Behavioral strategies to prevent and mitigate COVID-19 infection

Noah T. Hutchinson, Andrew Steelman, Jeffrey A. Woods

Sports Medicine and Health Science ›› 2020, Vol. 2 ›› Issue (3) : 115-125. DOI: 10.1016/j.smhs.2020.09.001
Review Article

Behavioral strategies to prevent and mitigate COVID-19 infection

Author information +
History +

Abstract

The single stranded RNA virus SARS-CoV-2 has caused a massive addition to the already leading global cause of mortality, viral respiratory tract infections. Characterized by and associated with early and deleteriously enhanced production of pro-inflammatory cytokines by respiratory epithelial cells, severe COVID-19 illness has the potential to inflict acute respiratory distress syndrome and even death. Due to the fast spreading nature of COVID-19 and the current lack of a vaccine or specific pharmaceutical treatments, understanding of viral pathogenesis, behavioral prophylaxis, and mitigation tactics are of great public health concern. This review article outlines the immune response to viral pathogens, and due to the novelty of COVID-19 and the large body of evidence suggesting the respiratory and immune benefits from regular moderate intensity exercise, provides observational and mechanistic evidence from research on other viral infections that suggests strategically planned exercise regimens may help reduce susceptibility to infection, while also mitigating severe immune responses to infection commonly associated with poor COVID-19 prognosis. We propose that regular moderate intensity exercise should be considered as part of a combinatorial approach including widespread hygiene initiatives, properly planned and well-executed social distancing policies, and use of efficacious facial coverings like N95 respirators. Studies discerning COVID-19 pathogenesis mechanisms, transfer dynamics, and individual responses to pharmaceutical and adjunct treatments are needed to reduce viral transmission and bring an end to the COVID-19 pandemic.

Keywords

Exercise / COVID-19 / Prophylaxis / Pathogenesis / Cytokine

Cite this article

Download citation ▾
Noah T. Hutchinson, Andrew Steelman, Jeffrey A. Woods. Behavioral strategies to prevent and mitigate COVID-19 infection. Sports Medicine and Health Science, 2020, 2(3): 115‒125 https://doi.org/10.1016/j.smhs.2020.09.001

References

[[1]]
J. Xu, S.L. Murphy, K.D. Kochanek, B.A. Bastian. Deaths:final data for 2013. National cital statistics reports: from the Centers for disease Control and prevention, national Center for health statistics. National Vital Statistics System, 64 (2) ( 2016), pp. 1-119
[[2]]
World Health Organization.Archived: WHO Timeline - COVID-19. Accessed 11th May 2020
[[3]]
Worldometer. COVID-19 Coronavirus Pandemic.
[[4]]
IHME.COVID-19 Pojections. ( 2020, May 10). Retrieved May 11, 2020, from.
[[5]]
H.A. Rothan, S.N. Byrareddy.The epidemiology and pathogenesis of coronavirus disease (COVID-19) outbreak. J Autoimmun, 109 ( 2020), p. 102433, DOI: 10.1016/j.jaut.2020.102433
[[6]]
T.P. Velevan, C.G. Meyer. The COVID-19 epidemic. Trop Med Int Health, 25 (3) ( 2020), pp. 278-280, DOI: 10.1111/tmi.13383
[[7]]
X. Li, S. Xu, M. Yu, et al.. Risk factors for severity and mortality in adult COVID-19 inpatients in Wuhan. J Allergy Clin Immunol ( 2020), DOI: 10.1016/j.jaci.2020.04.006
[[8]]
P. Klentrou, T. Cieslak, M. MacNeil, A. Vintinner, M. Plyley. Effect of moderate exercise on salivary immunoglobulin A and infection risk in humans. Eur J Appl Physiol, 87 ( 2002), pp. 153-158, DOI: 10.1007/s00421-002-0609-1
[[9]]
