200
[[73]]
B. Buijsse, D.H. Lee, L. Steffen, et al.. Low serum glutathione peroxidase activity is associated with increased cardiovascular mortality in individuals with low HDLc's. PloS One, 7 ( 2012), Article e38901, DOI: 10.1371/journal.pone.0038901
[[74]]
A. Singh, T. Rangasamy, R.K. Thimmulappa, et al.. Glutathione peroxidase 2, the major cigarette smoke-inducible isoform of GPX in lungs, is regulated by Nrf2. Am J Respir Cell Mol Biol, 35 ( 2006), pp. 639-650, DOI: 10.1165/rcmb.2005-0325OC
[[75]]
A. Pietersma, B.C. Tilly, M. Gaestel, et al.. p 38 mitogen activated protein kinase regulates endothelial VCAM-1 expression at the post-transcriptional level. Biochem Biophys Res Commun, 230 ( 1997), pp. 44-48, DOI: 10.1006/bbrc.1996.5886
[[76]]
M. Zakkar, K. Van der Heiden le A. Luong, et al.. Activation of Nrf 2 in endothelial cells protects arteries from exhibiting a proinflammatory state. Arterioscler Thromb Vasc Biol, 29 (11) ( 2009), pp. 1851-1857, DOI: 10.1161/ATVBAHA.109.193375
[[77]]
A.G. Cox, S. Gurusinghe, R. Abd Rahman, et al.. Sulforaphane improves endothelial function and reduces placental oxidative stress in vitro. Pregnancy Hypertens, 16 ( 2019), pp. 1-10, DOI: 10.1016/j.preghy.2019.02.002
[[78]]
N. Harada, K. Ito, T. Hosoya, et al.. Nrf 2 in bone marrow-derived cells positively contributes to the advanced stage of atherosclerotic plaque formation. Free Radic Biol Med, 53 (12) ( 2012), pp. 2256-2262, DOI: 10.1016/j.freeradbiomed.2012.10.001
[[79]]
J.J. Chiu, S. Chien. Effects of disturbed flow on vascular endothelium: pathophysiological basis and clinical perspectives. Physiol Rev, 91 (1) ( 2011), pp. 327-387, DOI: 10.1152/physrev.00047.2009
[[80]]
M.A. Gimbrone,G. Garcia-Cardena. Vascular endothelium, hemodynamics, and the pathobiology of atherosclerosis. Cardiovasc Pathol, 22 (1) ( 2013), pp. 9-15, DOI: 10.1016/j.carpath.2012.06.006
[[81]]
J.X. Yang, Y.Y. Pan, X.X. Wang, Y.G. Qiu, W. Mao. Endothelial progenitor cells in age-related vascular remodeling. Cell Transplant, 27 ( 2018), pp. 786-795, DOI: 10.1177/0963689718779345
[[82]]
M.H. Laughlin, K.A. Overholser, M.J. Bhatte. Exercise training increases coronary transport reserve in miniature swine. J Appl Physiol, 67 ( 1989), pp. 1140-1149, DOI: 10.1152/jappl.1989.67.3.1140
[[83]]
M.H. Laughlin, R.J. Tomanek. Myocardial capillarity and maximal capillary diffusion capacity in exercise-trained dogs. J Appl Physiol, 63 ( 1987), pp. 1481-1486, DOI: 10.1152/jappl.1987.63.4.1481
[[84]]
R. Nasu, H. Kimura, K. Akagi, T. Murata, Y. Tanaka. Blood flow influences vascular growth during tumour angiogenesis. Br J Canc, 79 ( 1999), pp. 780-786, DOI: 10.1038/sj.bjc.6690125
[[85]]
U. Florczyk, A. Jazwa, M. Maleszewska, et al.. Nrf 2 regulates angiogenesis: effect on endothelial cells, bone marrow-derived proangiogenic cells and hind limb ischemia. Antioxidants Redox Signal, 20 ( 2014), pp. 1693-1708, DOI: 10.1089/ars.2013.5219
