Assessment of aerobic exercise capacity in obesity, which expression of oxygen uptake is the best?

Na Zhou

Sports Medicine and Health Science ›› 2021, Vol. 3 ›› Issue (3) : 138-147. DOI: 10.1016/j.smhs.2021.01.001
Review

Assessment of aerobic exercise capacity in obesity, which expression of oxygen uptake is the best?

Author information +
History +

Abstract

Although the impact of obesity on exercise performance is multifactorial, excessive fat mass which can impose an unfavorable burden on cardiac function and working muscle, will affect the aerobic exercise capacity. Weight loss strategies, such as bariatric surgery can obviously affect both the body composition and aerobic exercise capacity. Maximal oxygen consumption (V˙O2max) is a widely used important indicator of aerobic exercise capacity of an individual and is closely related to body weight, size and composition. An individual's aerobic exercise capacity may show different results depending on how V˙O2max is expressed. The absolute V˙O2max and V˙O2max relative to body weight are the most commonly used indicators. The V˙O2max relative to fat-free mass, lean body mass or skeletal muscle mass are not influenced by adipose tissue. The last two are more useful to precisely distinguish between individuals differing in muscle adaptation to maximum oxygen uptake. The V˙O2max relative to body height is used for studying growth in children. With the in-depth study of exercise capacity and body composition in obesity, the relative oxygen uptake has been increasingly reinterpreted.

Keywords

Exercise capacity / Absolute V⋅O2 / Relative V⋅O2 / V⋅O2max / Body composition / Muscle

Cite this article

Download citation ▾
Na Zhou. Assessment of aerobic exercise capacity in obesity, which expression of oxygen uptake is the best?. Sports Medicine and Health Science, 2021, 3(3): 138‒147 https://doi.org/10.1016/j.smhs.2021.01.001

