Sarcopenia: Clinical implications in ovarian cancer, diagnosis, etiology, and management
Aeran Seol, Se Ik Kim, Yong Sang Song
Sarcopenia: Clinical implications in ovarian cancer, diagnosis, etiology, and management
Sarcopenia, loss of skeletal muscle and function, is a common condition among the elderly and is known to cause adverse health outcomes and increased risk of morbidity and mortality. This progressive and generalized disorder imposes a considerable socioeconomic burden. Sarcopenia is observed commonly in cancer patients. As Asia is one of the fastest aging regions in the world, it is clear that incidences of both sarcopenia and ovarian cancer will increase together in Asian countries. Ovarian cancer patients are vulnerable to develop sarcopenia during the treatment course and progress of disease, and a considerable number of patients with ovarian cancer seems to have physical inactivity and sarcopenia already at the time of diagnosis. Therefore, management of sarcopenia should be conducted together in parallel with ovarian cancer treatment and surveillance. Thus, in this article, we will review the clinical importance of sarcopenia in the aspect of ovarian cancer. Definition of sarcopenia, diagnosis, etiology, and intervention will be also introduced.
Sarcopenia / Ovarian carcinoma / Definition / Physiology / Practice / Intervention
[[1]] |
|
[[2]] |
|
[[3]] |
|
[[4]] |
|
[[5]] |
|
[[6]] |
|
[[7]] |
|
[[8]] |
|
[[9]] |
|
[[10]] |
|
[[11]] |
|
[[12]] |
|
[[13]] |
|
[[14]] |
|
[[15]] |
|
[[16]] |
|
[[17]] |
|
[[18]] |
|
[[19]] |
Rosenberg. Summary comments: epidemiological and methodological problems in determining nutritional status of older persons. Am J Clin Nutr, 50 ( 1989), pp. 1231-1233, DOI: 10.1093/ajcn/50.5.1231
|
[[20]] |
|
[[21]] |
|
[[22]] |
|
[[23]] |
|
[[24]] |
|
[[25]] |
|
[[26]] |
|
[[27]] |
|
[[28]] |
|
[[29]] |
|
[[30]] |
OECD Health Statistic (2019). Available online:.
|
[[31]] |
|
[[32]] |
|
[[33]] |
|
[[34]] |
|
[[35]] |
|
[[36]] |
|
[[37]] |
|
[[38]] |
|
[[39]] |
|
[[40]] |
|
[[41]] |
|
[[42]] |
|
[[43]] |
|
[[44]] |
|
[[45]] |
|
[[46]] |
|
[[47]] |
|
[[48]] |
|
[[49]] |
|
[[50]] |
|
[[51]] |
|
[[52]] |
|
[[53]] |
|
[[54]] |
|
[[55]] |
|
[[56]] |
|
[[57]] |
|
[[58]] |
|
[[59]] |
|
[[60]] |
|
[[61]] |
|
[[62]] |
|
[[63]] |
|
[[64]] |
|
[[65]] |
|
[[66]] |
|
[[67]] |
|
[[68]] |
|
[[69]] |
|
[[70]] |
|
[[71]] |
|
[[72]] |
|
[[73]] |
|
[[74]] |
|
[[75]] |
|
[[76]] |
|
[[77]] |
|
[[78]] |
|
[[79]] |
|
[[80]] |
WHO guidelines approved by the guidelines review committee. Global Recommendations on Physical Activity for Health, World Health Organization Copyright © World Health Organization, Geneva ( 2010)
|
[[81]] |
M. American College of Sports. American College of Sports Medicine position stand. Progression models in resistance training for healthy adults. Med Sci Sports Exerc, 41 (3) ( 2009), pp. 687-708, DOI: 10.1249/MSS.0b013e3181915670
|
[[82]] |
|
[[83]] |
|
[[84]] |
|
[[85]] |
|
[[86]] |
|
[[87]] |
|
[[88]] |
|
[[89]] |
|
[[90]] |
|
[[91]] |
|
[[92]] |
|
[[93]] |
|
[[94]] |
|
[[95]] |
|
[[96]] |
|
[[97]] |
|
[[98]] |
|
[[99]] |
|
[[100]] |
|
[[101]] |
|
[[102]] |
|
[[103]] |
|
[[104]] |
|
[[105]] |
|
[[106]] |
|
[[107]] |
|
[[108]] |
|
[[109]] |
|
[[110]] |
|
[[111]] |
|
[[112]] |
|
[[113]] |
|
[[114]] |
|
[[115]] |
|
[[116]] |
|
[[117]] |
|
[[118]] |
|
[[119]] |
|
[[120]] |
|
[[121]] |
|
[[122]] |
|
[[123]] |
|
[[124]] |
|
[[125]] |
|
This work was supported by a grant from the Korea Health Technology R&D Project through the Korea Health Industry Development Institute (KHIDI), funded by the Ministry of Health and Welfare, Republic of Korea (No. HI16C2037).
/
〈 | 〉 |