Sarcopenia: Clinical implications in ovarian cancer, diagnosis, etiology, and management

Aeran Seol, Se Ik Kim, Yong Sang Song

Sports Medicine and Health Science ›› 2020, Vol. 2 ›› Issue (4) : 202-210. DOI: 10.1016/j.smhs.2020.10.001
Review Article

Sarcopenia: Clinical implications in ovarian cancer, diagnosis, etiology, and management

Author information +
History +

Abstract

Sarcopenia, loss of skeletal muscle and function, is a common condition among the elderly and is known to cause adverse health outcomes and increased risk of morbidity and mortality. This progressive and generalized disorder imposes a considerable socioeconomic burden. Sarcopenia is observed commonly in cancer patients. As Asia is one of the fastest aging regions in the world, it is clear that incidences of both sarcopenia and ovarian cancer will increase together in Asian countries. Ovarian cancer patients are vulnerable to develop sarcopenia during the treatment course and progress of disease, and a considerable number of patients with ovarian cancer seems to have physical inactivity and sarcopenia already at the time of diagnosis. Therefore, management of sarcopenia should be conducted together in parallel with ovarian cancer treatment and surveillance. Thus, in this article, we will review the clinical importance of sarcopenia in the aspect of ovarian cancer. Definition of sarcopenia, diagnosis, etiology, and intervention will be also introduced.

Keywords

Sarcopenia / Ovarian carcinoma / Definition / Physiology / Practice / Intervention

Cite this article

Download citation ▾
Aeran Seol, Se Ik Kim, Yong Sang Song. Sarcopenia: Clinical implications in ovarian cancer, diagnosis, etiology, and management. Sports Medicine and Health Science, 2020, 2(4): 202‒210 https://doi.org/10.1016/j.smhs.2020.10.001