References

[[1]]
Look Ahead Research Group, E. Gregg J. Jakicic, et al.. Association of the magnitude of weight loss and changes in physical fitness with long-term cardiovascular disease outcomes in overweight or obese people with type 2 diabetes: a post-hoc analysis of the Look AHEAD randomised clinical trial. Lancet Diabetes Endocrinol, 4 (11) ( 2016), pp. 913-921, DOI: 10.1016/S2213-8587(16)30162-0
[[2]]
Malou A.H. Nuijten, Onno M. Tettero, Rens J. Wolf, Esmée A. Bakker, Maria T.E. Hopman. Changes in Physical Activity in Relation to Body Composition, Fitness and Quality of Life after Primary Bariatric Surgery: A Two-Year Follow-Up Study. Obesity Surgery. ( 2020), pp. 1-9, DOI: 10.1007/s11695-020-05009-x
[[3]]
N. Mohorko, M. Černelič-Bizjak, T. Poklar-Vatovec, et al.. Weight loss, improved physical performance, cognitive function, eating behavior, and metabolic profile in a 12-week ketogenic diet in obese adults. Nutr Res, 62 ( 2019), pp. 64-77, DOI: 10.1016/j.nutres.2018.11.007
[[4]]
J. Myers, A. Kaykha, S. George, et al.. Fitness versus physical activity patterns in predicting mortality in men. Am J Med, 117 (12) ( 2004), pp. 912-918, DOI: 10.1016/j.amjmed.2004.06.047
[[5]]
J. Myers, M. Prakash, V. Froelicher, D. Do, S. Partington, J.E. Atwood. Exercise capacity and mortality among men referred for exercise testing. N Engl J Med, 346 (11) ( 2002), pp. 793-801, DOI: 10.1056/NEJMoa011858
[[6]]
D. Lee, E.G. Artero, X. Sui, S.N. Blair. Mortality trends in the general population: the importance of cardiorespiratory fitness. J Psychopharmacol, 24 (4 Suppl) ( 2010), pp. 27-35, DOI: 10.1177/1359786810382057
[[7]]
D.-C. Lee, X. Sui, F.B. Ortega, et al.. Comparisons of leisure-time physical activity and cardiorespiratory fitness as predictors of all-cause mortality in men and women. Br J Sports Med, 45 (6) ( 2011), pp. 504-510, DOI: 10.1136/bjsm.2009.066209
[[8]]
J.A. Laukkanen, F. Zaccardi, H. Khan, S. Kurl, S.Y. Jae, R. Rauramaa. Long-term change in cardiorespiratory fitness and all-cause mortality: a population-based follow-up study. Mayo Clin Proc, 91 (9) ( 2016), pp. 1183-1188, DOI: 10.1016/j.mayocp.2016.05.014
[[9]]
E. Fung, L. Ting Lui, F. Gustafsson, et al.. Predicting 10-year mortality in older adults using VO2max, oxygen uptake efficiency slope and frailty class. Eur J Prev Cardiol, 30 ( 2020), DOI: 10.1177/2047487320914435
[[10]]
D.R. Bassett, E.T. Howley. Limiting factors for maximum oxygen uptake and determinants of endurance performance. Med Sci Sports Exerc, 32 (1) ( 2000), pp. 70-84, DOI: 10.1097/00005768-200001000-00012
[[11]]
K. Wasserman, J.E. Hansen, D.Y. Sue, W.W. Stringer, B.J. Whipp. Principles of Exercise Testing and Interpretation fourth ed.. Lippincott Williams & Wilkins ( 2005)
[[12]]
American Thoracic Society, American College of Chest Physicians. ATS/ACCP Statement on cardiopulmonary exercise testing. Am J Respir Crit Care Med, 167 (2) ( 2003), pp. 211-277, DOI: 10.1164/rccm.167.2.211
[[13]]
Y.V. Ramana, M.V.L.S. Kumari, S.S. Rao, N. Balakrishna. Effect of changes in body composition profile on VO2max and maximal work performance in athletes. J Exerc Physiol, 7 (1) ( 2004), pp. 34-39
[[14]]
B. Korzeniewski, H.B. Rossiter. Factors determining training-induced changes in V˙O2max, critical power and V˙O2 on-kinetics in skeletal muscle. J Appl Physiol ( 1985), DOI: 10.1152/japplphysiol.00745.2020
[[15]]
J. Trinschek, J. Zieliński, K. Kusy. Maximal oxygen uptake adjusted for skeletal muscle mass in competitive speed-power and endurance male athletes: changes in a one-year training cycle. Int J Environ Res Publ Health, 17 (17) ( 2020), DOI: 10.3390/ijerph17176226
[[16]]
M. Laufer-Perl, Y. Gura, J. Shimiaie, et al.. Mechanisms of effort intolerance in patients with rheumatic mitral stenosis: combined echocardiography and cardiopulmonary stress protocol. JACC (J Am Coll Cardiol): Cardiovasc Imag, 10 (6) ( 2017), pp. 622-633, DOI: 10.1016/j.jcmg.2016.07.011
[[17]]
J.P. Wehrlin, B. Marti, J. Hallén. Hemoglobin mass and aerobic performance at moderate altitude in elite athletes. Adv Exp Med Biol, 903 ( 2016), pp. 357-374, DOI: 10.1007/978-1-4899-7678-9_24
[[18]]
P.D. Wagner. Limiting factors of exercise performance. Deutsche Z Sportmedizin, 61 (5) ( 2010), pp. 108-111, DOI: 10.1016/j.cmet.2017.04.018
[[19]]
P.M. Coen, K.C. Hames, E.M. Leachman, et al.. Reduced skeletal muscle oxidative capacity and elevated ceramide but not diacylglycerol content in severe obesity. Obesity, 21 (11) ( 2013), pp. 2362-2371, DOI: 10.1002/oby.20381
[[20]]
J.R. Berggren, K.E. Boyle, W.H. Chapman, J.A. Houmard. Skeletal muscle lipid oxidation and obesity: influence of weight loss and exercise. Am J Physiol Endocrinol Metab, 294 (4) ( 2008), pp. E726-E732, DOI: 10.1152/ajpendo.00354.2007
[[21]]
T.M. Schnurr, A.P. Gjesing, C.H. Sandholt, et al.. Genetic correlation between body fat percentage and cardiorespiratory fitness suggests common genetic etiology. PloS One, 11 (11) ( 2016), DOI: 10.1371/journal.pone.0166738
[[22]]
J.M. Hagberg, G.E. Moore, R.E. Ferrell. Specific genetic markers of endurance performance and VO2max. Exerc Sport Sci Rev, 29 (1) ( 2001), pp. 15-19, DOI: 10.1097/00003677-200101000-00004
[[23]]
B.D. Levine. VO2max: what do we know, and what do we still need to know?. J Physiol, 586 (1) ( 2008), pp. 25-34, DOI: 10.1113/jphysiol.2007.147629
[[24]]
G.A. Mckay, E.W. Banister. A comparison of maximum oxygen uptake determination by bicycle ergometry at various pedaling frequencies and by treadmill running at various speeds. Eur J Appl Physiol Occup Physiol, 35 (3) ( 1976), pp. 191-200, DOI: 10.1007/BF02336193
[[25]]
C.-H. Kim, C.M. Wheatley, M. Behnia, B.D. Johnson. The effect of aging on relationships between lean body mass and VO2max in rowers. PloS One, 11 (8) ( 2016), DOI: 10.1371/journal.pone.0160275
[[26]]
H. Dereppe, K. Forton, N.Y. Pauwen, V. Faoro. Impact of bariatric surgery on women aerobic exercise capacity. Obes Surg, 29 (10) ( 2019), pp. 3316-3323, DOI: 10.1007/s11695-019-03996-0
[[27]]
