Predicting muscular strength using demographics, skeletal dimensions, and body composition measures

Sean T. Stanelle, Stephen F. Crouse, Tyler R. Heimdal, Steven E. Riechman, Alexandra L. Remy, Bradley S. Lambert

Sports Medicine and Health Science ›› 2021, Vol. 3 ›› Issue (1) : 34-39. DOI: 10.1016/j.smhs.2021.02.001
Original article

Predicting muscular strength using demographics, skeletal dimensions, and body composition measures

Author information +
History +

Abstract

The purpose of this study was to develop an equation to predict strength for seven common resistance training exercises using anthropometric and demographic measures. One-hundred forty-seven healthy adults (74 males, 73 females, 35 ± 12 yr, 174 ± 10 cm, 88 ± 19 kg) volunteered to participate. Body composition values (regional/total) and body dimensions were assessed using dual-energy x-ray absorptiometry (DEXA). Subjects underwent the following maximal strength assessments: Leg Press, Chest Press, Leg Curl, Lat Pulldown, Leg Extension, Triceps Pushdown, and Biceps Curl. Multiple linear regression with stepwise removal was used to determine the best model to predict maximal strength for each exercise. Independent predictor variables identified (p < 0.05) were height (cm); weight (kg); BMI; age; sex (0 = F,1 = M); regional lean masses (LM,kg); fat mass (FM,kg); fat free mass (FFM,kg); percent fat (%BF); arm, leg, and trunk lengths (AL, LL, TL; cm); and shoulder width (SW,cm). Analyses were performed with and without regional measures to accommodate scenarios where DEXA is unavailable. All models presented were significant (p < 0.05, R2 = 0.68-0.83), with regional models producing the greatest accuracy. Results indicate that maximal strength for individual resistance exercises can be reasonably estimated in adults.

Keywords

Strength training / Exercise testing / Regression equation / DEXA

Cite this article

Download citation ▾
Sean T. Stanelle, Stephen F. Crouse, Tyler R. Heimdal, Steven E. Riechman, Alexandra L. Remy, Bradley S. Lambert. Predicting muscular strength using demographics, skeletal dimensions, and body composition measures. Sports Medicine and Health Science, 2021, 3(1): 34‒39 https://doi.org/10.1016/j.smhs.2021.02.001