References

[[1]]
F. Bray, J. Ferlay, I. Soerjomataram, R.L. Siegel, L.A. Torre, A. Jemal. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: a cancer journal for clinicians, 68 (6) ( 2018), pp. 394-424, DOI: 10.3322/caac.21492
[[2]]
Z. Momenimovahed, A. Tiznobaik, S. Taheri, H. Salehiniya. Ovarian cancer in the world: epidemiology and risk factors. Int J Womens Health, 11 ( 2019), pp. 287-299, DOI: 10.2147/IJWH.S197604
[[3]]
P.M. Webb, S.J. Jordan. Epidemiology of epithelial ovarian cancer. Best Pract Res Clin Obstet Gynaecol, 41 ( 2017), pp. 3-14, DOI: 10.1016/j.bpobgyn.2016.08.006
[[4]]
D.J. Wilkinson, M. Piasecki, P.J. Atherton. The age-related loss of skeletal muscle mass and function: measurement and physiology of muscle fibre atrophy and muscle fibre loss in humans. Ageing Res Rev, 47 ( 2018), pp. 123-132, DOI: 10.1016/j.arr.2018.07.005
[[5]]
C. Beaudart, R. Rizzoli, O. Bruyère, J.-Y. Reginster, E. Biver.Sarcopenia: burden and challenges for public health. Arch Publ Health, 72 (1) ( 2014), p. 45, DOI: 10.1186/2049-3258-72-45
[[6]]
S. Goates, K. Du, M.B. Arensberg, T. Gaillard, J. Guralnik, S.L. Pereira. Economic impact of hospitalizations in US adults with sarcopenia. The Journal of frailty & aging, 8 (2) ( 2019), pp. 93-99, DOI: 10.14283/jfa.2019.10
[[7]]
A.J. Cruz-Jentoft, G. Bahat, J. Bauer, et al.. Sarcopenia: revised European consensus on definition and diagnosis. Age Ageing, 48 (1) ( 2019), pp. 16-31, DOI: 10.1093/ageing/afy169
[[8]]
C.C. Azoba, E.E.V. Seventer, J.P. Marquardt, et al.. Relationships among skeletal muscle, symptom burden, health care use, and survival in hospitalized patients with advanced cancer. 38 (15_suppl) ( 2020), p. 7006, DOI: 10.1200/JCO.2020.38.15_suppl.7006
[[9]]
H. Fukushima, M. Yokoyama, Y. Nakanishi, K-i Tobisu, F. Koga. Sarcopenia as a prognostic biomarker of advanced urothelial carcinoma. PloS One, 10 (1) ( 2015), Article e0115895, DOI: 10.1371/journal.pone.0115895
[[10]]
E.Y. Kim, Y.S. Kim, I. Park, H.K. Ahn, E.K. Cho, Y.M. Jeong. Prognostic significance of CT-determined sarcopenia in patients with small-cell lung cancer. J Thorac Oncol : official publication of the International Association for the Study of Lung Cancer, 10 (12) ( 2015), pp. 1795-1799, DOI: 10.1097/JTO.0000000000000690
[[11]]
B.J. Caan, E.M. Cespedes Feliciano, C.M. Prado, et al.. Association of muscle and adiposity measured by computed tomography with survival in patients with nonmetastatic breast cancer. JAMA oncology, 4 (6) ( 2018), pp. 798-804, DOI: 10.1001/jamaoncol.2018.0137
[[12]]
J.S. Lee, Y.S. Kim, E.Y. Kim, W. Jin. Prognostic significance of CT-determined sarcopenia in patients with advanced gastric cancer. PloS One, 13 (8) ( 2018), Article e0202700, DOI: 10.1371/journal.pone.0202700
[[13]]
E.J. Song, C.W. Lee, S.Y. Jung, et al.. Prognostic impact of skeletal muscle volume derived from cross-sectional computed tomography images in breast cancer. Breast Canc Res Treat, 172 (2) ( 2018), pp. 425-436, DOI: 10.1007/s10549-018-4915-7
[[14]]
Kumar M.R. Moynagh F. Multinu, et al.. Muscle composition measured by CT scan is a measurable predictor of overall survival in advanced ovarian cancer. Gynecol Oncol, 142 (2) ( 2016), pp. 311-316, DOI: 10.1016/j.ygyno.2016.05.027
[[15]]
H. Bronger, P. Hederich, A. Hapfelmeier, et al.. Sarcopenia in advanced serous ovarian cancer. Int J Gynecol Canc : official journal of the International Gynecological Cancer Society, 27 (2) ( 2017), pp. 223-232, DOI: 10.1097/IGC.0000000000000867
[[16]]
S.-A.M. Staley, K. Tucker, M. Newton, et al. Sarcopenia as a Predictor of Survival in Patients with Epithelial Ovarian Cancer (EOC) Receiving Platinum and Taxane-Based Chemotherapy, vol. 37 ( 2019), Article e17030, DOI: 10.1016/j.ygyno.2020.01.003. 15_suppl
[[17]]
I.J. Rutten, J. Ubachs, R.F. Kruitwagen, et al.. The influence of sarcopenia on survival and surgical complications in ovarian cancer patients undergoing primary debulking surgery. Eur J Surg Oncol : the journal of the European Society of Surgical Oncology and the British Association of Surgical Oncology, 43 (4) ( 2017), pp. 717-724, DOI: 10.1016/j.ejso.2016.12.016
[[18]]
S.I. Kim, T.M. Kim, M. Lee, et al.. Impact of CT-determined sarcopenia and body composition on survival outcome in patients with advanced-stage high-grade serous ovarian carcinoma. Cancers, 12 (3) ( 2020), p. 559, DOI: 10.3390/cancers12030559
[[19]]
Rosenberg. Summary comments: epidemiological and methodological problems in determining nutritional status of older persons. Am J Clin Nutr, 50 ( 1989), pp. 1231-1233, DOI: 10.1093/ajcn/50.5.1231