P.A. Lockwood, J.E. Yoder, P.A. Deuster. Comparison and cross-validation of cycle ergometry estimates of VO2max. Med Sci Sports Exerc, 29 (11) ( 1997), pp. 1513-1520, DOI: 10.1097/00005768-199711000-00019
[[28]]
R.G. McMurray, P.A. Hosick, A. Bugge. Importance of proper scaling of aerobic power when relating to cardiometabolic risk factors in children. Ann Hum Biol, 38 (5) ( 2011), pp. 647-654, DOI: 10.3109/03014460.2011.598561
[[29]]
P. Setty, B. Padmanabha, B. Doddamani.Correlation between obesity and cardio respiratory fitness. Int J med sci public health 2:298-302. Int J Med Sci Publ Health, 2 ( 2013), p. 298, DOI: 10.5455/ijmsph.2013.2.298-302
[[30]]
H.L. Taylor, E. Buskirk, A. Henschel. Maximal oxygen intake as an objective measure of cardio-respiratory performance. J Appl Physiol, 8 (1) ( 1955), pp. 73-80, DOI: 10.1152/jappl.1955.8.1.73
[[31]]
M. Martin-Rincon, J.A.L. Calbet.Progress update and challenges on V. O2max testing and interpretation. Front Physiol, 11 ( 2020), p. 1070, DOI: 10.3389/fphys.2020.01070
[[32]]
D.E. O'Donnell, C.D.J. O'Donnell, K.A. Webb, J.A. Guenette. Respiratory consequences of mild-to-moderate obesity: impact on exercise performance in health and in chronic obstructive pulmonary disease. Pulm Med ( 2012), DOI: 10.1155/2012/818925
[[33]]
M. Goran, D.A. Fields, G.R. Hunter, S.L. Herd, R.L. Weinsier. Total body fat does not influence maximal aerobic capacity. Int J Obes Relat Metab Disord, 24 (7) ( 2000), pp. 841-848, DOI: 10.1038/sj.ijo.0801241
[[34]]
E. Buskirk, H.L. Taylor. Maximal oxygen intake and its relation to body composition, with special reference to chronic physical activity and obesity. J Appl Physiol, 11 (1) ( 1957), pp. 72-78, DOI: 10.1152/jappl.1957.11.1.72
[[35]]
B. Wilms, B. Ernst, M. Thurnheer, B. Weisser, B. Schultes. Differential changes in exercise performance after massive weight loss induced by bariatric surgery. Obes Surg, 23 (3) ( 2013), pp. 365-371, DOI: 10.1007/s11695-012-0795-9
[[36]]
M. Brissman, K. Ekbom, E. Hagman, et al.. Physical fitness and body composition two years after roux-en-Y gastric bypass in adolescents. Obes Surg, 27 (2) ( 2017), pp. 330-337, DOI: 10.1007/s11695-016-2282-1
[[37]]
M.G. Browning, R.L. Franco, J.E. Herrick, J.A. Arrowood, R.K. Evans. Assessment of cardiopulmonary responses to treadmill walking following gastric bypass surgery. Obes Surg, 27 (1) ( 2017), pp. 96-101, DOI: 10.1007/s11695-016-2259-0
[[38]]
G.S. Zavorsky, D.J. Kim, N.V. Christou. Compensatory exercise hyperventilation is restored in the morbidly obese after bariatric surgery. Obes Surg, 18 (5) ( 2008), pp. 549-559, DOI: 10.1007/s11695-008-9437-7
[[39]]
S. Stegen, W. Derave, P. Calders, C. Van Laethem, P. Pattyn. Physical fitness in morbidly obese patients: effect of gastric bypass surgery and exercise training. Obes Surg, 21 (1) ( 2011), pp. 61-70, DOI: 10.1007/s11695-009-0045-y
[[40]]
C.F. Notarius, B. Rhode, L.D. MacLean, S. Magder. Exercise capacity and energy expenditure of morbidly obese and previously obese subjects. Clin Invest Med, 21 (2) ( 1998), pp. 79-87
[[41]]
D. Neunhaeuserer, A. Gasperetti, F. Savalla, et al.. Functional evaluation in obese patients before and after sleeve gastrectomy. Obes Surg, 27 (12) ( 2017), pp. 3230-3239, DOI: 10.1007/s11695-017-2763-x
[[42]]
M.T. Lund, M. Hansen, C.L. Wimmelmann, et al.. Increased post-operative cardiopulmonary fitness in gastric bypass patients is explained by weight loss. Scand J Med Sci Sports, 26 (12) ( 2016), pp. 1428-1434, DOI: 10.1111/sms.12593
[[43]]
P.M. Coen, C.J. Tanner, N.L. Helbling, et al.. Clinical trial demonstrates exercise following bariatric surgery improves insulin sensitivity. J Clin Invest, 125 (1) ( 2015), pp. 248-257, DOI: 10.1172/JCI78016
[[44]]
E. Kanoupakis, D. Michaloudis, O. Fraidakis, F. Parthenakis, P. Vardas, J. Melissas. Left ventricular function and cardiopulmonary performance following surgical treatment of morbid obesity. Obes Surg, 11 (5) ( 2001), pp. 552-558, DOI: 10.1381/09608920160556715
[[45]]
M.I. Remígio, F. Santa Cruz, Ferraz Á, et al.. The impact of bariatric surgery on cardiopulmonary function: analyzing VO 2 recovery kinetics. Obes Surg, 28 (12) ( 2018), pp. 4039-4044, DOI: 10.1007/s11695-018-3469-4
[[46]]
M.I. Remígio, F. Santa Cruz, Ferraz Á, et al.. The impact of bariatric surgery on cardiopulmonary function: analyzing VO 2 recovery kinetics. Obes Surg, 28 (12) ( 2018), pp. 4039-4044, DOI: 10.1007/s11695-018-3469-4
[[47]]
S.S. Hothi, D.K. Tan, G. Partridge, L.B. Tan. Is low VO2max/kg in obese heart failure patients indicative of cardiac dysfunction?. Int J Cardiol, 184 ( 2015), pp. 755-762, DOI: 10.1016/j.ijcard.2015.02.018
[[48]]
S. Carbone, J.M. Canada, L.F. Buckley, et al.. Obesity contributes to exercise intolerance in heart failure with preserved ejection fraction. J Am Coll Cardiol, 68 (22) ( 2016), pp. 2487-2488, DOI: 10.1016/j.jacc.2016.08.072
[[49]]
M. Aiello, E. Teopompi, P. Tzani, et al.. Maximal exercise in obese patients with COPD: the role of fat free mass. BMC Pulm Med, 14 ( 2014), p. 96, DOI: 10.1186/1471-2466-14-96
[[50]]
S. Kamil-Rosenberg, P. Kokkinos, C. Grune de Souza E Silva, et al.. Association between cardiorespiratory fitness, obesity, and incidence of atrial fibrillation. Int J Cardiol Heart Vasc, 31 ( 2020), DOI: 10.1016/j.ijcha.2020.100663. 100663
[[51]]
Y. Shimazaki, Y. Egami, T. Matsubara, et al.. Relationship between obesity and physical fitness and periodontitis. J Periodontol, 81 (8) ( 2010), pp. 1124-1131, DOI: 10.1902/jop.2010.100017
[[52]]
L. Serés, J. Lopez-Ayerbe, R. Coll, et al.. Increased exercise capacity after surgically induced weight loss in morbid obesity. Obesity, 14 (2) ( 2006), pp. 273-279, DOI: 10.1038/oby.2006.35
[[53]]
S. Carroll, P. Marshall, E. Borkoles, L. Ingle, D. Barker, L.-B. Tan. Efficacy of lifestyle intervention on peak exercise cardiac power output and reserve in premenopausal obese females: a randomised pilot study. Int J Cardiol, 119 (2) ( 2007), pp. 147-155, DOI: 10.1016/j.ijcard.2006.07.099
[[54]]