C.E. Matthews, I.S. Ockene, P.S. Freedson, M.C. Rosal, P.A. Merriam, J.R. Hebert. Moderate to vigorous physical activity and risk of upper-respiratory tract infection. Med Sci Sports Exerc, 34 (8) ( 2002), pp. 1242-1248, DOI: 10.1097/00005768-200208000-00003
[[10]]
T. Kostka, S.E. Berthouze, J. Lacour, M. Bonnefoy. The symptomatology of upper respiratory tract infections and exercise in elderly people. Med Sci Sports Exerc, 32 (1) ( 2000), pp. 46-51, DOI: 10.1097/00005768-200001000-00008
[[11]]
J.L. Francis, M. Gleeson, D.B. Pyne, R. Callister, R.L. Clancy. Variation of salivary immunoglobulins in exercising and sedentary populations. Med Sci Sports Exerc, 37 ( 2005), pp. 571-578, DOI: 10.1249/01.mss.0000158191.08331.04
[[12]]
Y. Hwang, J. Park, K. Lim. Effects of pilates exercise on salivary secretory immunoglobulin A levels in older women. J Aging Phys Activ, 24 (3) ( 2016), pp. 399-406, DOI: 10.1123/japa.2015-0005
[[13]]
V. Neville, M. Gleeson, J.P. Folland. Salivary IgA as a risk factor for upper respiratory infections in elite professional athletes. Med Sci Sports Exerc ( 2008), pp. 1228-1236, DOI: 10.1249/MSS.0b013e31816be9c3
[[14]]
D.C. Nieman, D.A. Henson, C.L. Dumke, R.H. Lind, L.R. Shooter, S.J. Gross. Relationship between salivary IgA secretion and upper respiratory tract infection following a 160-km race. J Sports Med Phys Fit, 46 ( 2006), pp. 158-162
[[15]]
J.M. Davis, E.A. Murphy, A.S. Brown, M.D. Carmichael, A. Ghaffar, E.P. Mayer. Effects of oat beta-glucan on innate immunity and infection after exercise stress. Med Sci Sports Exerc, 36 (8) ( 2004), pp. 1461-1466, DOI: 10.1249/01.mss.0000135790.68893.6d
[[16]]
Warren, et al.. Exercise improves host response to influenza viral infection in obese and non-obese mice through different mechanisms. PLoS On e, 10 (6) ( 2015), DOI: 10.1371/journal.pone.0129713
[[17]]
T. Lowder, D.A. Padgett, J.A. Woods. Moderate exercise protects mice from death due to influenza virus. Brain Behav Immun, 19 (5) ( 2005), pp. 377-380, DOI: 10.1016/j.bbi.2005.04.002
[[18]]
J.M. Davis, M.L. Kohut, L.H. Colbert, D.A. Jackson, A. Ghaffar, E.P. Mayer. Exercise, alveolar macrophage function, and susceptibility to respiratory infection. J Appl Physiol, 83 ( 1997), pp. 1461-1466, DOI: 10.1152/jappl.1997.83.5.1461
[[19]]
B. Ekblom, O. Ekblom, C. Malm. Infectious episodes before and after a marathon race. Scand J Med Sci Sports, 16 (4) ( 2006), pp. 287-293, DOI: 10.1111/j.1600-0838.2005.00490.x
[[20]]
D.C. Nieman, L.M. Wentz. The compelling link between physical activity and the body's defense system. J Sport Health Sci, 8 ( 2019), pp. 201-217, DOI: 10.1016/j.jshs.2018.09.009
[[21]]
R.J. Simpson, J.P. Campbell, M. Gleeson, et al.. Can exercise affect immune function to increase susceptibility to infection?. Exerc Immunol Rev, 26 ( 2020), pp. 8-22
[[22]]
J.P. Campbell, J.E. Turner. Debunking the myth of exercise-induced immune suppression: redefining the impact of exercise on immunological health across the lifespan. Front Immunol ( 2018), DOI: 10.3389/fimmu.2018.00648
[[23]]
A.D. Iuliano, K.M. Roguski, H.H. Chang, et al.. Estimates of global seasonal influenza-associated respiratory mortality: a modelling study. Lancet, 391 (10127) ( 2018), pp. 1285-1300, DOI: 10.1016/S0140-6736(17)33293-2
[[24]]
M. Desforges, A. Le Coupanec, E. Brison, M. Meessen-Pinard, P.J. Talbot. Neuroinvasive and neurotropic human respiratory coronaviruses: potential neurovirulent agents in humans. Adv Exp Med Biol, 807 ( 2014), pp. 75-96, DOI: 10.1007/978-81-322-1777-0_6
[[25]]
M. Dubé, A. Le Coupanec, A.H.M. Wong, J.M. Rini, M. Desforges, P.J. Talbot. Axonal transport enables neuron-to-neuron propagation of human coronavirus OC43. J Virol, 92 (17) ( 2018), DOI: 10.1128/JVI.00404-18