[[20]]
A.J. Cruz-Jentoft, J.P. Baeyens, J.M. Bauer, et al.. Sarcopenia: European consensus on definition and diagnosis: report of the European working group on sarcopenia in older people. Age Ageing, 39 (4) ( 2010), pp. 412-423, DOI: 10.1093/ageing/afq034
[[21]]
R.A. Fielding, B. Vellas, W.J. Evans, et al.. Sarcopenia: an undiagnosed condition in older adults. Current consensus definition: prevalence, etiology, and consequences. International working group on sarcopenia. J Am Med Dir Assoc, 12 (4) ( 2011), pp. 249-256, DOI: 10.1016/j.jamda.2011.01.003
[[22]]
T.K. Malmstrom, D.K. Miller, E.M. Simonsick, L. Ferrucci, J.E. Morley. SARC-F: a symptom score to predict persons with sarcopenia at risk for poor functional outcomes. J Cachexia Sarcopenia Muscle, 7 (1) ( 2016), pp. 28-36, DOI: 10.1002/jcsm.12048
[[23]]
C. Beaudart, E. McCloskey, O. Bruyère, et al.. Sarcopenia in daily practice: assessment and management. BMC Geriatr, 16 (1) ( 2016), DOI: 10.1186/s12877-016-0349-4. 170
[[24]]
A.P. Rossi, F. Fantin, R. Micciolo, et al.. Identifying sarcopenia in acute care setting patients. J Am Med Dir Assoc, 15 (4) ( 2014), DOI: 10.1016/j.jamda.2013.11.018. 303.e7-12
[[25]]
K.M. Kim, H.C. Jang, S. Lim. Differences among skeletal muscle mass indices derived from height-, weight-, and body mass index-adjusted models in assessing sarcopenia. The Korean journal of internal medicine, 31 (4) ( 2016), pp. 643-650, DOI: 10.3904/kjim.2016.015
[[26]]
L.K. Chen, J. Woo, P. Assantachai, et al.. Asian working group for sarcopenia: 2019 consensus update on sarcopenia diagnosis and treatment. J Am Med Dir Assoc, 21 (3) ( 2020), pp. 300-307, DOI: 10.1016/j.jamda.2019.12.012. e2
[[27]]
Reiss B. Iglseder R. Alzner, et al.. Consequences of applying the new EWGSOP 2 guideline instead of the former EWGSOP guideline for sarcopenia case finding in older patients. Age Ageing, 48 (5) ( 2019), pp. 719-724, DOI: 10.1093/ageing/afz035
[[28]]
M. Locquet, C. Beaudart, J. Petermans, J.Y. Reginster, O. Bruyère. EWGSOP 2 versus EWGSOP1: impact on the prevalence of sarcopenia and its major health consequences. J Am Med Dir Assoc, 20 (3) ( 2019), pp. 384-385, DOI: 10.1016/j.jamda.2018.11.027
[[29]]
J.M. Van Ancum, J. Alcazar, C.G.M. Meskers, B.R. Nielsen, C. Suetta, A.B. Maier.Impact of using the updated EWGSOP2 definition in diagnosing sarcopenia: a clinical perspective. Arch Gerontol Geriatr, 90 ( 2020), p. 104125, DOI: 10.1016/j.archger.2020.104125
[[30]]
OECD Health Statistic (2019). Available online:.
[[31]]
M. Mourtzakis, C.M. Prado, J.R. Lieffers, T. Reiman, L.J. McCargar, V.E. Baracos. A practical and precise approach to quantification of body composition in cancer patients using computed tomography images acquired during routine care. Applied physiology, nutrition, and metabolism = Physiologie appliquee, nutrition et metabolisme, 33 (5) ( 2008), pp. 997-1006, DOI: 10.1139/H08-075
[[32]]
W. Shen, M. Punyanitya, Z. Wang, et al.. Total body skeletal muscle and adipose tissue volumes: estimation from a single abdominal cross-sectional image. J Appl Physiol, 97 (6) ( 2004), pp. 2333-2338, DOI: 10.1152/japplphysiol.00744.2004. Bethesda, Md : 1985
[[33]]
H. Nishikawa, M. Shiraki, A. Hiramatsu, K. Moriya, K. Hino, S. NishiguchiJapan Society of Hepatology Guidelines for Sarcopenia in Liver Disease (1st Edition), vol. 46 ( 2016), pp. 951-963, DOI: 10.1111/hepr.12774. Recommendation from the working group for creation of sarcopenia assessment criteria. Hepatology research : the official journal of the Japan Society of Hepatology 10
[[34]]
Y. Hamaguchi, T. Kaido, S. Okumura, et al.. Proposal for new selection criteria considering pre-transplant muscularity and visceral adiposity in living donor liver transplantation. J Cachexia Sarcopenia Muscle, 9 (2) ( 2018), pp. 246-254, DOI: 10.1002/jcsm.12276
[[35]]
R. Roubenoff. Sarcopenia: effects on body composition and function. The journals of gerontology Series A, Biological sciences and medical sciences, 58 (11) ( 2003), pp. 1012-1017, DOI: 10.1093/gerona/58.11.m1012
[[36]]
M. Muscaritoli, S.D. Anker, J. Argilés, et al.. Consensus definition of sarcopenia, cachexia and pre-cachexia: joint document elaborated by Special Interest Groups (SIG) “cachexia-anorexia in chronic wasting diseases” and nutrition in geriatrics. Clinical nutrition (Edinburgh, Scotland), 29 (2) ( 2010), pp. 154-159, DOI: 10.1016/j.clnu.2009.12.004
[[37]]