R. Gilbert, J.H. Sipple, J.H. Auchincloss. Respiratory control and work of breathing in obese subjects. J Appl Physiol, 16 ( 1961), pp. 21-26, DOI: 10.1152/jappl.1961.16.1.21
[[55]]
J.A. Houmard. Intramuscular lipid oxidation and obesity. Ajp Regulat Integrat Compar Physiol, 294 (4) ( 2008), pp. R1111-R1116, DOI: 10.1152/ajpregu.00396.2007
[[56]]
E. Corpeleijn, W.H.M. Saris, E.E. Blaak.Metabolic flexibility in the development of insulin resistance and type 2 diabetes: effects of lifestyle. Obes Rev, 10 (2) ( 2009), pp. 178-193, DOI: 10.1111/j.1467-789X.2008.00544.x
[[57]]
D.M. Mancini, H. Eisen, W. Kussmaul, R. Mull, L.H. Edmunds, J.R. Wilson. Value of peak exercise oxygen consumption for optimal timing of cardiac transplantation in ambulatory patients with heart failure. Circulation, 83 (3) ( 1991), pp. 778-786, DOI: 10.1161/01.cir.83.3.778
[[58]]
R. Malhotra, K. Bakken, E. D'Elia, G.D. Lewis. Cardiopulmonary exercise testing in heart failure. JACC Heart Fail, 4 (8) ( 2016), pp. 607-616, DOI: 10.1016/j.jchf.2016.03.022
[[59]]
Y.N.V. Reddy, T.P. Olson, M. Obokata, V. Melenovsky, B.A. Borlaug. Hemodynamic correlates and diagnostic role of cardiopulmonary exercise testing in heart failure with preserved ejection fraction. JACC Heart Fail, 6 (8) ( 2018), pp. 665-675, DOI: 10.1016/j.jchf.2018.03.003
[[60]]
D.M. Mancini, H. Eisen, W. Kussmaul, R. Mull, L.H. Edmunds, J.R. Wilson. Value of peak exercise oxygen consumption for optimal timing of cardiac transplantation in ambulatory patients with heart failure. Circulation, 83 (3) ( 1991), pp. 778-786, DOI: 10.1161/01.cir.83.3.778
[[61]]
A.D. Elliott, J. Skowno, M. Prabhu, T.D. Noakes, L. Ansley. Evidence of cardiac functional reserve upon exhaustion during incremental exercise to determine VO2max. Br J Sports Med, 49 (2) ( 2015), pp. 128-132, DOI: 10.1136/bjsports-2012-091752
[[62]]
G.P. Armstrong, S.G. Carlier, K. Fukamachi, J.D. Thomas, T.H. Marwick. Estimation of cardiac reserve by peak power: validation and initial application of a simplified index. Heart, 82 (3) ( 1999), pp. 357-364, DOI: 10.1136/hrt.82.3.357
[[63]]
W.W. Stringer, J.E. Hansen, K. Wasserman. Cardiac output estimated noninvasively from oxygen uptake during exercise. J Appl Physiol, 82 (3) ( 1985), pp. 908-912, DOI: 10.1152/jappl.1997.82.3.908
[[64]]
M. Loftin, M. Sothern, L. Trosclair, A. O'Hanlon, J. Miller, J. Udall. Scaling VO2 peak in obese and non-obese girls. Obesity, 9 (5) ( 2001), pp. 290-296, DOI: 10.1038/oby.2001.36
[[65]]
P.M. Vanderburgh, F.I. Katch. Ratio scaling of VO2max penalizes women with larger percent body fat, not lean body mass. Med Sci Sports Exerc, 28 (9) ( 1996), pp. 1204-1208, DOI: 10.1097/00005768-199609000-00019
[[66]]
M. Hulens, G. Vansant, R. Lysens, A.L. Claessens, E. Muls. Exercise capacity in lean versus obese women. Scand J Med Sci Sports, 11 (5) ( 2001), pp. 305-309, DOI: 10.1034/j.1600-0838.2001.110509.x
[[67]]
B. Marinov, S. Kostianev. Exercise performance and oxygen uptake efficiency slope in obese children performing standardized exercise. Acta Physiol Pharmacol Bulg, 27 (2-3) ( 2003), pp. 59-64
[[68]]
L. Di Thommazo-Luporini, S.P. Jürgensen, V. Castello-Simões, A.M. Catai, R. Arena, A. Borghi-Silva. Metabolic and clinical comparative analysis of treadmill six-minute walking test and cardiopulmonary exercise testing in obese and eutrophic women. Rev Brasileira Fisioterapia, 16 (6) ( 2012), pp. 469-478, DOI: 10.1590/s1413-35552012005000036
[[69]]
P.O. Astrand, K. Rodahl.Textbook of Work Physiology. (third ed.), McGraw-Hill ( 1986)
[[70]]
P.J. Marcos-Pardo, N. González-Gálvez, A. Espeso-García, T. Abelleira-Lamela, A. López-Vivancos, R. Vaquero-Cristóbal. Association among adherence to the mediterranean diet, cardiorespiratory fitness, cardiovascular, obesity, and anthropometric variables of overweight and obese middle-aged and older adults. Nutrients, 12 (9) ( 2020), DOI: 10.3390/nu12092750
[[71]]
H. Mondal, S.P. Mishra. Effect of BMI, body fat percentage and fat free mass on maximal oxygen consumption in healthy young adults. J Clin Diagn Res, 11 (6) ( 2017), pp. CC17-CC20, DOI: 10.7860/JCDR/2017/25465.10039
[[72]]
V. Minasian, S.M. Marandi, R. Kelishadi, H. Abolhassani. Correlation between aerobic fitness and body composition in middle school students. Int J Prev Med, 5 (Suppl 2) ( 2014), pp. S102-S107, DOI: 10.4103/2008-7802.157666
[[73]]
K. Watanabe, F. Nakadomo, K. Maeda. Relationship between body composition and cardiorespiratory fitness in Japanese junior high school boys and girls. Ann Physiol Anthropol, 13 (4) ( 1994), pp. 167-174, DOI: 10.2114/ahs1983.13.167
[[74]]
A. Amani, M. Somchit, M. Konting, L. Kok. Relationship between body fat percent and maximal oxygen uptake among young adults. J Am Sci, 6 (4) ( 2010), pp. 1-4
[[75]]
S.M. Ostojic, M.D. Stojanovic, V. Stojanovic, J. Maric, N. Njaradi. Correlation between fitness and fatness in 6-14-year old Serbian school children. J Health Popul Nutr, 29 (1) ( 2011), pp. 53-60, DOI: 10.3329/jhpn.v29i1.7566
[[76]]
C.C. Laxmi, I.B. Udaya, V. Shankar. Effect of body mass index on cardiorespiratory fitness in young healthy males. Int J Sci Resear Publ, 4 ( 2014), pp. 1-4
[[77]]
S. Sterkowicz, G. Lech, T. Pałka, et al.. Body build and body composition vs. physical capacity in young judo contestants compared to untrained subjects. Biol Sport, 28 ( 2011), pp. 271-277, DOI: 10.5604/965486
[[78]]
P.-L. Hsieh, M.-L. Chen, C.-M. Huang, W.-C. Chen, C.-H. Li, L.-C. Chang. Physical activity, body mass index, and cardiorespiratory fitness among school children in Taiwan: a cross-sectional study. Int J Environ Res Publ Health, 11 (7) ( 2014), pp. 7275-7285, DOI: 10.3390/ijerph110707275
[[79]]
M. Maciejczyk, M. Więcek, J. Szymura, Z. Szyguła, S. Wiecha, J. Cempla. The influence of increased body fat or lean body mass on aerobic performance. PloS One, 9 (4) ( 2014), DOI: 10.1371/journal.pone.0095797
[[80]]
K.J. McInnis, G.J. Balady. Effect of body composition on oxygen uptake during treadmill exercise: body builders versus weight-matched men. Res Q Exerc Sport, 70 (2) ( 1999), pp. 150-156, DOI: 10.1080/02701367.1999.10608032