[[26]]
J. Almqvist, T. Granberg, A. Tzortzakakis, et al.. Neurological manifestations of coronavirus infections - a systematic review. Annals of clinical and translational neurology ( 2020), DOI: 10.1002/acn3.51166
[[27]]
S.R. Weiss, J.L. Leibowitz. Coronavirus pathogenesis. Adv Virus Res, 81 ( 2011), pp. 85-164, DOI: 10.1016/B978-0-12-385885-6.00009-2
[[28]]
T.V. Condon, R.T. Sawyer, M.J. Fenton, D.W. Riches. Lung dendritic cells at the innate-adaptive immune interface. J Leukoc Biol, 90 (5) ( 2011), pp. 883-895, DOI: 10.1189/jlb.0311134
[[29]]
A. Ardain, M.J. Marakalala, A. Leslie. Tissue-resident innate immunity in the lung. Immunology, 159 (3) ( 2020), pp. 245-256, DOI: 10.1111/imm.13143
[[30]]
group; TMCOcLcOcapLpasCdaCtaWgStw. Single-cell transcriptomics of 20 mouse organs creates a Tabula Muris. Nature, 562 (7727) ( 2018), pp. 367-372, DOI: 10.1038/s41586-018-0590-4
[[31]]
L. Gitlin, W. Barchet, S. Gilfillan, et al.. Essential role of mda-5 in type I IFN responses to polyriboinosinic:polyribocytidylic acid and encephalomyocarditis picornavirus. Proc Natl Acad Sci USA, 103 (22) ( 2006), pp. 8459-8464, DOI: 10.1073/pnas.0603082103
[[32]]
Q. Wang, D.J. Miller, E.R. Bowman, et al.. MDA5 and TLR3 initiate pro-inflammatory signaling pathways leading to rhinovirus-induced airways inflammation and hyperresponsiveness. PLoS Pathog, 7 (5) ( 2011), Article e1002070, DOI: 10.1371/journal.ppat.1002070
[[33]]
K. Triantafilou, E. Vakakis, E.A. Richer, G.L. Evans, J.P. Villiers, M. Triantafilou. Human rhinovirus recognition in non-immune cells is mediated by Toll-like receptors and MDA-5, which trigger a synergetic pro-inflammatory immune response. Virulence, 2 (1) ( 2011), pp. 22-29, DOI: 10.4161/viru.2.1.13807
[[34]]
Q. Wang, D.R. Nagarkar, E.R. Bowman, et al.. Role of double-stranded RNA pattern recognition receptors in rhinovirus-induced airway epithelial cell responses. J Immunol, 183 (11) ( 2009), pp. 6989-6997, DOI: 10.4049/jimmunol.0901386
[[35]]
Z.B. Zalinger, R. Elliott, K.M. Rose, S.R. Weiss. MDA 5 is critical to host defense during infection with murine coronavirus. J Virol, 89 (24) ( 2015), pp. 12330-12340, DOI: 10.1128/JVI.01470-15
[[36]]
J. Athmer, A.R. Fehr, M.E. Grunewald, et al.. Selective packaging in murine coronavirus promotes virulence by limiting type I interferon responses. mBio, 9 (3) ( 2018), DOI: 10.1128/mBio.00272-18
[[37]]
L. Cervantes-Barragan, R. Zust, F. Weber, et al.. Control of coronavirus infection through plasmacytoid dendritic-cell-derived type I interferon. Blood, 109 (3) ( 2007), pp. 1131-1137, DOI: 10.1182/blood-2006-05-023770
[[38]]
D. Kolli, T.S. Velayutham, A. Casola. Host-viral interactions: role of pattern recognition receptors (PRRs) in human pneumovirus infections. Pathogens, 2 (2) ( 2013), DOI: 10.3390/pathogens2020232
[[39]]
B.D. Rudd, E. Burstein, C.S. Duckett, X. Li, N.W. Lukacs. Differential role for TLR3 in respiratory syncytial virus-induced chemokine expression. J Virol, 79 (6) ( 2005), pp. 3350-3357, DOI: 10.1128/JVI.79.6.3350-3357.2005
[[40]]
M.R. Murawski, G.N. Bowen, A.M. Cerny, et al.. Respiratory syncytial virus activates innate immunity through Toll-like receptor 2. J Virol, 83 (3) ( 2009), pp. 1492-1500, DOI: 10.1128/JVI.00671-08
[[41]]
S.S. Diebold, T. Kaisho, H. Hemmi, S. Akira, C. Reis e Sousa.Innate antiviral responses by means of TLR7-mediated recognition of single-stranded RNA. Science, 303 (5663) ( 2004), pp. 1529-1531, DOI: 10.1126/science.1093616
[[42]]