Y. Rolland, S. Czerwinski, G. Abellan Van Kan, et al.. Sarcopenia: its assessment, etiology, pathogenesis, consequences and future perspectives. J Nutr Health Aging, 12 (7) ( 2008), pp. 433-450, DOI: 10.1007/BF02982704
[[38]]
C. Joseph, A.M. Kenny, P. Taxel, J.A. Lorenzo, G. Duque, G.A. Kuchel. Role of endocrine-immune dysregulation in osteoporosis, sarcopenia, frailty and fracture risk. Mol Aspect Med, 26 (3) ( 2005), pp. 181-201, DOI: 10.1016/j.mam.2005.01.004
[[39]]
P. Kortebein, A. Ferrando, J. Lombeida, R. Wolfe, W.J. Evans. Effect of 10 days of bed rest on skeletal muscle in healthy older adults. Jama, 297 (16) ( 2007), pp. 1772-1774, DOI: 10.1001/jama.297.16.1772-b
[[40]]
C.H. Chou, C.L. Hwang, Y.T. Wu. Effect of exercise on physical function, daily living activities, and quality of life in the frail older adults: a meta-analysis. Archives of physical medicine and rehabilitation, 93 (2) ( 2012), pp. 237-244, DOI: 10.1016/j.apmr.2011.08.042
[[41]]
M. Giné-Garriga, M. Roqué-Fíguls, L. Coll-Planas, M. Sitjà-Rabert, A. Salvà. Physical exercise interventions for improving performance-based measures of physical function in community-dwelling, frail older adults: a systematic review and meta-analysis. Archives of physical medicine and rehabilitation, 95 (4) ( 2014), pp. 753-769, DOI: 10.1016/j.apmr.2013.11.007. e3
[[42]]
M. Steffl, R.W. Bohannon, L. Sontakova, J.J. Tufano, K. Shiells, I. Holmerova. Relationship between sarcopenia and physical activity in older people: a systematic review and meta-analysis. Clin Interv Aging, 12 ( 2017), pp. 835-845, DOI: 10.2147/CIA.S132940
[[43]]
M. Sheffield-Moore, C.W. Yeckel, E. Volpi, et al.. Postexercise protein metabolism in older and younger men following moderate-intensity aerobic exercise. Am J Physiol Endocrinol Metab, 287 (3) ( 2004), pp. E513-E522, DOI: 10.1152/ajpendo.00334.2003
[[44]]
D.L. Hasten, J. Pak-Loduca, K.A. Obert, K.E. Yarasheski.Resistance exercise acutely increases MHC and mixed muscle protein synthesis rates in 78-84 and23-32 yr olds. Am J Physiol Endocrinol Metab, 278 (4) ( 2000), pp. E620-E626, DOI: 10.1152/ajpendo.2000.278.4.E620
[[45]]
K.E. Yarasheski, J.J. Zachwieja, D.M. Bier. Acute effects of resistance exercise on muscle protein synthesis rate in young and elderly men and women. Am J Physiol, 265 (2 Pt 1) ( 1993), pp. E210-E214, DOI: 10.1152/ajpendo.1993.265.2.E210
[[46]]
A.V. Patel, C.M. Friedenreich, S.C. Moore, et al.. American College of sports medicine roundtable report on physical activity, sedentary behavior, and cancer prevention and control. Med Sci Sports Exerc, 51 (11) ( 2019), pp. 2391-2402, DOI: 10.1249/MSS.0000000000002117
[[47]]
McTiernan C.M. Friedenreich P.T. Katzmarzyk, et al.. Physical activity in cancer prevention and survival: a systematic review. Med Sci Sports Exerc, 51 (6) ( 2019), pp. 1252-1261, DOI: 10.1249/MSS.0000000000001937
[[48]]
C.M. Cottreau, R.B. Ness, A.M. Kriska. Physical activity and reduced risk of ovarian cancer. Obstet Gynecol, 96 (4) ( 2000), pp. 609-614, DOI: 10.1016/s0029-7844(00)00972-8
[[49]]
R. Cannioto, M.J. LaMonte, H.A. Risch, et al.. Chronic recreational physical inactivity and epithelial ovarian cancer risk: evidence from the ovarian cancer association consortium. Cancer Epidemiol Biomark Prev, 25 (7) ( 2016), pp. 1114-1124, DOI: 10.1158/1055-9965.EPI-15-1330
[[50]]
Y. Wang, H. Song, Y. Yin, L. Feng. Cancer Survivors Could Get Survival Benefits from Postdiagnosis Physical Activity: A Meta-Analysis. Evidence-Based Complementary and Alternative Medicine. ( 2019), Article 1940903, DOI: 10.1155/2019/1940903. eCAM
[[51]]
Wilson MM, Morley JE. Invited review: aging and energy balance. J Appl Physiol (Bethesda, Md : 1985). 2003; 95(4):1728-1736. DOI:10.1152/japplphysiol.00313.2003.
[[52]]
Rooyackers D.B. Adey P.A. Ades K.S. Nair. Effect of age on in vivo rates of mitochondrial protein synthesis in human skeletal muscle. Proc. Natl. Acad. Sci. U.S.A, 93 (26) ( 1996), pp. 15364-15369, DOI: 10.1073/pnas.93.26.15364
[[53]]
W.M. Bennet, A.A. Connacher, C.M. Scrimgeour, M.J. Rennie. The effect of amino acid infusion on leg protein turnover assessed by L-[15N]phenylalanine and L-[1-13C]leucine exchange. Eur J Clin Invest, 20 (1) ( 1990), pp. 41-50, DOI: 10.1111/j.1365-2362.1990.tb01789.x
[[54]]
E. Volpi, H. Kobayashi, M. Sheffield-Moore, B. Mittendorfer, R.R. Wolfe. Essential amino acids are primarily responsible for the amino acid stimulation of muscle protein anabolism in healthy elderly adults. The American journal of clinical nutrition, 78 (2) ( 2003), pp. 250-258, DOI: 10.1093/ajcn/78.2.250