[[81]]
K. Watanabe, F. Nakadomo, K. Maeda. Relationship between body composition and cardiorespiratory fitness in Japanese junior high school boys and girls. Ann Physiol Anthropol, 13 (4) ( 1994), pp. 167-174, DOI: 10.2114/ahs1983.13.167
[[82]]
C.F. Kearns, K.H. McKeever, H. John-Alder, T. Abe, W.F. Brechue. Relationship between body composition, blood volume and maximal oxygen uptake. Equine Vet J Suppl (34) ( 2002), pp. 485-490, DOI: 10.1111/j.2042-3306.2002.tb05470.x
[[83]]
S. Mennel, W. Sekundo, J.C. Schmidt, C.H. Meyer. Body composition and cardiorespiratory fitness indicators in prepubescent boys and girls. Int J Sports Med, 23 ( 2001), pp. 50-54, DOI: 10.1055/s-2002-19274
[[84]]
V.K. Sharma, S.K. Subramanian, K. Radhakrishnan, R. Rajendran, B.S. Ravindran, V. Arunachalam. Comparison of structured and unstructured physical activity training on predicted VO2max and heart rate variability in adolescents - a randomized control trial. J Basic Clin Physiol Pharmacol, 28 (3) ( 2017), DOI: 10.1515/jbcpp-2016-0117
[[85]]
B.N. Craig, J.J. Congleton, C.J. Kerk, J.M. Lawler, K.P. Mcsweeney. Correlation of injury occurrence data with estimated maximal aerobic capacity and body composition in a high-frequency manual materials handling task. Am Ind Hyg Assoc J, 59 (1) ( 1998), pp. 25-33, DOI: 10.1080/15428119891010307
[[86]]
C.N. Meredith, M.J. Zackin, W.R. Frontera, W.J. Evans.Body composition and aerobic capacity in young and middle-aged endurance-trained men. Med Sci Sports Exerc, 19 (6) ( 1988), p. 557, DOI: 10.1249/00005768-198712000-00003
[[87]]
J.H. Wilmore. Body composition and sports medicine: research considerations. Body-Compos Assess Youth Adults, 1 ( 1985), pp. 78-82
[[88]]
J.R. Welsman, N. Armstrong, A.M. Nevill, E.M. Winter, B.J. Kirby. Scaling peak VO2 for differences in body size. Med Sci Sports Exerc, 28 (2) ( 1996), pp. 259-265, DOI: 10.1097/00005768-199602000-00016
[[89]]
J.C. Eisenmann, J.M. Pivarnik, R.M. Malina. Scaling peak VO2 to body mass in young male and female distance runners. J Appl Physiol, 90 (6) ( 2001), pp. 2172-2180, DOI: 10.1152/jappl.2001.90.6.2172
[[90]]
M. Loftin, M. Sothern, L. Trosclair, A. O'Hanlon, J. Miller, J. Udall. Scaling VO(2) peak in obese and non-obese girls. Obes Res, 9 (5) ( 2001), pp. 290-296, DOI: 10.1038/oby.2001.36
[[91]]
A.M. Nevill. The need to scale for differences in body size and mass: an explanation of Kleiber's 0.75 mass exponent. J Appl Physiol, 77 (6) ( 1994), pp. 2870-2873, DOI: 10.1152/jappl.1994.77.6.2870
[[92]]
J. Svedenhag. Maximal and submaximal oxygen uptake during running: how should body mass be accounted for?. Scand J Med Sci Sports, 5 (4) ( 1995), pp. 175-180, DOI: 10.1111/j.1600-0838.1995.tb00033.x
[[93]]
D.P. Heil. Body mass scaling of peak oxygen uptake in 20- to 79-yr-old adults. Med Sci Sports Exerc, 29 (12) ( 1997), pp. 1602-1608, DOI: 10.1097/00005768-199712000-00009
[[94]]
V.L. Katch. Use of the oxygen-body weight ratio in correlational analyses: spurious correlations and statistical considerations. Med Sci Sports, 5 (4) ( 1973), pp. 253-257
[[95]]
M.J. Toth, M.I. Goran, P.A. Ades, D.B. Howard, E.T. Poehlman.Examination of data normalization procedures for expressing peak VO2 data. J Appl Physiol, 75 (5) ( 1993), pp. 2288-2292, DOI: 10.1152/jappl.1993.75.5.2288
[[96]]
T. Steele, D.J. Cuthbertson, J.P.H. Wilding. Impact of bariatric surgery on physical functioning in obese adults. Obes Rev, 16 (3) ( 2015), pp. 248-258, DOI: 10.1111/obr.12247
[[97]]
D. Neunhaeuserer, A. Gasperetti, F. Savalla, et al.. Functional evaluation in obese patients before and after sleeve gastrectomy. Obes Surg, 27 (12) ( 2017), pp. 3230-3239, DOI: 10.1007/s11695-017-2763-x
[[98]]
M.Ø. Fosbøl, B. Zerahn. Contemporary methods of body composition measurement. Clin Physiol Funct Imag, 35 (2) ( 2015), pp. 81-97, DOI: 10.1111/cpf.12152
[[99]]
Z. Wang, P. Deurenberg, S.B. Heymsfield. Cellular-Level Body Composition Model: A New Approach to Studying Fat-free Mass Hydration. vol. 904, Annals of the New York Academy of Sciences ( 2010), pp. 306-311, DOI: 10.1111/j.1749-6632.2000.tb06472.x
[[100]]
Z. Wang, P. Deurenberg, W. Wang, A. Pietrobelli, R.N. Baumgartner, S.B. Heymsfield. Hydration of fat-free body mass: review and critique of a classic body-composition constant. Am J Clin Nutr, 69 (5) ( 1999), pp. 833-841, DOI: 10.1093/ajcn/69.5.833
[[101]]
Z. Wang, P. Deurenberg, W. Wang, A. Pietrobelli, R.N. Baumgartner, S.B. Heymsfield. Hydration of fat-free body mass: new physiological modeling approach. Am J Physiol, 276 (6) ( 1999), pp. E995-E1003, DOI: 10.1152/ajpendo.1999.276.6.E995
[[102]]
M.-E. Roumelioti, R.H. Glew, Z.J. Khitan, et al.. Fluid balance concepts in medicine: principles and practice. World J Nephrol, 7 (1) ( 2018), pp. 1-28, DOI: 10.5527/wjn.v7.i1.1
[[103]]
H. Sagayama, Y. Yamada, M. Ichikawa, et al.. Evaluation of fat-free mass hydration in athletes and non-athletes. Eur J Appl Physiol, 120 (5) ( 2020), pp. 1179-1188, DOI: 10.1007/s00421-020-04356-y
[[104]]
S. Lazzer, Y. Boirie, A. Bitar, I. Petit, M. Meyer, M. Vermorel. Relationship between percentage of VO2max and type of physical activity in obese and non-obese adolescents. J Sports Med Phys Fit, 45 (1) ( 2005), pp. 13-19
[[105]]
G. Morinder, U.E. Larsson, S. Norgren,C. Marcus. Insulin sensitivity, VO2max and body composition in severely obese Swedish children and adolescents. Acta Paediatr, 98 (1) ( 2009), pp. 132-138, DOI: 10.1111/j.1651-2227.2008.01030.x
[[106]]
E. Vsetulová, V. Bunc. [Effect of body composition on physical fitness and functional capacity in obese women]. Cas Lek Cesk, 143 (11) ( 2004), pp. 756-760. discussion 760-761
[[107]]
C. Milanese, V. Cavedon, G. Corradini, F.D. Vita, C. Zancanaro. Seasonal DXA-measured body composition changes in professional male soccer players. J Sports Sci, 33 (12) ( 2015), pp. 1219-1228, DOI: 10.1080/02640414.2015.1022573
[[108]]
G. Hinriksdóttir, Á. Tryggvadóttir, A.S. Ólafsdóttir, S.Á. Arngrímsson. Fatness but not fitness relative to the fat-free mass is related to C-reactive protein in 18 Year-old adolescents. PloS One, 10 (6) ( 2015), DOI: 10.1371/journal.pone.0130597. e0130597