F. Heil, H. Hemmi, H. Hochrein, et al.. Species-specific recognition of single-stranded RNA via toll-like receptor 7 and 8. Science, 303 (5663) ( 2004), pp. 1526-1529, DOI: 10.1126/science.1093620
[[43]]
J.M. Lund, L. Alexopoulou, A. Sato, et al.. Recognition of single-stranded RNA viruses by Toll-like receptor 7. Proc Natl Acad Sci USA, 101 (15) ( 2004), pp. 5598-5603, DOI: 10.1073/pnas.0400937101
[[44]]
A. Pichlmair, O. Schulz, C.P. Tan, et al.. RIG-I-mediated antiviral responses to single-stranded RNA bearing 5'-phosphates. Science, 314 (5801) ( 2006), pp. 997-1001, DOI: 10.1126/science.1132998
[[45]]
I.K. Pang, P.S. Pillai, A. Iwasaki. Efficient influenza A virus replication in the respiratory tract requires signals from TLR7 and RIG-I. Proc Natl Acad Sci USA, 110 (34) ( 2013), pp. 13910-13915, DOI: 10.1073/pnas.1303275110
[[46]]
M. Andres-Terre, H.M. McGuire, Y. Pouliot, et al.. Integrated, multi-cohort analysis identifies conserved transcriptional signatures across multiple respiratory viruses. Immunity, 43 (6) ( 2015), pp. 1199-1211, DOI: 10.1016/j.immuni.2015.11.003
[[47]]
C.I. van der Made, A. Simons, J. Schuurs-Hoeijmakers, et al.. Presence of genetic variants among young men with severe COVID-19. Jama, 324 (7) ( 2020), pp. 1-11, DOI: 10.1001/jama.2020.13719
[[48]]
J.H. Bernink, C.P. Peters, M. Munneke, et al.. Human type 1 innate lymphoid cells accumulate in inflamed mucosal tissues. Nat Immunol, 14 (3) ( 2013), pp. 221-229, DOI: 10.1038/ni.2534
[[49]]
M.T. Stier, K. Goleniewska, J.Y. Cephus, et al.. STAT1 represses cytokine-producing group 2 and group 3 innate lymphoid cells during viral infection. J Immunol, 199 (2) ( 2017), pp. 510-519, DOI: 10.4049/jimmunol.1601984
[[50]]
O.E. Weizman, N.M. Adams, I.S. Schuster, et al.. ILC 1 confer early host protection at initial sites of viral infection. Cell, 171 (4) ( 2017), pp. 795-808, DOI: 10.1016/j.cell.2017.09.052
[[51]]
H.A. Vanderven, S.J. Kent. The protective potential of Fc-mediated antibody functions against influenza virus and other viral pathogens. Immunol Cell Biol, 98 (4) ( 2020), pp. 253-263, DOI: 10.1111/imcb.12312
[[52]]
S.A. Valkenburg, V.J. Fang, N.H. Leung, et al.. Cross-reactive antibody-dependent cellular cytotoxicity antibodies are increased by recent infection in a household study of influenza transmission. Clinical & translational immunology, 8 (11) ( 2019), Article e1092, DOI: 10.1002/cti2.1092
[[53]]
N. Vabret, G.J. Britton, C. Gruber, et al.. Immunology of COVID-19: current state of the science. Immunity, 52 (6) ( 2020), pp. 910-941, DOI: 10.1016/j.immuni.2020.05.002
[[54]]
E. Bongen, F. Vallania, P.J. Utz, P. Khatri.KLRD1-expressing natural killer cells predict influenza susceptibility. Genome Med, 10 (1) ( 2018), p. 45, DOI: 10.1186/s13073-018-0554-1
[[55]]
E.M. Mace, J.S. Orange. Emerging insights into human health and NK cell biology from the study of NK cell deficiencies. Immunol Rev, 287 (1) ( 2019), pp. 202-225, DOI: 10.1111/imr.12725
[[56]]
L. Gineau, C. Cognet, N. Kara, et al.. Partial MCM4 deficiency in patients with growth retardation, adrenal insufficiency, and natural killer cell deficiency. J Clin Invest, 122 (3) ( 2012), pp. 821-832, DOI: 10.1172/JCI61014
[[57]]
M. Zheng, Y. Gao, G. Wang, et al.. Functional exhaustion of antiviral lymphocytes in COVID-19 patients. Cell Mol Immunol, 17 (5) ( 2020), pp. 533-535, DOI: 10.1038/s41423-020-0402-2
[[58]]
A.J. Wilk, A. Rustagi, N.Q. Zhao, et al.. A single-cell atlas of the peripheral immune response in patients with severe COVID-19. Nat Med, 26 (7) ( 2020), pp. 1070-1076, DOI: 10.1038/s41591-020-0944-y
[[59]]
K. Miyauchi. Helper T cell responses to respiratory viruses in the lung: development, virus suppression, and pathogenesis. Viral Immunol, 30 (6) ( 2017), pp. 421-430, DOI: 10.1089/vim.2017.0018