[[55]]
H. Woopen, R. Richter, R. Chekerov, et al.. Prognostic role of chemotherapy-induced nausea and vomiting in recurrent ovarian cancer patients: results of an individual participant data meta-analysis in 1213. Supportive care in cancer. official journal of the Multinational Association of Supportive Care in Cancer, 28 (1) ( 2020), pp. 73-78, DOI: 10.1007/s00520-019-04778-1
[[56]]
H. Bruunsgaard, M. Pedersen, B.K. Pedersen. Aging and proinflammatory cytokines. Curr Opin Hematol, 8 (3) ( 2001), DOI: 10.1097/00062752-200105000-00001. 131-136
[[57]]
L.A. Schaap, S.M. Pluijm, D.J. Deeg, M. Visser. Inflammatory markers and loss of muscle mass (sarcopenia) and strength. Am J Med, 119 (6) ( 2006), DOI: 10.1016/j.amjmed.2005.10.049. 526.e9-17
[[58]]
M. Michaud, L. Balardy, G. Moulis, et al.. Proinflammatory cytokines, aging, and age-related diseases. J Am Med Dir Assoc, 14 (12) ( 2013), pp. 877-882, DOI: 10.1016/j.jamda.2013.05.009
[[59]]
J.E. Morley, R.N. Baumgartner. Cytokine-related aging process. The journals of gerontology Series A, Biological sciences and medical sciences, 59 (9) ( 2004), pp. M924-M929, DOI: 10.1093/gerona/59.9.m924
[[60]]
S. Dalle, L. Rossmeislova, K. Koppo.The role of inflammation in age-related sarcopenia. Front Physiol, 8 ( 2017), p. 1045, DOI: 10.3389/fphys.2017.01045
[[61]]
M. Visser, M. Pahor, D.R. Taaffe, et al.. Relationship of interleukin-6 and tumor necrosis factor-alpha with muscle mass and muscle strength in elderly men and women: the Health ABC Study. The journals of gerontology Series A, Biological sciences and medical sciences, 57 (5) ( 2002), pp. M326-M332, DOI: 10.1093/gerona/57.5.m326
[[62]]
Browning M.R. Patel E.B. Horvath K. Tawara C.L. Jorcyk. IL-6 and ovarian cancer: inflammatory cytokines in promotion of metastasis. Canc Manag Res, 10 ( 2018), pp. 6685-6693, DOI: 10.2147/CMAR.S179189
[[63]]
H.S. Kim, H.-Y. Choi, M. Lee, et al.. Systemic inflammatory response markers and CA-125 levels in ovarian clear cell carcinoma: a two center cohort study. Cancer research and treatment. official journal of Korean Cancer Association, 48 (1) ( 2016), pp. 250-258, DOI: 10.4143/crt.2014.324
[[64]]
G. Chen, L. Zhu, Y. Yang, Y. Long, X. Li, Y. Wang. Prognostic role of neutrophil to lymphocyte ratio in ovarian cancer: a meta-analysis. Technol Canc Res Treat, 17 ( 2018), Article 1533033818791500, DOI: 10.1177/1533033818791500
[[65]]
Fearon F. Strasser S.D. Anker, et al.. Definition and classification of cancer cachexia: an international consensus. Lancet Oncol, 12 (5) ( 2011), pp. 489-495, DOI: 10.1016/S1470- 2045(10)70218-7
[[66]]
B.E. Wisse. The inflammatory syndrome: the role of adipose tissue cytokines in metabolic disorders linked to obesity. J Am Soc Nephrol : JASN (J Am Soc Nephrol), 15 (11) ( 2004), pp. 2792-2800, DOI: 10.1097/01.ASN.0000141966.69934.21
[[67]]
A.S. Ryan, B.J. Nicklas. Reductions in plasma cytokine levels with weight loss improve insulin sensitivity in overweight and obese postmenopausal women. Diabetes Care, 27 (7) ( 2004), pp. 1699-1705, DOI: 10.2337/diacare.27.7.1699
[[68]]
S. Stenholm, T.B. Harris, T. Rantanen, M. Visser, S.B. Kritchevsky, L. Ferrucci. Sarcopenic obesity: definition, cause and consequences. Curr Opin Clin Nutr Metab Care, 11 (6) ( 2008), pp. 693-700, DOI: 10.1097/MCO.0b013e328312c37d
[[69]]
R.N. Baumgartner, S.J. Wayne, D.L. Waters, I. Janssen, D. Gallagher, J.E. Morley. Sarcopenic obesity predicts instrumental activities of daily living disability in the elderly. Obes Res, 12 (12) ( 2004), pp. 1995-2004, DOI: 10.1038/oby.2004.250
[[70]]
Visser S.B. Kritchevsky B.H. Goodpaster, et al.. Leg muscle mass and composition in relation to lower extremity performance in men and women aged 70 to 79: the health, aging and body composition study. J Am Geriatr Soc, 50 (5) ( 2002), pp. 897-904, DOI: 10.1046/j.1532-5415.2002.50217.x
[[71]]
G. Malietzis, A.C. Currie, T. Athanasiou, et al.. Influence of body composition profile on outcomes following colorectal cancer surgery. Br J Surg, 103 (5) ( 2016), pp. 572-580, DOI: 10.1002/bjs.10075
[[72]]
T. Sueda, H. Takahasi, J. Nishimura, et al.. Impact of low muscularity and myosteatosis on long-term outcome after curative colorectal cancer surgery: a propensity score-matched analysis. Dis Colon Rectum, 61 (3) ( 2018), pp. 364-374, DOI: 10.1097/DCR.0000000000000958
[[73]]
S.I. Kim, T.M. Kim, M. Lee, et al.. Impact of CT-determined sarcopenia and body composition on survival outcome in patients with advanced-stage high-grade serous ovarian carcinoma. Cancers, 12 (3) ( 2020), DOI: 10.3390/cancers12030559
