Regulation of cellular anabolism by mTOR: or how I learned to stop worrying and love translation

J. William Deaver, Sara Mata López, Patrick J. Ryan, Peter P. Nghiem, Steven E. Riechman, James D. Fluckey

Sports Medicine and Health Science ›› 2020, Vol. 2 ›› Issue (4) : 195-201. DOI: 10.1016/j.smhs.2020.11.003
Review Article

Regulation of cellular anabolism by mTOR: or how I learned to stop worrying and love translation

Author information +
History +

Abstract

The process and regulation of cellular metabolism are extremely complex and accomplished through multiple signalling pathways that operate in parallel, and often experience significant overlap in upstream and downstream a signal transduction. Despite this complexity, single pathway or even single protein activations are commonly used to extrapolate broad characterizations of cellular metabolism. Furthermore, multiple routes for peptide-chain translation initiation exist, some of which may be either exclusive or overlapping depending on the state and environment of the cell. While it may be highly impractical to account for every aspect of metabolic regulation and permutation of mRNA translation, it is important to acknowledge that investigations relating to these pathways are often incomplete and not necessarily indicative of the overall metabolic status. This becomes urgent when considering the role that cellular anabolism plays in both healthy cellular functions and the aetiology of several disease's altered metabolisms. This review describes recent advances in the understanding of cellular metabolic regulation, with specific focus given to the complexity of ‘downstream’ mRNA translation initiation through both mTOR-dependent and mTOR-independent signallings.

Keywords

Anabolism / Translation / Protein synthesis / Cap-dependent translation / Cap-independent translation

Cite this article

Download citation ▾
J. William Deaver, Sara Mata López, Patrick J. Ryan, Peter P. Nghiem, Steven E. Riechman, James D. Fluckey. Regulation of cellular anabolism by mTOR: or how I learned to stop worrying and love translation. Sports Medicine and Health Science, 2020, 2(4): 195‒201 https://doi.org/10.1016/j.smhs.2020.11.003