[[109]]
C. Huth, Pigeon É, Riou M-È, et al.. Fitness, adiposopathy, and adiposity are independent predictors of insulin sensitivity in middle-aged men without diabetes. J Physiol Biochem, 72 (3) ( 2016), pp. 435-444, DOI: 10.1007/s13105-016-0488-2
[[110]]
U. Ekelund, P. Franks, N. Wareham, J. Aman. Oxygen uptakes adjusted for body composition in normal-weight and obese adolescents. Obes Res, 12 ( 2004), pp. 513-520, DOI: 10.1038/oby.2004.58
[[111]]
T. Abe, J.P. Loenneke, R.S. Thiebaud. Fat-free adipose tissue mass: impact on peak oxygen uptake (VO2peak) in adolescents with and without obesity. Sports Med, 49 (1) ( 2019), pp. 9-15, DOI: 10.1007/s40279-018-1020-3
[[112]]
C. Maffeis, Y. Schutz, F. Schena, M. Zaffanello, L. Pinelli. Energy expenditure during walking and running in obese and nonobese prepubertal children. J Pediatr, 123 (2) ( 1993), pp. 193-199, DOI: 10.1016/s0022-3476(05)81688-9
[[113]]
C.T. Davies, S. Godfrey, M. Light, A.J. Sargeant, E. Zeidifard. Cardiopulmonary responses to exercise in obese girls and young women. J Appl Physiol, 38 (3) ( 1975), pp. 373-376, DOI: 10.1152/jappl.1975.38.3.373
[[114]]
N.P. Huttunen, M. Knip, T. Paavilainen. Physical activity and fitness in obese children. Int J Obes, 10 (6) ( 1986), pp. 519-525
[[115]]
M. Maciejczyk, M. Wiecek, J. Szymura, Z. Szygula, L.E. Brown. Influence of increased body mass and body composition on cycling anaerobic power. J Strength Condit Res, 29 (1) ( 2015), pp. 58-65, DOI: 10.1519/JSC.0000000000000727
[[116]]
J.F. Patton, W.J. Kraemer, H.G. Knuttgen, E.A. Harman. Factors in maximal power production and in exercise endurance relative to maximal power. Eur J Appl Physiol Occup Physiol, 60 (3) ( 1990), pp. 222-227, DOI: 10.1007/bf00839163
[[117]]
K.F. Janz, T.L. Burns, J.D. Witt, L.T. Mahoney. Longitudinal analysis of scaling VO2 for differences in body size during puberty: the Muscatine Study. Med Sci Sports Exerc, 30 (9) ( 1998), pp. 1436-1444, DOI: 10.1097/00005768-199809000-00014
[[118]]
D.G. Carey, G.J. Pliego, R.L. Raymond, K.B. Skau. Body composition and metabolic changes following bariatric surgery: effects on fat mass, lean mass and basal metabolic rate. Obes Surg, 16 (4) ( 2006), pp. 469-477, DOI: 10.1381/096089206776327378
[[119]]
T.L. Woodlief, E.A. Carnero, R.A. Standley, et al.. Dose response of exercise training following roux-en-Y gastric bypass surgery: a randomized trial. Obesity, 23 (12) ( 2015), pp. 2454-2461, DOI: 10.1002/oby.21332
[[120]]
A. Bellicha, C. Ciangura, C. Roda, A. Torcivia, P. Portero, J.-M. Oppert. Changes in cardiorespiratory fitness after gastric bypass: relations with accelerometry-assessed physical activity. Obes Surg, 29 (9) ( 2019), pp. 2936-2941, DOI: 10.1007/s11695-019-03932-2
[[121]]
C.L. Lafortuna, N.A. Maffiuletti, F. Agosti, A. Sartorio. Gender variations of body composition, muscle strength and power output in morbid obesity. Int J Obes, 29 (7) ( 2005), pp. 833-841, DOI: 10.1038/sj.ijo.0802955
[[122]]
M.T. Imboden, A.M. Swartz, H.W. Finch, M.P. Harber, L.A. Kaminsky. Reference standards for lean mass measures using GE dual energy x-ray absorptiometry in Caucasian adults. PloS One, 12 (4) ( 2017), DOI: 10.1371/journal.pone.0176161
[[123]]
R.J. Toombs, G. Ducher, J.A. Shepherd, M.J. De Souza. The impact of recent technological advances on the trueness and precision of DXA to assess body composition. Obesity, 20 (1) ( 2012), pp. 30-39, DOI: 10.1038/oby.2011.211
[[124]]
K. Godang, E. Qvigstad, N. Voldner, et al.. Assessing body composition in healthy newborn infants: reliability of dual-energy x-ray absorptiometry. J Clin Densitom, 13 (2) ( 2010), pp. 151-160, DOI: 10.1016/j.jocd.2010.01.121
[[125]]
W.C. Bevier, R.A. Wiswell, G. Pyka, K.C. Kozak, K.M. Newhall, R. Marcus. Relationship of body composition, muscle strength, and aerobic capacity to bone mineral density in older men and women. J Bone Miner Res ( 1989), DOI: 10.1002/jbmr.5650040318
[[126]]
V. Singhal, S. Sanchita, S. Malhotra, et al.. Suboptimal bone microarchitecure in adolescent girls with obesity compared to normal-weight controls and girls with anorexia nervosa. Bone, 122 ( 2019), pp. 246-253, DOI: 10.1016/j.bone.2019.03.007
[[127]]
J. van Leeuwen, B.W. Koes, W.D. Paulis, M. van Middelkoop. Differences in bone mineral density between normal-weight children and children with overweight and obesity: a systematic review and meta-analysis. Obes Rev, 18 (5) ( 2017), pp. 526-546, DOI: 10.1111/obr.12515
[[128]]
M. Cifuentes, M.A. Johnson, R.D. Lewis, et al.. Bone turnover and body weight relationships differ in normal-weight compared with heavier postmenopausal women. Osteoporos Int, 14 (2) ( 2003), pp. 116-122, DOI: 10.1007/s00198-002-1324-9
[[129]]
Z. El Hage, D. Theunynck, C. Jacob, et al.. Bone mineral content and density in obese, overweight and normal weight adolescent boys. J Med Liban, 61 (3) ( 2013), pp. 148-154, DOI: 10.12816/0001443
[[130]]
S.D. Navaneethan, J.P. Kirwan, S. Arrigain, J.D. Schold.Adiposity measures, lean body mass, physical activity and mortality: NHANES1999-2004. BMC Nephrol, 15 ( 2014), p. 108, DOI: 10.1186/1471-2369-15-108
[[131]]
S.B. Heymsfield, D. Gallagher, M. Visser, C. Nuñez, Z.M. Wang. Measurement of skeletal muscle: laboratory and epidemiological methods. J Gerontol A Biol Sci Med Sci, 50 Spec ( 1995), pp. 23-29, DOI: 10.1093/gerona/50a.special_issue.23
[[132]]
P. Nordby, B. Saltin, J.W. Helge. Whole-body fat oxidation determined by graded exercise and indirect calorimetry: a role for muscle oxidative capacity?. Scand J Med Sci Sports, 16 (3) ( 2006), pp. 209-214, DOI: 10.1111/j.1600-0838.2005.00480.x
[[133]]
C.L. Lafortuna, M. Proietti, F. Agosti, A. Sartorio. The energy cost of cycling in young obese women. Eur J Appl Physiol, 97 (1) ( 2006), pp. 16-25, DOI: 10.1007/s00421-006-0137-5
[[134]]
M.J. Cosgrove, J. Wilson, et al.. The relationship between selected physiological variables of rowers and rowing performance as determined by a 2000 m ergometer test. J Sports Sci ( 1999), DOI: 10.1080/026404199365407