[[74]]
B. Kim, H.S. Kim, S. Kim, et al.. Adipose stromal cells from visceral and subcutaneous fat facilitate migration of ovarian cancer cells via IL-6/JAK2/STAT3 pathway. Cancer research and treatment. official journal of Korean Cancer Association, 49 (2) ( 2017), pp. 338-349, DOI: 10.4143/crt.2016.175
[[75]]
R.J. Dhillon, S. Hasni. Pathogenesis and management of sarcopenia. Clin Geriatr Med, 33 (1) ( 2017), pp. 17-26, DOI: 10.1016/j.cger.2016.08.002
[[76]]
S.C. Yu, K.S. Khow, A.D. Jadczak, R. Visvanathan.Clinical screening tools for sarcopenia and its management. Curr Gerontol Geriatr Res, 2016 ( 2016), p. 5978523, DOI: 10.1155/2016/5978523
[[77]]
A.M. Martone, F. Lattanzio, A.M. Abbatecola, et al.. Treating sarcopenia in older and oldest old. Curr Pharmaceut Des, 21 (13) ( 2015), pp. 1715-1722, DOI: 10.2174/1381612821666150130122032
[[78]]
N.E. Deutz, J.M. Bauer, R. Barazzoni, et al.. Protein intake and exercise for optimal muscle function with aging: recommendations from the ESPEN Expert Group. Clinical nutrition (Edinburgh, Scotland), 33 (6) ( 2014), pp. 929-936, DOI: 10.1016/j.clnu.2014.04.007
[[79]]
G. Iolascon, G. Di Pietro, F. Gimigliano, et al.. Physical exercise and sarcopenia in older people: position paper of the Italian Society of Orthopaedics and Medicine (OrtoMed). Clin Cases Miner Bone Metab, 11 (3) ( 2014), pp. 215-221
[[80]]
WHO guidelines approved by the guidelines review committee. Global Recommendations on Physical Activity for Health, World Health Organization Copyright © World Health Organization, Geneva ( 2010)
[[81]]
M. American College of Sports. American College of Sports Medicine position stand. Progression models in resistance training for healthy adults. Med Sci Sports Exerc, 41 (3) ( 2009), pp. 687-708, DOI: 10.1249/MSS.0b013e3181915670
[[82]]
M.L. McNeely, K.L. Campbell, B.H. Rowe, T.P. Klassen, J.R. Mackey, K.S. Courneya. Effects of exercise on breast cancer patients and survivors: a systematic review and meta-analysis. CMAJ (Can Med Assoc J) : Canadian Medical Association journal = journal de l'Association medicale canadienne, 175 (1) ( 2006), pp. 34-41, DOI: 10.1503/cmaj.051073
[[83]]
F. Hong, W. Ye, C.H. Kuo, Y. Zhang, Y. Qian, M. Korivi. Exercise intervention improves clinical outcomes, but the "time of session" is crucial for better quality of life in breast cancer survivors: a systematic review and meta-analysis. Cancers, 11 (5) ( 2019), DOI: 10.3390/cancers11050706
[[84]]
F. Soares Falcetta, H. de Araújo Vianna Träsel, F.K. de Almeida, M. Rangel Ribeiro Falcetta, M. Falavigna, D. Dornelles Rosa. Effects of physical exercise after treatment of early breast cancer: systematic review and meta-analysis. Breast Canc Res Treat, 170 (3) ( 2018), pp. 455-476, DOI: 10.1007/s10549-018-4786-y
[[85]]
C.N. Holick, P.A. Newcomb, A. Trentham-Dietz, et al.. Physical activity and survival after diagnosis of invasive breast cancer. Cancer Epidemiol Biomark Prev, 17 (2) ( 2008), pp. 379-386, DOI: 10.1158/1055-9965.EPI-07-0771
[[86]]
M.D. Holmes, W.Y. Chen, D. Feskanich, C.H. Kroenke, G.A. Colditz. Physical activity and survival after breast cancer diagnosis. Jama, 293 (20) ( 2005), pp. 2479-2486, DOI: 10.1001/jama.293.20.2479
[[87]]
J.A. Meyerhardt, E.L. Giovannucci, S. Ogino, et al.. Physical activity and male colorectal cancer survival. Arch Intern Med, 169 (22) ( 2009), pp. 2102-2108, DOI: 10.1001/archinternmed.2009.412
[[88]]
J.A. Meyerhardt, E.L. Giovannucci, M.D. Holmes, et al.. Physical activity and survival after colorectal cancer diagnosis. J Clin Oncol : official journal of the American Society of Clinical Oncology, 24 (22) ( 2006), pp. 3527-3534, DOI: 10.1200/JCO.2006.06.0855
[[89]]
B.J. Guercio, S. Zhang, F.S. Ou, et al.. Associations of physical activity with survival and progression in metastatic colorectal cancer: results from cancer and leukemia group B (alliance)/SWOG 80405. J Clin Oncol : official journal of the American Society of Clinical Oncology, 37 (29) ( 2019), pp. 2620-2631, DOI: 10.1200/JCO.19.01019
[[90]]
J.A. Meyerhardt, D. Heseltine, D. Niedzwiecki, et al.. Impact of physical activity on cancer recurrence and survival in patients with stage III colon cancer: findings from CALGB 89803. J Clin Oncol : official journal of the American Society of Clinical Oncology, 24 (22) ( 2006), pp. 3535-3541, DOI: 10.1200/JCO.2006.06.0863
[[91]]