References

[[1]]
S.C. Bodine, T.N. Stitt, M. Gonzalez, et al.. Akt/mTOR pathway is a crucial regulator of skeletal muscle hypertrophy and can prevent muscle atrophy in vivo. Nat Cell Biol, 3 (11) ( 2001), pp. 1014-1019, DOI: 10.1038/ncb1101-1014
[[2]]
M.N. Hall.mTOR-What does it do?. Transplant Proc, 40 (10 Suppl) ( 2008), pp. S5-S8, DOI: 10.1016/j. transproceed.2008.10.009
[[3]]
N. Hay, N. Sonenberg. Upstream and downstream of mTOR. Genes Dev, 18 (16) ( 2004), pp. 1926-1945, DOI: 10.1101/gad.1212704
[[4]]
M. Laplante, D.M. Sabatini. mTOR signaling in growth control and disease. Cell, 149 (2) ( 2012), pp. 274-293, DOI: 10.1016/j.cell.2012.03.017
[[5]]
G.Y. Liu, D.M. Sabatini. mTOR at the nexus of nutrition, growth, ageing and disease. Nat Rev Mol Cell Biol, 21 (4) ( 2020), pp. 183-203, DOI: 10.1038/s41580-019-0199-y
[[6]]
D.M. Sabatini. mTOR and cancer: insights into a complex relationship. Nat Rev Canc, 6 (9) ( 2006), pp. 729-734, DOI: 10.1038/nrc1974
[[7]]
B.D. Fonseca, C. Zakaria, J.-J. Jia, et al.. La-related protein 1 (LARP1) represses terminal oligopyrimidine (TOP) mRNA translation downstream of mTOR complex 1 (mTORC1). J Biol Chem, 290 (26) ( 2015), pp. 15996-16020, DOI: 10.1074/jbc.M114.621730
[[8]]
A. Gentilella, F.D. Morón-Duran, P. Fuentes, et al.. Autogenous control of 5′TOP mRNA stability by 40S ribosomes. Mol Cell, 67 (1) ( 2017), pp. 55-70, DOI: 10.1016/j.molcel.2017.06.005. e4
[[9]]
L. Li, G.-D. Zhao, Z. Shi, L.-L. Qi, L.-Y. Zhou, Z.-X. Fu. The Ras/Raf/MEK/ERK signaling pathway and its role in the occurrence and development of HCC. Oncol Lett, 12 (5) ( 2016), pp. 3045-3050, DOI: 10.3892/ol.2016.5110
[[10]]
A. Marques-Ramos, M.M. Candeias, J. Menezes, et al.. Cap-independent translation ensures mTOR expression and function upon protein synthesis inhibition. RNA, 23 (11) ( 2017), pp. 1712-1728, DOI: 10.1261/rna.063040.117
[[11]]
P.P. Roux, D. Shahbazian, H. Vu, et al.. RAS/ERK signaling promotes site-specific ribosomal protein S 6 phosphorylation via RSK and stimulates cap-dependent translation. J Biol Chem, 282 (19) ( 2007), pp. 14056-14064, DOI: 10.1074/jbc.M700906200
[[12]]
J. Tcherkezian, M. Cargnello, Y. Romeo, et al.. Proteomic analysis of cap-dependent translation identifies LARP 1 as a key regulator of 5′TOP mRNA translation. Genes Dev, 28 (4) ( 2014), pp. 357-371, DOI: 10.1101/gad.231407.113
[[13]]
Y. Ueda, S. Hirai, S. Osada, A. Suzuki, K. Mizuno, S. Ohno. Protein kinase C δ activates the MEK-ERK pathway in a manner independent of Ras and dependent on raf. J Biol Chem, 271 (38) ( 1996), pp. 23512-23519, DOI: 10.1074/jbc.271.38.23512
[[14]]
R.J. Jackson, S.L. Hunt, J.E. Reynolds, A. Kaminski. Cap-dependent and cap-independent translation: operational distinctions and mechanistic interpretations. P. Sarnow (Ed.), Cap-Independent Translation. Current Topics in Microbiology and Immunology, Springer Berlin Heidelberg ( 1995), pp. 1-29, DOI: 10.1007/978-3-642-79663-0_1
[[15]]
J.D. Richter, N. Sonenberg. Regulation of cap-dependent translation by eIF4E inhibitory proteins. Nature, 433 (7025) ( 2005), pp. 477-480, DOI: 10.1038/nature03205
[[16]]
N. Sonenberg, A.G. Hinnebusch. Regulation of translation initiation in eukaryotes: mechanisms and biological targets. Cell, 136 (4) ( 2009), pp. 731-745, DOI: 10.1016/j.cell.2009.01.042
[[17]]
E.J. Brown, M.W. Albers, T. Bum Shin, et al.. A mammalian protein targeted by G1-arresting rapamycin-receptor complex. Nature, 369 (6483) ( 1994), pp. 756-758, DOI: 10.1038/369756a0
[[18]]
D.M. Sabatini, H. Erdjument-Bromage, M. Lui, P. Tempst, S.H. Snyder. RAFT1: a mammalian protein that binds to FKBP12 in a rapamycin-dependent fashion and is homologous to yeast TORs. Cell, 78 (1) ( 1994), pp. 35-43, DOI: 10.1016/0092-8674(94)90570-3
[[19]]
C.J. Sabers, M.M. Martin, G.J. Brunn, et al.. Isolation of a protein target of the FKBP12-rapamycin complex in mammalian cells. J Biol Chem, 270 (2) ( 1995), pp. 815-822, DOI: 10.1074/jbc.270.2.815
[[20]]