[[135]]
S. Chatterjee, P. Chatterjee, A. Bandyopadhyay. Cardiorespiratory fitness of obese boys. Indian J Physiol Pharmacol, 49 (3) ( 2005), pp. 353-357
[[136]]
U. Ekelund, P.W. Franks, N.J. Wareham, J. Aman. Oxygen uptakes adjusted for body composition in normal-weight and obese adolescents. Obes Res, 12 (3) ( 2004), pp. 513-520, DOI: 10.1038/oby.2004.58
[[137]]
A.F. Osman, M.R. Mehra, C.J. Lavie, E. Nunez, R.V. Milani. The incremental prognostic importance of body fat adjusted peak oxygen consumption in chronic heart failure. J Am Coll Cardiol, 36 (7) ( 2000), pp. 2126-2131, DOI: 10.1016/s0735-1097(00)00985-2
[[138]]
C.J. Lavie, R.V. Milani, M.R. Mehra. Peak exercise oxygen pulse and prognosis in chronic heart failure. Am J Cardiol, 93 (5) ( 2004), pp. 588-593, DOI: 10.1016/j.amjcard.2003.11.023
[[139]]
E. Mattsson, U.E. Larsson, S. Rössner. Is walking for exercise too exhausting for obese women?. Int J Obes Relat Metab Disord, 21 (5) ( 1997), pp. 380-386, DOI: 10.1038/sj.ijo.0800417
[[140]]
E. Page, A. Cohen-Solal, G. Jondeau, et al.. Comparison of treadmill and bicycle exercise in patients with chronic heart failure. Chest, 106 (4) ( 1994), pp. 1002-1006, DOI: 10.1378/chest.106.4.1002
[[141]]
Halter J, Ouslander J, Tinetti M, Studenski S, High K, Asthana S. Hazzard's geriatric Medicine and gerontology, sixth edition. McGraw-Hill professional; 2009.
[[142]]
R. Correa-de-Araujo, M.O. Harris-Love, I. Miljkovic, M.S. Fragala, B.W. Anthony, T.M. Manini.The need for standardized assessment of muscle quality in skeletal muscle function deficit and other aging-related muscle dysfunctions: a symposium report. Front Physiol, 8 ( 2017), p. 87, DOI: 10.3389/fphys.2017.00087
[[143]]
N. Chiles Shaffer, E. Fabbri, L. Ferrucci, M. Shardell, E.M. Simonsick, S. Studenski. Muscle quality, strength, and lower extremity physical performance in the baltimore longitudinal study of aging. J Frailty Aging, 6 (4) ( 2017), pp. 183-187, DOI: 10.14283/jfa.2017.24
[[144]]
R.A. McGregor, D. Cameron-Smith, S.D. Poppitt.It is not just muscle mass: a review of muscle quality, composition and metabolism during ageing as determinants of muscle function and mobility in later life. Longev Heal, 3 (1) ( 2014), p. 9, DOI: 10.1186/2046-2395-3-9
[[145]]
P.M. Cawthon, K.M. Fox, S.R. Gandra, et al.. Do muscle mass, muscle density, strength, and physical function similarly influence risk of hospitalization in older adults?. J Am Geriatr Soc, 57 (8) ( 2009), pp. 1411-1419, DOI: 10.1111/j.1532-5415.2009.02366.x
[[146]]
E. Kennis, S. Verschueren, E. Van Roie, M. Thomis, J. Lefevre, C. Delecluse. Longitudinal impact of aging on muscle quality in middle-aged men. Age, 36 (4) ( 2014), p. 9689, DOI: 10.1007/s11357-014-9689-1
[[147]]
D. Scott, L. Blizzard, J. Fell, C. Ding, T. Winzenberg, G. Jones. A prospective study of the associations between 25-hydroxy-vitamin D, sarcopenia progression and physical activity in older adults. Clin Endocrinol, 73 (5) ( 2010), pp. 581-587, DOI: 10.1111/j.1365-2265.2010.03858.x
[[148]]
S. Barbat-Artigas, Y. Rolland, M. Zamboni, M. Aubertin-Leheudre. How to assess functional status: a new muscle quality index. J Nutr Health Aging, 16 (1) ( 2012), pp. 67-77, DOI: 10.1007/s12603-012-0004-5
[[149]]
M.S. Fragala, T.-T.L. Dam, V. Barber, et al.. Strength and function response to clinical interventions of older women categorized by weakness and low lean mass using classifications from the Foundation for the National Institute of Health sarcopenia project. J Gerontol A Biol Sci Med Sci, 70 (2) ( 2015), pp. 202-209, DOI: 10.1093/gerona/glu110
[[150]]
A.B. Newman, C.L. Haggerty, B. Goodpaster, et al.. Strength and muscle quality in a well-functioning cohort of older adults: the Health, Aging and Body Composition Study. J Am Geriatr Soc, 51 (3) ( 2003), pp. 323-330, DOI: 10.1046/j.1532-5415.2003.51105.x
[[151]]
J. Lexell, C.C. Taylor, M. Sjöström.What is the cause of the ageing atrophy? Total number, size and proportion of different fiber types studied in whole vastus lateralis muscle from 15- to 83-year-old men. J Neurol Sci, 84 (2-3) ( 1988), pp. 275-294, DOI: 10.1016/0022-510x(88)90132-3
[[152]]
K.A. Landers, G.R. Hunter, C.J. Wetzstein, M.M. Bamman, R.L. Weinsier. The interrelationship among muscle mass, strength, and the ability to perform physical tasks of daily living in younger and older women. J Gerontol A Biol Sci Med Sci, 56 (10) ( 2001), pp. B443-B448, DOI: 10.1093/gerona/56.10.b443
[[153]]
L. Ferrucci, R. de Cabo, N.D. Knuth, S. Studenski. Of Greek heroes, wiggling worms, mighty mice, and old body builders. J Gerontol A Biol Sci Med Sci, 67 (1) ( 2012), pp. 13-16, DOI: 10.1093/gerona/glr046
[[154]]
M.D. Beekley, T. Abe, M. Kondo, T. Midorikawa, T. Yamauchi. Comparison of normalized maximum aerobic capacity and body composition of sumo wrestlers to athletes in combat and other sports. J Sports Sci Med, 5 (CSSI) ( 2006), pp. 13-20
[[155]]
M.L. Pollock, V.F. Froelicher, M.L. Pollock. American College of Sports Medicine Position Stand. The recommended quantity and quality of exercise for developing and maintaining cardiorespiratory and muscular fitness, and flexibility in healthy adults. Med Sci Sports Exerc, 22 (2) ( 1998), pp. 975-991, DOI: 10.1097/00005768-199806000-00032
[[156]]
M.S. Feigenbaum, M.L. Pollock. Strength training: rationale for current guidelines for adult fitness programs. Physician Sportsmed, 25 (2) ( 1997), pp. 44-63, DOI: 10.3810/psm.1997.02.1137
[[157]]
M.A. Fiatarone, E.F. O'Neill, N.D. Ryan, et al.. Exercise training and nutritional supplementation for physical frailty in very elderly people. N Engl J Med, 330 (25) ( 1994), pp. 1769-1775, DOI: 10.1056/NEJM199406233302501
[[158]]
T. Abe, C.F. Kearns, T. Fukunaga. Sex differences in whole body skeletal muscle mass measured by magnetic resonance imaging and its distribution in young Japanese adults. Br J Sports Med, 37 (5) ( 2003), pp. 436-440, DOI: 10.1136/bjsm.37.5.436
[[159]]