[[60]]
T.M. Wilkinson, C.K. Li, C.S. Chui, et al.. Preexisting influenza-specific CD4+ T cells correlate with disease protection against influenza challenge in humans. Nat Med, 18 (2) ( 2012), pp. 274-280, DOI: 10.1038/nm.2612
[[61]]
S. Sridhar, S. Begom, A. Bermingham, et al.. Cellular immune correlates of protection against symptomatic pandemic influenza. Nat Med, 19 (10) ( 2013), pp. 1305-1312, DOI: 10.1038/nm.3350
[[62]]
S. Crotty. T follicular helper cell differentiation, function, and roles in disease. Immunity, 41 (4) ( 2014), pp. 529-542, DOI: 10.1016/j.immuni.2014.10.004
[[63]]
K. Miyauchi, A. Sugimoto-Ishige, Y. Harada, et al.. Protective neutralizing influenza antibody response in the absence of T follicular helper cells. Nat Immunol, 17 (12) ( 2016), pp. 1447-1458, DOI: 10.1038/ni.3563
[[64]]
S. Heinonen, V.M. Velazquez, F. Ye, et al.. Immune profiles provide insights into respiratory syncytial virus disease severity iny young children. Sci Transl Med, 12 (540) ( 2020), DOI: 10.1126/scitranslmed.aaw0268
[[65]]
T.F. Feltes, A.K. Cabalka, H.C. Meissner, et al.. Palivizumab prophylaxis reduces hospitalization due to respiratory syncytial virus in young children with hemodynamically significant congenital heart disease. J Pediatr, 143 (4) ( 2003), pp. 532-540, DOI: 10.1067/s0022-3476(03)00454-2
[[66]]
T.F. Feltes, H.M. Sondheimer, R.M. Tulloh, et al.. A randomized controlled trial of motavizumab versus palivizumab for the prophylaxis of serious respiratory syncytial virus disease in children with hemodynamically significant congenital heart disease. Pediatr Res, 70 (2) ( 2011), pp. 186-191, DOI: 10.1203/PDR.0b013e318220a553
[[67]]
K.L. O'Brien, A. Chandran, R. Weatherholtz, et al.. Efficacy of motavizumab for the prevention of respiratory syncytial virus disease in healthy Native American infants: a phase 3 randomised double-blind placebo-controlled trial. Lancet Infect Dis, 15 (12) ( 2015), pp. 1398-1408, DOI: 10.1016/S1473-3099(15)00247-9
[[68]]
F. Krammer. The human antibody response to influenza A virus infection and vaccination. Nat Rev Immunol, 19 (6) ( 2019), pp. 383-397, DOI: 10.1038/s41577-019-0143-6
[[69]]
J.D. Eccles, R.B. Turner, N.A. Kirk, et al.. T-bet+ memory B cells link to local cross-reactive IgG upon human rhinovirus infection. Cell Rep, 30 (2) ( 2020), pp. 351-366, DOI: 10.1016/j.celrep.2019.12.027. e7
[[70]]
Q. Wang, L. Zhang, K. Kuwahara, et al.. Immunodominant SARS coronavirus epitopes in humans elicited both enhancing and neutralizing effects on infection in non-human primates. ACS Infect Dis, 2 (5) ( 2016), pp. 361-376, DOI: 10.1021/acsinfecdis.6b00006
[[71]]
J. Zhao, A.N. Alshukairi, S.A. Baharoon, et al.. Recovery from the Middle East respiratory syndrome is associated with antibody and T-cell responses. Science Immunology, 2 (14) ( 2017), DOI: 10.1126/sciimmunol.aan5393
[[72]]
I. Widjaja, C. Wang, R. van Haperen, et al.. Towards a solution to MERS: protective human monoclonal antibodies targeting different domains and functions of the MERS-coronavirus spike glycoprotein. Emerg Microb Infect, 8 (1) ( 2019), pp. 516-530, DOI: 10.1080/22221751.2019.1597644
[[73]]
D. Kobasa, S.M. Jones, K. Shinya, et al.. Aberrant innate immune response in lethal infection of macaques with the 1918 influenza virus. Nature, 445 (7125) ( 2007), pp. 319-323, DOI: 10.1038/nature05495
[[74]]
D. Kobasa, A. Takada, K. Shinya, et al.. Enhanced virulence of influenza A viruses with the haemagglutinin of the 1918 pandemic virus. Nature, 431 (7009) ( 2004), pp. 703-707, DOI: 10.1038/nature02951