S.N. Sehgal, H. Baker, C. Vézina.Rapamycin (AY-22,989), a new antifungal antibiotic. II. Fermentation, isolation and characterization. J Antibiot (Tokyo), 28 (10) ( 1975), pp. 727-732, DOI: 10.7164/antibiotics.28.727
[[21]]
F.C. Harwood, R.I.K. Geltink, B.P. O'Hara, et al.. ETV7 is an essential component of a rapamycin-insensitive mTOR complex in cancer. Sci Adv, 4 (9) ( 2018), DOI: 10.1126/sciadv.aar3938. eaar3938
[[22]]
C.T. Keith, S.L. Schreiber. PIK-related kinases: DNA repair, recombination, and cell cycle checkpoints. Science, 270 (5233) ( 1995), DOI: 10.1126/science.270.5233.50. 50-50
[[23]]
K. Hara, Y. Maruki, X. Long, et al.. Raptor, a binding partner of target of rapamycin (TOR), mediates TOR action. Cell, 110 (2) ( 2002), pp. 177-189, DOI: 10.1016/S0092-8674(02)00833-4
[[24]]
D.D. Sarbassov, D.A. Guertin, S.M. Ali, D.M. Sabatini. Phosphorylation and regulation of akt/PKB by the rictor-mTOR complex. Science, 307 (5712) ( 2005), pp. 1098-1101, DOI: 10.1126/science.1106148
[[25]]
H.-X. Yuan, K.-L. Guan. The SIN1-PH domain connects mTORC2 to PI3K. Canc Discov, 5 (11) ( 2015), pp. 1127-1129, DOI: 10.1158/2159-8290.CD-15-1125
[[26]]
V. Catena, M. Fanciulli. Deptor: not only a mTOR inhibitor. J Exp Clin Cancer Res CR, 36 ( 2017), DOI: 10.1186/s13046-016-0484-y. 12
[[27]]
S. Duan, J.R. Skaar, S. Kuchay, et al.. mTOR generates an auto-amplification loop by triggering the βTrCP- and CK1α-dependent degradation of DEPTOR. Mol Cell, 44 (2) ( 2011), pp. 317-324, DOI: 10.1016/j.molcel.2011.09.005
[[28]]
A.A. Kazi, L. Hong-Brown, S.M. Lang, C.H. Lang. Deptor knockdown enhances mTOR activity and protein synthesis in myocytes and ameliorates disuse muscle atrophy. Mol Med, 17 (9) ( 2011), pp. 925-936, DOI: 10.2119/molmed.2011.00070
[[29]]
Z.X. Meng, L. Wang, Y. Xiao, J.D. Lin. The Baf60c/Deptor pathway links skeletal muscle inflammation to glucose homeostasis in obesity. Diabetes, 63 (5) ( 2014), pp. 1533-1545, DOI: 10.2337/db13-1061
[[30]]
T.R. Peterson, M. Laplante, C.C. Thoreen, et al.. DEPTOR is an mTOR inhibitor frequently overexpressed in multiple myeloma cells and required for their survival. Cell, 137 (5) ( 2009), pp. 873-886, DOI: 10.1016/j.cell.2009.03.046
[[31]]
H. Yang, X. Jiang, B. Li, et al.. Mechanisms of mTORC 1 activation by RHEB and inhibition by PRAS40. Nature, 552 (7685) ( 2017), pp. 368-373, DOI: 10.1038/nature25023
[[32]]
M. Ebner, B. Sinkovics, M. Szczygieł, D.W. Ribeiro, I. Yudushkin. Localization of mTORC2 activity inside cells. J Cell Biol, 216 (2) ( 2017), pp. 343-353, DOI: 10.1083/jcb.201610060
[[33]]
D. Gao, H. Inuzuka, M.-K.M. Tan, et al.. mTOR drives its own activation via SCFβTrCP-dependent degradation of the mTOR inhibitor DEPTOR. Mol Cell, 44 (2) ( 2011), pp. 290-303, DOI: 10.1016/j.molcel.2011.08.030
[[34]]
A. Caron, D.M. Briscoe, D. Richard, M. Laplante. DEPTOR at the nexus of cancer, metabolism, and immunity. Physiol Rev, 98 (3) ( 2018), pp. 1765-1803, DOI: 10.1152/physrev.00064.2017
[[35]]
T.M. Varusai, L.K. Nguyen. Dynamic modelling of the mTOR signalling network reveals complex emergent behaviours conferred by DEPTOR. Sci Rep, 8 (1) ( 2018), pp. 1-14, DOI: 10.1038/s41598-017-18400-z
[[36]]
B.D. Keiper. Cap-independent mRNA translation in germ cells. Int J Mol Sci, 20 (1) ( 2019), DOI: 10.3390/ijms20010173
[[37]]
M. López-Lastra, A. Rivas, M.I. Barría. Protein synthesis in eukaryotes: the growing biological relevance of cap-independent translation initiation. Biol Res, 38 (2-3) ( 2005), DOI: 10.4067/S0716-97602005000200003
[[38]]
Y. Yang, Z. Wang. IRES-mediated cap-independent translation, a path leading to hidden proteome. J Mol Cell Biol, 11 (10) ( 2019), pp. 911-919, DOI: 10.1093/jmcb/mjz091
[[39]]
A.-C. Gingras, S.P. Gygi, B. Raught, et al.. Regulation of 4E-BP 1 phosphorylation: a novel two-step mechanism. Genes Dev, 13 (11) ( 1999), pp. 1422-1437
[[40]]
A.-C. Gingras, B. Raught, S.P. Gygi, et al.. Hierarchical phosphorylation of the translation inhibitor 4E-BP1. Genes Dev, 15 (21) ( 2001), pp. 2852-2864, DOI: 10.1101/gad.912401
[[41]]