[[86]]
G.L. Hoetzer, G.P. Van Guilder, H.M. Irmiger, R.S. Keith, B.L. Stauffer, C.A. DeSouza. Aging, exercise, and endothelial progenitor cell clonogenic and migratory capacity in men. J Appl Physiol, 102 ( 2007), pp. 847-852, DOI: 10.1152/japplphysiol.01183.2006
[[87]]
M. Sandri, V. Adams, S. Gielen, et al.. Effects of exercise and ischemia on mobilization and functional activation of blood-derived progenitor cells in patients with ischemic syndromes: results of 3 randomized studies. Circulation, 111 ( 2005), pp. 3391-3399, DOI: 10.1161/CIRCULATIONAHA.104.527135
[[88]]
T.H. Kim, E. Hur, S.J. Kang, et al.. NRF 2 blockade suppresses colon tumor angiogenesis by inhibiting hypoxia-induced activation of HIF-1α. Canc Res, 71 ( 2011), pp. 2260-2275, DOI: 10.1158/0008-5472.CAN-10-3007
[[89]]
L. Kuang, J. Feng, G. He, T. Jing. Knockdown of Nrf2 inhibits the angiogenesis of raardiac micro-vascular endothelial cells under hypoxic conditions. Int J Biol Sci, 9 ( 2013), pp. 656-665, DOI: 10.7150/ijbs.5887
[[90]]
H. Naci, M. Salcher-Konrad, S. Dias, et al.. How does exercise treatment compare with antihypertensive medications? A network meta-analysis of 391 randomised controlled trials assessing exercise and medication effects on systolic blood pressure. Br J Sports Med, 53 (14) ( 2019), pp. 859-869, DOI: 10.1136/bjsports-2018-099921
[[91]]
M. Gómez-Guzmán, R. Jiménez, M. Sánchez, et al.. Epicatechin lowers blood pressure, restores endothelial function, and decreases oxidative stress and endothelin-1 and NADPH oxidase activity in DOCA-salt hypertension. Free Radic Biol Med, 52 ( 2012), pp. 70-79, DOI: 10.1016/j.freeradbiomed.2011.09.015
[[92]]
I. Smyrnias, X. Zhang, M. Zhang, et al.. Nicotinamide adenine dinucleotide phosphate oxidase-4-dependent upregulation of nuclear factor erythroid-derived 2-like 2 protects the heart during chronic pressure overload. Hypertension, 65 (3) ( 2015), pp. 547-553, DOI: 10.1161/HYPERTENSIONAHA.114.04208
[[93]]
J. Li, T. Ichikawa, L. Villacorta, et al.. Nrf 2 protects against maladaptive cardiac responses to hemodynamic stress. Arterioscler Thromb Vasc Biol, 29 (11) ( 2009), pp. 1843-1850, DOI: 10.1161/ATVBAHA.109.189480
[[94]]
D.H. Lee, J.S. Park, Y.S. Lee, S.H. Sung, Y.H. Lee, S.H. Bae. The hypertension drug,verapamil, activates Nrf2 by promoting p62-dependent autophagic Keap1 degradation and prevents acetaminophen-induced cytotoxicity. BMB Rep, 50 (2) ( 2017), pp. 91-96, DOI: 10.5483/bmbrep.2017.50.2.188
[[95]]
R.A. Lopes, K.B. Neves, R.C. Tostes, A.C. Montezano, R.M. Touyz. Downregulation of nuclear factor erythroid 2-related factor and associated antioxidant genes contributes to redox-sensitive vascular dysfunction in hypertension. Hypertension, 66 (6) ( 2015), pp. 1240-1250, DOI: 10.1161/HYPERTENSIONAHA.115.06163
[[96]]