[[75]]
M.D. de Jong, C.P. Simmons, T.T. Thanh, et al.. Fatal outcome of human influenza A (H5N1) is associated with high viral load and hypercytokinemia. Nat Med, 12 (10) ( 2006), pp. 1203-1207, DOI: 10.1038/nm1477
[[76]]
J.F. Bermejo-Martin, R. Ortiz de Lejarazu, T. Pumarola, et al.. Th1 and Th 17 hypercytokinemia as early host response signature in severe pandemic influenza. Crit Care, 13 (6) ( 2009), p. R201, DOI: 10.1186/cc8208
[[77]]
J.M. Nicholls, L.L. Poon, K.C. Lee, et al.. Lung pathology of fatal severe acute respiratory syndrome. Lancet, 361 (9371) ( 2003), pp. 1773-1778, DOI: 10.1016/s0140-6736(03)13413-7
[[78]]
W.H. Mahallawi, O.F. Khabour, Q. Zhang, H.M. Makhdoum, B.A. Suliman. MERS-CoV infection in humans is associated with a pro-inflammatory Th1 and Th17 cytokine profile. Cytokine, 104 ( 2018), pp. 8-13, DOI: 10.1016/j.cyto.2018.01.025
[[79]]
P. Mehta, D.F. McAuley, M. Brown, E. Sanchez, R.S. Tattersall, J.J. Manson. COVID-19: consider cytokine storm syndromes and immunosuppression. Lancet, 395 (10229) ( 2020), pp. 1033-1034, DOI: 10.1016/S0140-6736(20)30628-0
[[80]]
P. Horby, W.S. Lim, J. Emberson, et al.. Effect of dexamethasone in hospitalized patients with COVID-19: preliminary report. medRxiv (2020), DOI: 10.1101/2020.06.22.20137273. 2020.06.22.20137273
[[81]]
D. Marsolais, B. Hahm, K.H. Edelmann, et al.. Local not systemic modulation of dendritic cell S1P receptors in lung blunts virus-specific immune responses to influenza. Mol Pharmacol, 74 (3) ( 2008), pp. 896-903, DOI: 10.1124/mol.108.048769
[[82]]
D. Marsolais, B. Hahm, K.B. Walsh, et al.. A critical role for the sphingosine analog AAL-R in dampening the cytokine response during influenza virus infection. Proc Natl Acad Sci USA, 106 (5) ( 2009), pp. 1560-1565, DOI: 10.1073/pnas.0812689106
[[83]]
J.R. Teijaro, K.B. Walsh, S. Cahalan, et al.. Endothelial cells are central orchestrators of cytokine amplification during influenza virus infection. Cell, 146 (6) ( 2011), pp. 980-991, DOI: 10.1016/j.cell.2011.08.015
[[84]]
K.B. Walsh, J.R. Teijaro, P.R. Wilker, et al.. Suppression of cytokine storm with a sphingosine analog provides protection against pathogenic influenza virus. Proc Natl Acad Sci USA, 108 (29) ( 2011), pp. 12018-12023, DOI: 10.1073/pnas.1107024108
[[85]]
X. Chen, L. Zhou, N. Peng, et al.. MicroRNA-302a suppresses influenza A virus-stimulated interferon regulatory factor-5 expression and cytokine storm induction. J Biol Chem, 292 (52) ( 2017), pp. 21291-21303, DOI: 10.1074/jbc.M117.805937
[[86]]
Q. Wang, P. Fang, R. He, et al.. O-GlcNAc transferase promotes influenza A virus-induced cytokine storm by targeting interferon regulatory factor-5. Science Advances, 6 (16) ( 2020), DOI: 10.1126/sciadv.aaz7086. eaaz7086
[[87]]
N.P. Walsh, M. Gleeson, R.J. Shephard, et al.. Position statement part one: immune function and exercise. Exerc Immunol Rev, 17 ( 2011), pp. 6-63
[[88]]
D.C. Nieman, D.A. Henson, M.D. Austin, W. Sha. Upper respiratory tract infection is reduced in physically fit and active adults. Br J Sports Med, 45 (12) ( 2011), pp. 987-992, DOI: 10.1136/bjsm.2010.077875
[[89]]
E. Fondell, Y.T. Lagerros, C.J. Sundberg, et al.. Physical activity, stress, and self-reported upper respiratory tract infection. Med Sci Sports Exerc, 43 ( 2011), pp. 272-279, DOI: 10.1249/MSS.0b013e3181edf108
[[90]]
G. Zhou, L. Hongjian, M. He, et al.. Smoking, leisure-time exercise and frequency of self-reported common cold among the general population in northeastern China: a cross-sectional study. BMC Publ Health, 18 (1) ( 2018), p. 294, DOI: 10.1186/s12889-018-5203-5
[[91]]