M. Kozak. The scanning model for translation: an update. J Cell Biol, 108 (2) ( 1989), pp. 229-241, DOI: 10.1083/jcb.108.2.229
[[42]]
C. de la Parra, A. Ernlund, A. Alard, K. Ruggles, B. Ueberheide, R.J. Schneider. A widespread alternate form of cap-dependent mRNA translation initiation. Nat Commun, 9 ( 2018), DOI: 10.1038/s41467-018-05539-0
[[43]]
S.A. Haizel, U. Bhardwaj, R.L. Gonzalez, S. Mitra, D.J. Goss. 5′-UTR recruitment of the translation initiation factor eIF4GI or DAP5 drives cap-independent translation of a subset of human mRNAs. J Biol Chem, 295 (33) ( 2020), pp. 11693-11706, DOI: 10.1074/jbc.RA120.013678
[[44]]
I.N. Shatsky, I.M. Terenin, V.V. Smirnova, D.E. Andreev. Cap-independent translation: what's in a name?. Trends Biochem Sci, 43 (11) ( 2018), pp. 882-895, DOI: 10.1016/j.tibs.2018.04.011
[[45]]
A. Ramanathan, G.B. Robb, S.-H. Chan. mRNA capping: biological functions and applications. Nucleic Acids Res, 44 (16) ( 2016), pp. 7511-7526, DOI: 10.1093/nar/gkw551
[[46]]
L. Beretta, A.C. Gingras, Y.V. Svitkin, M.N. Hall, N. Sonenberg. Rapamycin blocks the phosphorylation of 4E-BP1 and inhibits cap-dependent initiation of translation. EMBO J, 15 (3) ( 1996), pp. 658-664, DOI: 10.1002/j.1460-2075.1996.tb00398.x
[[47]]
J.D. Fluckey, S.C. Pohnert, S.G. Boyd, R.N. Cortright, T.A. Trappe, G.L. Dohm. Insulin stimulation of muscle protein synthesis in obese Zucker rats is not via a rapamycin-sensitive pathway. Am J Physiol Endocrinol Metab, 279 (1) ( 2000), pp. E182-E187
[[48]]
M. Livingstone, M. Bidinosti. Rapamycin-insensitive mTORC1 activity controls eIF4E:4E-BP1 binding. F1000Research, 1 ( 2012), DOI: 10.12688/f1000research.1-4.v1
[[49]]
S.A. Kang, M.E. Pacold, C.L. Cervantes, et al.. mTORC 1 phosphorylation sites encode their sensitivity to starvation and rapamycin. Science, 341 (6144) ( 2013), DOI: 10.1126/science.1236566
[[50]]
H. Yang, D.G. Rudge, J.D. Koos, B. Vaidialingam, H.J. Yang, N.P. Pavletich. mTOR kinase structure, mechanism and regulation by the rapamycin-binding domain. Nature, 497 (7448) ( 2013), pp. 217-223, DOI: 10.1038/nature12122
[[51]]
A.Y. Choo, J. Blenis. Not all substrates are treated equally: implications for mTOR, rapamycin-resistance and cancer therapy. Cell Cycle Georget Tex, 8 (4) ( 2009), pp. 567-572, DOI: 10.4161/cc.8.4.7659
[[52]]
D.D. Sarbassov, S.M. Ali, S. Sengupta, et al.. Prolonged rapamycin treatment inhibits mTORC 2 assembly and akt/PKB. Mol Cell, 22 (2) ( 2006), pp. 159-168, DOI: 10.1016/j.molcel.2006.03.029
[[53]]
D.W. Lamming, L. Ye, P. Katajisto, et al.. Rapamycin-induced insulin resistance is mediated by mTORC 2 loss and uncoupled from longevity. Science, 335 (6076) ( 2012), pp. 1638-1643, DOI: 10.1126/science.1215135
[[54]]
F.A. Scholl, P.A. Dumesic, D.I. Barragan, et al.. Mek1/ 2 MAPK kinases are essential for mammalian development, homeostasis, and raf-induced hyperplasia. Dev Cell, 12 (4) ( 2007), pp. 615-629, DOI: 10.1016/j.devcel.2007.03.009
[[55]]
Y.-M. Ji, X.-F. Zhou, J. Zhang, et al.. DEPTOR suppresses the progression of esophageal squamous cell carcinoma and predicts poor prognosis. Oncotarget, 7 (12) ( 2016), pp. 14188-14198, DOI: 10.18632/oncotarget.7420
[[56]]
J. Davies, E. Zachariades, K.-R. Rogers-Broadway, E. Karteris. Elucidating the role of DEPTOR in Alzheimer's disease. Int J Mol Med, 34 (5) ( 2014), pp. 1195-1200, DOI: 10.3892/ijmm.2014.1895
[[57]]
Z. Zhu, C. Yang, A. Iyaswamy, et al.. Balancing mTOR signaling and autophagy in the treatment of Parkinson's disease. Int J Mol Sci, 20 (3) ( 2019), p. 728, DOI: 10.3390/ijms20030728
[[58]]
R.A. DeFronzo, D. Tripathy.Skeletal muscle insulin resistance is the primary defect in type 2 diabetes. Diabetes Care, 32 (Suppl 2) ( 2009), pp. S157-S163, DOI: 10.2337/dc09-S302
[[59]]
M.I. Nilsson, J.P. Dobson, N.P. Greene, et al.. Abnormal protein turnover and anabolic resistance to exercise in sarcopenic obesity. Faseb J, 27 (10) ( 2013), pp. 3905-3916, DOI: 10.1096/fj.12-224006

All figures created with BioRender.com.

Accesses

Citations

Detail

Sections
Recommended

/