T. Abe, M. Kondo, Y. Kawakami, T. Fukunaga. Prediction equations for body composition of Japanese adults by B-mode ultrasound. Am J Hum Biol, 6 (2) ( 1994), pp. 161-170, DOI: 10.1002/ajhb.1310060204
[[160]]
A.M. Nevill, R. Ramsbottom, C. Williams. Scaling physiological measurements for individuals of different body size. Eur J Appl Physiol Occup Physiol, 65 (2) ( 1992), pp. 110-117, DOI: 10.1007/BF00705066
[[161]]
D.W. Kitzman, P. Brubaker, T. Morgan, et al.. Effect of caloric restriction or aerobic exercise training on peak oxygen consumption and quality of life in obese older patients with heart failure with preserved ejection fraction: a randomized clinical trial. J Am Med Assoc, 315 (1) ( 2016), pp. 36-46, DOI: 10.1001/jama.2015.17346
[[162]]
J. Rutenfranz, M. Mácek, K.L. Andersen, et al.. The relationship between changing body height and growth related changes in maximal aerobic power. Eur J Appl Physiol Occup Physiol, 60 (4) ( 1990), pp. 282-287, DOI: 10.1007/BF00379397
[[163]]
R.M. Malina, C. Bouchard.Growth, maturation, and physical activity. Med Sci Sports Exerc, 24 (7) ( 1992), p. 841
[[164]]
A.M. Nevill. The need to scale for differences in body size and mass: an explanation of Kleiber's 0.75 mass exponent. J Appl Physiol, 77 (6) ( 1985), pp. 2870-2873, DOI: 10.1152/jappl.1994.77.6.2870
[[165]]
L. Shao, W. Lin, C. Yi, Y. Zhang. Maximal aerobic capacity and its relationship with physical growth in Chinese children. Coll Antropol, 21 ( 1997), pp. 109-116
[[166]]
A.M. Nevill, S. Bate, R.L. Holder. Modeling physiological and anthropometric variables known to vary with body size and other confounding variables. Am J Phys Anthropol, Suppl 41 ( 2005), pp. 141-153, DOI: 10.1002/ajpa.20356
[[167]]
T.W. Rowland. Children's exercise physiology. Champaign, I.L.: Human kinetics ( 2004)
[[168]]
K.U. Patkar, A.S. Joshi. Comparison of VO2max in obese and non-obese young Indian population. Indian J Physiol Pharmacol, 55 (2) ( 2011), pp. 188-192
[[169]]
O.S. Gondim, V.T.N. de Camargo, F.A. Gutierrez, et al.. Benefits of regular exercise on inflammatory and cardiovascular risk markers in normal weight, overweight and obese adults. PloS One, 10 (10) ( 2015), DOI: 10.1371/journal.pone.0140596
[[170]]
A.L. Slusher, Y. Shibata, M. Whitehurst, A. Maharaj, J.M. Quiles, C.-J. Huang. Exercise reduced pentraxin 3 levels produced by endotoxin-stimulated human peripheral blood mononuclear cells in obese individuals. Exp Biol Med, 242 (12) ( 2017), pp. 1279-1286, DOI: 10.1177/1535370217706963
[[171]]
A.P. Goldberg, M.J. Busby-Whitehead, L.I. Katzel, R.M. Krauss, M. Lumpkin, J.M. Hagberg. Cardiovascular fitness, body composition, and lipoprotein lipid metabolism in older men. J Gerontol A Biol Sci Med Sci, 55 (6) ( 2000), pp. M342-M349, DOI: 10.1093/gerona/55.6.m342
[[172]]
G. Hinriksdóttir, Á. Tryggvadóttir, A.S. Ólafsdóttir, S.Á. Arngrímsson. Fatness but not fitness relative to the fat-free mass is related to C-reactive protein in 18 Year-old adolescents. PloS One, 10 (6) ( 2015), DOI: 10.1371/journal.pone.0130597
[[173]]
G.S. Krahenbuhl, J.S. Skinner, W.M. Kohrt.Developmental aspects of maximal aerobic power in children. Exerc Sport Sci Rev, 13 ( 1985), p. 503, DOI: 10.1249/00003677-198500130-00015
[[174]]
R.E.R. Reid, A. Fillon, D. Thivel, et al.. Can anthropometry and physical fitness testing explain physical activity levels in children and adolescents with obesity?. J Sci Med Sport, 23 (6) ( 2020), pp. 580-585, DOI: 10.1016/j.jsams.2019.12.005
[[175]]
H. Pojskic,B. Eslami. Relationship between obesity, physical activity, and cardiorespiratory fitness levels in children and adolescents in Bosnia and Herzegovina: an analysis of gender differences. Front Physiol, 9 ( 2018), DOI: 10.3389/fphys.2018.01734
[[176]]
T. Reybrouck, L. Mertens, D. Schepers, J. Vinckx, M. Gewillig. Assessment of cardiorespiratory exercise function in obese children and adolescents by body mass-independent parameters. Eur J Appl Physiol Occup Physiol, 75 (6) ( 1997), pp. 478-483, DOI: 10.1007/s004210050192
[[177]]
V.W. Barry, M. Baruth, M.W. Beets, J.L. Durstine, J. Liu, S.N. Blair.Fitness vs. fatness on all-cause mortality: a meta-analysis. Prog Cardiovasc Dis, 56 (4) ( 2014), pp. 382-390, DOI: 10.1016/j.pcad.2013.09.002
[[178]]
M. Joyner, E. Coyle. Endurance exercise performance: the physiology of champions. J Physiol, 586 ( 2008), pp. 35-44, DOI: 10.1113/jphysiol.2007.143834
[[179]]
E. Buskirk. Maximal oxygen intake and its relation to body composition, with special reference to chronic physical activity and obesity. J Appl Physiol, 11 ( 1957), DOI: 10.1007/BF02269488
[[180]]
M.S. Treuth, R. Figueroa-Colon, G.R. Hunter, R.L. Weinsier, N.F. Butte, M.I. Goran. Energy expenditure and physical fitness in overweight vs non-overweight prepubertal girls. Int J Obes Relat Metab Disord, 22 (5) ( 1998), pp. 440-447, DOI: 10.1038/sj.ijo.0800605
[[181]]
P.A. Farrell, A.B. Gustafson, R.K. Kalkhoff.Assessment of methods for assigning treadmill exercise workloads for lean and obese women. Int J Obes, 9 (1) ( 1985), p. 49, DOI: 10.1016/0018-506X(85)90032-7
[[182]]
D.L. Elliot, L. Goldberg, K.S. Kuehl, C. Hanna. Metabolic evaluation of obese and nonobese siblings. J Pediatr, 114 (6) ( 1989), pp. 957-962, DOI: 10.1016/S0022-3476(89)80437-8
[[183]]
B. Bishop.Maximal aerobic power during running and cycling IN obese and NON-obese children. Cardiopulm Phys Ther J, 7 (1) ( 1997), p. 25, DOI: 10.1097/01823246-199607010-00017
[[184]]
D.L. Moody, J. Kollias, E.R. Buskirk. Evaluation of aerobic capacity in lean and obese women with four test procedures. J Sports Med Phys Fit, 9 (1) ( 1969), pp. 1-9
[[185]]
M.C. Dan, J. Poage, T.J. Barstow,C. Springer. Are obese children truly unfit? Minimizing the confounding effect of body size on the exercise response. J Pediatr, 116 (2) ( 1990), pp. 223-230, DOI: 10.1016/S0022-3476(05)82878-1

The author would like to especially thank Professor James D. Smith for his great help in revising the English version of this papier.

Accesses

Citations

Detail

Sections
Recommended

/