A.J. Grande, J. Keogh, V. Silva, A.M. Scott. Exercise versus no exercise for the occurrence, severity and duration of acute respiratory functions. Cochrane Database Syst Rev ( 2020), DOI: 10.1002/14651858.CD010596.pub3
[[92]]
M. Rocco, G. Bravo-Soto, A. Ortigoza. Is the exercise effective for the prevention of upper respiratory tract infections?. Medwave, 18 (4) ( 2018), Article e7226, DOI: 10.5867/medwave.2018.04.7225
[[93]]
H.K. Lee, I.H. Hwang, S.Y. Kim, S.Y. Pyo.6+ the effect of exercise on prevention of the common cold: a meta-analysis of randomized controlled trial studies. Korean Journal of Family Medicine, 35 (3) ( 2014), p. 1190126, DOI: 10.4082/kjfm.2014.35.3.119
[[94]]
B. Barrett, M.S. Hayney, D. Muller, et al.. Meditation or exercise for preventing acute respiratory infection: a randomized controlled trial. Ann Fam Med, 10 (4) ( 2012), DOI: 10.1370/afm.1376. 337-46
[[95]]
D. Silva, E. Arend, S.M. Rocha, et al.. The impact of exercise training on the lipid peroxidation metabolomic profile and respiratory infection risk in older adults. Eur J Sport Sci, 19 (3) (2018), DOI: 10.1080/17461391.2018.1499809. 384-93
[[96]]
J.M. Manzaneque, F.M. Vera, E.F. Maldonado, et al.. Assessment of immunological parameters following a qigong training program. Med Sci Mon Int Med J Exp Clin Res, 10 (6) ( 2004). 264-70
[[97]]
T.G. Weidner, T. Cranston, T. Schurr, L.A. Kaminsky. The effect of exercise training on the severity and duration of a viral upper respiratory illness. Med Sci Sports Exerc, 30 (11) ( 1998), DOI: 10.1097/00005768-199811000-00004. 1578-83
[[98]]
T. Weidner, T. Schurr. Effect of exercise on upper respiratory tract infection in sedentary subjects. Br J Sports Med, 37 (4) ( 2003), pp. 304-306, DOI: 10.1136/bjsm.37.4.304
[[99]]
R.J. Simpson, H. Kunz, N. Agha, R. Graff. Chapter fifteen - exercise and the regulation of immune functions. Progress in Molecular Biology and Translational Science, 135 ( 2015), pp. 335-380, DOI: 10.1016/bs.pmbts.2015.08.001
[[100]]
J.L. Francis, M. Gleeson, D.B. Pyne, R. Callister, R.L. Clancy. Variation of salivary immunoglobulins in exercising and sedentary populations. Med Sci Sports Exerc, 37 ( 2005), pp. 571-578, DOI: 10.1249/01.mss.0000158191.08331.04
[[101]]
M. Gleeson, N. Bishop, M. Oliveira, T. Mccauley, P. Tauler, A.S. Muhamad. Respiratory infection risk in athletes: association with antigen stimulated IL-10 production and salivary IgA secretion. Scand J Med Sci Sports, 22 (3) ( 2011), pp. 410-417, DOI: 10.1111/j.1600-0838.2010.01272.x
[[102]]
M.M. Fahlman, H.J. Engels. Mucosal IgA and URTI in American college football players: a year longitudinal study. Med Sci Sports Exerc, 37 ( 2005), pp. 374-380, DOI: 10.1249/01.mss.0000155432.67020.88
[[103]]
E.M. Peters, S. Junaid, N. Kleinveldt. Upper respiratory tract infection symptoms in ultramarathon runners not related to immunoglobulin status. Clin J Sport Med, 20 (1) ( 2010), pp. 39-46, DOI: 10.1097/JSM.0b013e3181cb4086
[[104]]
E. Tiollier, D. Gomez-Merino, P. Burnat, et al.. Intense training: mucosal immunity and incidence of respiratory infections. Eur J Appl Physiol, 93 ( 2005), pp. 421-428, DOI: 10.1007/s00421-004-1231-1
[[105]]
M. Whitham, S.J. Laing, M. Dorrington, et al.. The influence of an arduous military training program on immune function and upper respiratory tract infection incidence. Mil Med, 171 ( 2006), pp. 703-709, DOI: 10.7205/milmed.171.8.703
[[106]]
L. Spence, W.J. Brown, D.B. Pyne, et al.. Incidence, etiology, and symptomology of upper respiratory illness in elite athletes. Med Sci Sports Exerc, 39 (4) ( 2007), pp. 577-586, DOI: 10.1249/mss.0b013e31802e851a
[[107]]