R. Ballard-Barbash, C.M. Friedenreich, K.S. Courneya, S.M. Siddiqi, A. McTiernan, C.M. Alfano. Physical activity, biomarkers, and disease outcomes in cancer survivors: a systematic review. Journal of the National Cancer Institute, 104 (11) ( 2012), pp. 815-840, DOI: 10.1093/jnci/djs207
[[92]]
J.E. Morley, J.M. Argiles, W.J. Evans, et al.. Nutritional recommendations for the management of sarcopenia. J Am Med Dir Assoc, 11 (6) ( 2010), pp. 391-396, DOI: 10.1016/j.jamda.2010.04.014
[[93]]
S.A. Bloch, J.Y. Lee, T. Syburra, et al.. Increased expression of GDF-15 may mediate ICU-acquired weakness by down-regulating muscle microRNAs. Thorax, 70 (3) ( 2015), pp. 219-228, DOI: 10.1136/thoraxjnl-2014-206225
[[94]]
J. Bauer, G. Biolo, T. Cederholm, et al.. Evidence-based recommendations for optimal dietary protein intake in older people: a position paper from the PROT-AGE Study Group. J Am Med Dir Assoc, 14 (8) ( 2013), pp. 542-559, DOI: 10.1016/j.jamda.2013.05.021
[[95]]
C. Beaudart, F. Buckinx, V. Rabenda, et al.. The effects of vitamin D on skeletal muscle strength, muscle mass, and muscle power: a systematic review and meta-analysis of randomized controlled trials. J Clin Endocrinol Metab, 99 (11) ( 2014), pp. 4336-4345, DOI: 10.1210/jc.2014-1742
[[96]]
J.R. Stout, B. Sue Graves, J.T. Cramer, et al.. Effects of creatine supplementation on the onset of neuromuscular fatigue threshold and muscle strength in elderly men and women (64-86 years). J Nutr Health Aging, 11 (6) ( 2007), pp. 459-464
[[97]]
I. Liguori, G. Russo, L. Aran, et al.. Sarcopenia: assessment of disease burden and strategies to improve outcomes. Clin Interv Aging, 13 ( 2018), pp. 913-927, DOI: 10.2147/CIA.S149232
[[98]]
R.D. Semba, F. Lauretani, L. Ferrucci. Carotenoids as protection against sarcopenia in older adults. Arch Biochem Biophys, 458 (2) ( 2007), pp. 141-145, DOI: 10.1016/j.abb.2006.11.025
[[99]]
G. Bjelakovic, D. Nikolova, L.L. Gluud, R.G. Simonetti, C. Gluud. Mortality in randomized trials of antioxidant supplements for primary and secondary prevention: systematic review and meta-analysis. Jama, 297 (8) ( 2007), pp. 842-857, DOI: 10.1001/jama.297.8.842
[[100]]
N. Balogun, A. Forbes, M. Widschwendter, A. Lanceley. Noninvasive nutritional management of ovarian cancer patients: beyond intestinal obstruction. Int J Gynecol Canc : official journal of the International Gynecological Cancer Society, 22 (6) ( 2012), pp. 1089-1095, DOI: 10.1097/IGC.0b013e318256e4d3
[[101]]
K. Sakuma, A. Yamaguchi.Novel intriguing strategies attenuating to sarcopenia. J Aging Res, 2012 ( 2012), p. 251217, DOI: 10.1155/2012/251217
[[102]]
G.A. Wittert, I.M. Chapman, M.T. Haren, S. Mackintosh, P. Coates, J.E. Morley. Oral testosterone supplementation increases muscle and decreases fat mass in healthy elderly males with low-normal gonadal status. The journals of gerontology Series A, Biological sciences and medical sciences, 58 (7) ( 2003), pp. 618-625, DOI: 10.1093/gerona/58.7.m618
[[103]]
S.E. Borst, T. Mulligan. Testosterone replacement therapy for older men. Clin Interv Aging, 2 (4) ( 2007), pp. 561-566, DOI: 10.2147/cia.s1609
[[104]]
A.A. Ferrando, M. Sheffield-Moore, D. Paddon-Jones, R.R. Wolfe, R.J. Urban. Differential anabolic effects of testosterone and amino acid feeding in older men. J Clin Endocrinol Metab, 88 (1) ( 2003), pp. 358-362, DOI: 10.1210/jc.2002-021041
[[105]]
J.E. Morley. Pharmacologic options for the treatment of sarcopenia. Calcif Tissue Int, 98 (4) ( 2016), pp. 319-333, DOI: 10.1007/s00223-015-0022-5
[[106]]
A.M. Matsumoto. Andropause: clinical implications of the decline in serum testosterone levels with aging in men. The journals of gerontology Series A, Biological sciences and medical sciences, 57 (2) ( 2002), pp. M76-M99, DOI: 10.1093/gerona/57.2.m76
[[107]]
M. Cesari, R. Fielding, O. Benichou, et al.. Pharmacological interventions in frailty and sarcopenia: report by the international conference on frailty and sarcopenia research task force. The Journal of frailty & aging, 4 (3) ( 2015), pp. 114-120, DOI: 10.14283/jfa.2015.64
[[108]]
R. Rizzoli, J.C. Stevenson, J.M. Bauer, et al.. The role of dietary protein and vitamin D in maintaining musculoskeletal health in postmenopausal women: a consensus statement from the European Society for Clinical and Economic Aspects of Osteoporosis and Osteoarthritis (ESCEO). Maturitas, 79 (1) ( 2014), pp. 122-132, DOI: 10.1016/j.maturitas.2014.07.005
[[109]]
D.A. Lowe, K.A. Baltgalvis, S.M. Greising. Mechanisms behind estrogen's beneficial effect on muscle strength in females. Exerc Sport Sci Rev, 38 (2) ( 2010), pp. 61-67, DOI: 10.1097/JES.0b013e3181d496bc