References

[[1]]
C.L. Dumke. Health-related physical fitness testing and interpretation. D. Riebe, J.K. Ehrman, G. Liguori, M. Magal (Eds.), ACSM's Guidelines for Exercise Testing and Prescription, Wolters Kluwer ( 2018), pp. 94-98
[[2]]
V.A. Hughes, W.R. Frontera, M. Wood, et al.. Longitudinal muscle strength changes in older adults: influence of muscle mass, physical activity, and health. J Gerontol A Biol Sci Med Sci, 56 (5) ( 2001), pp. B209-B217, DOI: 10.1093/gerona/56.5.B209
[[3]]
T.R. Baechle, R.W. Earle, D.Wathen. Anaerobic exercise prescription. ( T. R. Baechle, R.W. Earle (third ed.ed.)Eds.), Essentials of Strength Training and Conditioning, vols. 390-391, Human Kinetics ( 2008), pp. 393-395
[[4]]
I. Janssen, S.B. Heymsfield, Z. Wang, R. Ross.Skeletal muscle mass and distribution in 468 men and women aged 18-88 yr. J Appl Physiol, 89 (1) ( 2000), pp. 81-88, DOI: 10.1152/jappl.2000.89.1.81
[[5]]
F.M. Purves-Smith, N. Sgarioto, R.T. Hepple. Fiber typing in aging muscle. Exerc Sport Sci Rev, 42 (2) ( 2014), pp. 45-52, DOI: 10.1249/JES.0000000000000012
[[6]]
J.G. Ryall, J.D. Schertzer, G.S. Lynch. Cellular and molecular mechanisms underlying age-related skeletal muscle wasting and weakness. Biogerontology, 9 (4) ( 2008), pp. 213-228, DOI: 10.1007/s10522-008-9131-0
[[7]]
K. Tittel, H. Wutscherk. Anthropometric factors. P. V. Komi ( Ed.), Strengthand Power in Sport (second ed.ed.), Blackwell Science, Oxford, UK ( 1993), pp. 180-196
[[8]]
J. Kompf, O. Arandjelović. Understanding and overcoming the sticking point in resistance exercise. Sports Med, 46 (6) ( 2016), pp. 751-762, DOI: 10.1007/s40279-015-0460-2
[[9]]
R.K. Hetzler, B.L. Schroeder, J.J. Wages, C.D. Stickley, I.F. Kimura. Anthropometry increases 1 repetition maximum predictive ability of NFL-225 test for division IA college football players. J Strength Condit Res, 24 (6) ( 2010), pp. 1429-1439, DOI: 10.1519/JSC.0b013e3181d682fa
[[10]]
P.M. Ferland, A. Pollock, R. Swope, et al.. The relationship between physical characteristics and maximal strength in men practicing the back squat, the bench press and the deadlift. Int J Exerc Sci, 13 (4) ( 2020), pp. 281-297
[[11]]
M.M. Bamman, B.R. Newcomer, D.E. Larson-Meyer, R.L. Weinsier, G.R. Hunter. Evaluation of the strength-size relationship in vivo using various muscle size indices. Med Sci Sports Exerc, 32 (7) ( 2000), pp. 1307-1313
[[12]]
R.M. Erskine, G. Fletcher, J.P. Folland. The contribution of muscle hypertrophy to strength changes following resistance training. Eur J Appl Physiol, 114 (6) ( 2014), pp. 1239-1249, DOI: 10.1007/s00421-014-2855-4
[[13]]
Healthcare GE. Lunar enCORE-Based X-Ray Bone Densitometer User Manual. ( 2018). Published online
[[14]]
R. Bruce, F. Kusumi, D. Hosmer. Maximal oxygen intake and nomographic assessment of functional aerobic impairment in cardiovascular disease. Am Heart J, 85 (4) ( 1973), pp. 546-562, DOI: 10.1016/0002-8703(73)90502-4
[[15]]
A.F. Carbuhn, J.W. Womack, J.S. Green, K. Morgan, G.S. Miller, S.F. Crouse. Performance and blood pressure characteristics of first-year national collegiate athletic association division I football players. J Strength Condit Res, 22 (4) ( 2008), pp. 1347-1354, DOI: 10.1519/JSC.0b013e318173db5d
[[16]]
J.R. Lytle, D.M. Kravits, S.E. Martin, J.S. Green, S.F. Crouse, B.S. Lambert. Predicting energy expenditure of an acute resistance exercise bout in men and women. Med Sci Sports Exerc, 51 (7) ( 2019), pp. 1532-1537, DOI: 10.1249/MSS.0000000000001925
[[17]]
D.L. Keiser. 227 Exercising device including linkage for control of muscular exertion required through exercising stroke, 4 ( 1980), p. 689. United States patent US
[[18]]
B. Lambert, K. Shimkus, J. Fluckey, et al.. Anabolic responses to acute and chronic resistance exercise are enhanced when combined with aquatic treadmill exercise. Am J Physiol Endocrinol Metab, 308 ( 2014), pp. E192-E200, DOI: 10.1152/ajpendo.00689.2013
[[19]]
D.A. LeSuer, J.H. McCormick, J.L. Mayhew, R.L. Wasserstein, M.D. Arnold. The accuracy of prediction equations for estimating 1-RM performance in the bench press, squat, and deadlift. J Strength Condit Res, 11 (4) ( 1997), pp. 211-213, DOI: 10.1519/00124278-199711000-00001
[[20]]
J.M. Reynolds, T.J. Gordon, R.A. Robergs. Prediction of one repetition maximum strength from multiple repetition maximum testing and anthropometry. J Strength Condit Res, 20 (3) ( 2006), pp. 584-592, DOI: 10.1519/r-15304.1
[[21]]
S. Gail, S. Künzell. Reliability of a 5-repetition maximum strength test in recreational athletes. Dtsch Z Sportmed, 2014 (11) ( 2014), pp. 314-317, DOI: 10.5960/dzsm.2014.138
[[22]]
J.M. Oliver, B.S. Lambert, S.E. Martin, J.S. Green, S.F. Crouse. Predicting football players' dual-energy x-ray absorptiometry body composition using standard anthropometric measures. J Athl Train, 47 (3) ( 2012), pp. 257-263, DOI: 10.4085/1062-6050-47.3.12
[[23]]
D.M. Frost, J.B. Cronin, R.U. Newton. A comparison of the kinematics, kinetics and muscle activity between pneumatic and free weight resistance. Eur J Appl Physiol, 104 (6) ( 2008), pp. 937-956, DOI: 10.1007/s00421-008-0821-8
[[24]]
D.P. O'Connor, M.S. Bray, B.K. McFarlin, M.H. Sailors, K.J. Ellis, A.S. Jackson. Generalized equations for estimating DXA percent fat of diverse young women and men: the TIGER study. Med Sci Sports Exerc, 42 (10) ( 2010), pp. 1959-1965, DOI: 10.1249/MSS.0b013e3181dc2e71
[[25]]
C.B. Ritchie, R.T. Davidson.Regional body composition in college-aged Caucasians from anthropometric measures. Nutr Metab, 4 (1) ( 2007), p. 29, DOI: 10.1186/1743-7075-4-29
[[26]]
A. Scafoglieri, J. Tresignie, S. Provyn, et al.. Accuracy and concordance of anthropometry for measuring regional fat distribution in adults aged 20-55 years. Am J Hum Biol, 25 (1) ( 2013), pp. 63-70, DOI: 10.1002/ajhb.22342
[[27]]
A. Scafoglieri, J. Tresignie, S. Provyn, et al.. Prediction of segmental lean mass using anthropometric variables in young adults. J Sports Sci, 30 (8) ( 2012), pp. 777-785, DOI: 10.1080/02640414.2012.670716
[[28]]
M. Simoes, M. Severo, A. Oliveira, I. Ferreira, C. Lopes. Predictive equations for estimating regional body composition: a validation study using DXA as criterion and associations with cardiometabolic risk factors. Ann Hum Biol, 43 (3) ( 2016), pp. 219-228, DOI: 10.3109/03014460.2015.1054427
[[29]]
S. Tian, L. Mioche, J.B. Denis, B. Morio. A multivariate model for predicting segmental body composition. Br J Nutr, 110 (12) ( 2013), pp. 2260-2270, DOI: 10.1017/S0007114513001803
[[30]]
S. Ikegawa, K. Funato, N. Tsunoda, H. Kanehisa, T. Fukunaga, Y. Kawakami. Muscle force per cross-sectional area is inversely related with pennation angle in strength trained athletes. J Strength Condit Res, 22 (1) ( 2008), pp. 128-131, DOI: 10.1519/JSC.0b013e31815f2fd3

The authors have no conflicts of interest to disclose. This research was funded in part by HydroWorx International (Middletown, PA), the Sydney and J. L. Huffines Institute for Sports Medicine and Human Performance (Texas A&M University, College Station, TX), and The National Strength and Conditioning Association (Colorado Springs, CO). Bradley Lambert, Ph.D (Corresponding Author), bslambert@HoustonMethodist.org.

Accesses

Citations

Detail

Sections
Recommended

/