J. Bai, X.J. Yu, K.L. Liu, et al.. Central administration of tert-butylhydroquinone attenuates hypertension via regulating Nrf 2 signaling in the hypothalamic paraventricular nucleus of hypertensive rats. Toxicol Appl Pharmacol, 15 (333) ( 2017), pp. 100-109, DOI: 10.1016/j.taap.2017.08.012
[[97]]
S.Y. Chan, J. Loscalzo. Pathogenic mechanisms of pulmonary arterial hypertension. J Mol Cell Cardiol, 44 (1) ( 2008), pp. 14-30, DOI: 10.1016/j.yjmcc.2007.09.006
[[98]]
B. Escalante, D. Sacerdoti, M.M. Davidian, M. Laniado-Schwartzman, J.C. McGiff. Chronic treatment with tin normalizes blood pressure in spontaneously hypertensive rats. Hypertension, 17 (6 Pt 1) ( 1991), pp. 776-779, DOI: 10.1161/01.hyp.17.6.776
[[99]]
N.G. Abraham, A. Kappas. Pharmacological and clinical aspects of heme oxygenase. Pharmacol Rev, 60 (1) ( 2008), pp. 79-127, DOI: 10.1124/pr.107.07104
[[100]]
J.M. Lever, R. Boddu, J.F. George, A. Agarwal. Heme oxygenase-1 in kidney health and disease. Antioxidants Redox Signal, 25 (3) ( 2016), pp. 165-183, DOI: 10.1089/ars.2016.6659
[[101]]
W. Hur, N.S. Gray. Small molecule modulators of antioxidant response pathway. Curr Opin Chem Biol, 15 (1) ( 2011), pp. 162-173, DOI: 10.1016/j.cbpa.2010.12.009
[[102]]
T. Satoh, S.R. McKercher, S.A. Lipton. Nrf2/ARE-mediated antioxidant actions of pro-electrophilic drugs. Free Radic Biol Med, 65 ( 2013), pp. 645-657, DOI: 10.1016/j.freeradbiomed.2013.07.022
[[103]]
A.T. Dinkova-Kostova, A.Y. Abramov. The emerging role of Nrf2 in mitochondrial function. Free Radic Biol Med, 88 (Pt B) ( 2015), pp. 179-188, DOI: 10.1016/j.freeradbiomed.2015.04.036
[[104]]
F. Correa, M. Buelna-Chontal, S. Hernández-Reséndiz, et al.. Curcumin maintains cardiac and mitochondrial function in chronic kidney disease. Free Radic Biol, 61 ( 2013), pp. 119-129, DOI: 10.1016/j.freeradbiomed.2013.03.017
[[105]]
D. Bonnefont-Rousselot. Resveratrol and cardiovascular diseases. Nutrients, 8 (5) ( 2016), p. 250, DOI: 10.3390/nu8050250
[[106]]
B.N. Zordoky, I.M. Robertson, J.R. Dyck. Preclinical and clinical evidence for the role of resveratrol in the treatment of cardiovascular diseases. Biochim Biophys Acta, 1852 (6) ( 2015), pp. 1155-1177, DOI: 10.1016/j.bbadis.2014.10.016
[[107]]
T. Wojcik, E. Szczesny, S. Chlopicki. Detrimental effects of chemotherapeutics and other drugs on the endothelium: a call for endothelial toxicity profiling. Pharmacol Rep, 67 (4) ( 2015), pp. 811-817, DOI: 10.1016/j.pharep.2015.03.022
[[108]]
J.W. Fahey, K.K. Stephenson, A.T. Dinkova-Kostova, P.A. Egner, T.W. Kensler, P. Talalay. Chlorophyll, chlorophyllin and related tetrapyrroles are significant inducers of mammalian phase 2 cytoprotective genes. Carcinogenesis, 26 (7) ( 2005), pp. 1247-1255, DOI: 10.1093/carcin/bgi068
[[109]]
Y. Zhang, P. Talalay, C.G. Cho, G.H. Posner. A major inducer of anticarcinogenic protective enzymes from broccoli: isolation and elucidation of structure. Proc Natl Acad Sci U S A, 15 (6) ( 1992), pp. 2399-2403, DOI: 10.1073/pnas.89.6.2399

Accesses

Citations

Detail

Sections
Recommended

/