[[110]]
R.A. Eeles, J.P. Morden, M. Gore, et al.. Adjuvant hormone therapy may improve survival in epithelial ovarian cancer: results of the AHT randomized trial. J Clin Oncol : official journal of the American Society of Clinical Oncology, 33 (35) ( 2015), pp. 4138-4144, DOI: 10.1200/JCO.2015.60.9719
[[111]]
N. Saeaib, K. Peeyananjarassri, T. Liabsuetrakul, R. Buhachat, E. Myriokefalitaki.Hormone replacement therapy after surgery for epithelial ovarian cancer. Cochrane Database Syst Rev, 1 (1) ( 2020), p. Cd012559, DOI: 10.1002/14651858.CD012559.pub2
[[112]]
C.J. Liu, N.K. Latham.Progressive resistance strength training for improving physical function in older adults. Cochrane Database Syst Rev (3) ( 2009), p. CD002759, DOI: 10.1002/14651858.CD002759.pub2
[[113]]
S. Ali, J.M. Garcia. Sarcopenia, cachexia and aging: diagnosis, mechanisms and therapeutic options - a mini-review. Gerontology, 60 (4) ( 2014), pp. 294-305, DOI: 10.1159/000356760
[[114]]
D. Sumukadas, M.D. Witham, A.D. Struthers, M.E. McMurdo. Effect of perindopril on physical function in elderly people with functional impairment: a randomized controlled trial. CMAJ (Can Med Assoc J) : Canadian Medical Association journal = journal de l'Association medicale canadienne, 177 (8) ( 2007), pp. 867-874, DOI: 10.1503/cmaj.061339
[[115]]
M.M. Band, D. Sumukadas, A.D. Struthers, et al.. Leucine and ACE inhibitors as therapies for sarcopenia (LACE trial): study protocol for a randomised controlled trial. Trials, 19 (1) ( 2018), p. 6, DOI: 10.1186/s13063-017-2390-9
[[116]]
Y. Segev, L. Segev, M. Schmidt, R. Auslender, O. Lavie. Palliative care in ovarian carcinoma patients-a personalized approach of a team work: a review. Arch Gynecol Obstet, 296 (4) ( 2017), pp. 691-700, DOI: 10.1007/s00404-017-4484-8
[[117]]
E.J. Roeland, K. Bohlke, V.E. Baracos, et al.. Management of cancer cachexia: ASCO guideline. J Clin Oncol : official journal of the American Society of Clinical Oncology, 38 (21) ( 2020), pp. 2438-2453, DOI: 10.1200/JCO.20.00611
[[118]]
A.J. Grande, V. Silva, R. Riera, et al.. Exercise for cancer cachexia in adults. Cochrane Database Syst Rev (11) ( 2014), p. Cd010804, DOI: 10.1002/14651858.CD010804.pub2
[[119]]
T.S. Solheim, B.J.A. Laird, T.R. Balstad, et al.. A randomized phase II feasibility trial of a multimodal intervention for the management of cachexia in lung and pancreatic cancer. J Cachexia Sarcopenia Muscle, 8 (5) ( 2017), pp. 778-788, DOI: 10.1002/jcsm.12201
[[120]]
E. Gaffney-Stomberg, K.L. Insogna, N.R. Rodriguez, J.E. Kerstetter. Increasing dietary protein requirements in elderly people for optimal muscle and bone health. J Am Geriatr Soc, 57 (6) ( 2009), pp. 1073-1079, DOI: 10.1111/j.1532-5415.2009.02285.x
[[121]]
H.A. Bischoff-Ferrari, B. Dawson-Hughes, W.C. Willett, et al.. Effect of Vitamin D on falls: a meta-analysis. Jama, 291 (16) ( 2004), pp. 1999-2006, DOI: 10.1001/jama.291.16.1999
[[122]]
G. Biolo, M. De Cicco, V. Dal Mas, et al.. Response of muscle protein and glutamine kinetics to branched-chain-enriched amino acids in intensive care patients after radical cancer surgery. Nutrition, 22 (5) ( 2006), pp. 475-482, DOI: 10.1016/j.nut.2005.11.003
[[123]]
P. Flakoll, R. Sharp, S. Baier, D. Levenhagen, C. Carr, S. Nissen. Effect of beta-hydroxy-beta-methylbutyrate, arginine, and lysine supplementation on strength, functionality, body composition, and protein metabolism in elderly women. Nutrition, 20 (5) ( 2004), pp. 445-451, DOI: 10.1016/j.nut.2004.01.009
[[124]]
G.I. Smith, P. Atherton, D.N. Reeds, et al.. Omega-3 polyunsaturated fatty acids augment the muscle protein anabolic response to hyperinsulinaemia-hyperaminoacidaemia in healthy young and middle-aged men and women. Clin Sci (Lond), 121 (6) ( 2011), pp. 267-278, DOI: 10.1042/CS20100597
[[125]]
D.H. Sullivan, W.J. Carter, W.R. Warr, L.H. Williams. Side effects resulting from the use of growth hormone and insulin-like growth factor-I as combined therapy to frail elderly patients. The journals of gerontology Series A, Biological sciences and medical sciences, 53 (3) ( 1998), pp. M183-M187, DOI: 10.1093/gerona/53a.3.m183

This work was supported by a grant from the Korea Health Technology R&D Project through the Korea Health Industry Development Institute (KHIDI), funded by the Ministry of Health and Welfare, Republic of Korea (No. HI16C2037).

Accesses

Citations

Detail

Sections
Recommended

/