D.B. Pyne, W.A. McDonald, M. Gleeson, A. Flanagan, R.L. Clancy, P. Fricker. Mucosal immunity, respiratory illness, and competitive performance in elite swimmers. Clin Exerc Physiol, 2 ( 2000), pp. 155-158, DOI: 10.1097/00005768-200103000-00002
[[108]]
C. Colbey, M.K. Drew, A.J. Cox, et al.. Key viral immune genes and pathways identify elite athletes with URS. Exerc Immunol Rev, 26 ( 2020), pp. 56-78
[[109]]
A.J. Cox, M. Gleeson, D.B. Pyne, R. Callister, P.A. Fricker, R.J. Scott. Cytokine gene polymorphisms and risk for Upper Respiratory Symptoms in highly-trained athletes. Exerc Immunol Rev, 16 ( 2010), pp. 8-21
[[110]]
F. Zehsaz, N. Farhangi, A. Monfaredan, M. Tabatabaei Seyed. IL-10 G-1082A gene polymorphism and susceptibility to upper respiratory tract infection among endurance athletes. J Sports Med Phys Fit, 55 (1-2) ( 2015), pp. 128-134
[[111]]
J.E. Allgrove, E. Gomes, J. Hough, M. Gleeson. Effects of exercise intensity on salivary antimicrobial proteins and markers of stress in active men. J Sports Sci, 26 (6) ( 2008), pp. 653-661, DOI: 10.1080/02640410701716790
[[112]]
J.A. Woods, K.T. Keylock, T. Lowder, et al.. Cardiovascular exercise training extends influenza vaccine seroprotection in sedentary older adults: the immune function intervention trial. J Am Geriatr Soc, 12 ( 2009), pp. 2183-2191, DOI: 10.1111/j.1532-5415.2009.02563.x
[[113]]
A.J. Grande, H. Reid, E.E. Thomas, D. Nunan, C. Foster. Exercise prior to influenza vaccination for limiting influenza incidence and its related complications in adults. Cochrane Database Syst Rev, 8 ( 2016), DOI: 10.1002/14651858.CD011857.pub2
[[114]]
G.C. Lim Wong, V. Narang, Y. Lu, et al.. Hallmarks of improved immunological responses in the vaccination of more physically active elderly females. Exerc Immunol Rev, 25 ( 2019), pp. 20-33
[[115]]
T. Lowder, D.A. Padgett, J.A. Woods. Moderate exercise early after influenza virus infection reduces the Th1 inflammatory response in lungs of mice. Exerc Immunol Rev, 12 ( 2006), pp. 97-111
[[116]]
S.A. Martin, B.D. Pence, J.A. Woods. Exercise and respiratory tract viral infections. Exerc Sport Sci Rev, 37 (4) ( 2009), pp. 157-164, DOI: 10.1097/JES.0b013e3181b7b57b
[[117]]
M. Sellami, M. Gasmi, J. Denham, et al.. Effects of acute and chronic exercise on immunological parameters in the elderly aged: can physical activity counteract the effects of aging?. Front Immunol, 9 ( 2018), p. 2187, DOI: 10.3389/fimmu.2018.02187
[[118]]
B.K. Pedersen, M.A. Febbraio. Muscles, exercise and obesity: skeletal muscle as a secretory organ. Nat Rev Endocrinol, 8 ( 2012), pp. 457-465, DOI: 10.1038/nrendo.2012.49
[[119]]
C.V. de Sousa, M.M. Sales, T.S. Rosa, J.E. Lewis, R.V. de Andrade, H.G. Simoes. The antioxidant effect of exercise: a systematic review and meta-analysis. Sports Med, 47 (2) ( 2017), pp. 277-293, DOI: 10.1007/s40279-016-0566-1
[[120]]
K. Kruger, F.C. Mooren, C. Pilat. The immunomodulatory effects of physical activity. Curr Pharmaceut Des, 22 (24) ( 2016), DOI: 10.2174/1381612822666160322145107
[[121]]
M. Gleeson, N.C. Bishop, D.J. Stensel, M.R. Lindley, S.S. Mastana, M.A. Nimmo. The anti-inflammatory effects of exercise: mechanisms and implications for the prevention and treatment of disease. Nat Rev Immunol, 11 ( 2011), pp. 607-615, DOI: 10.1038/nri3041
[[122]]
B. Stubbs, D. Vancampfort, S. Rosenbaum, et al.. An examination of the anxiolytic effects of exercise for people with anxiety and stress-related disorders: a meta-analysis. Psychiatr Res, 249 ( 2017), pp. 102-108, DOI: 10.1016/j.psychres.2016.12.020
[[123]]
S.R. Shaikh, M. Edidin. Polyunsaturated fatty acids, membrane organization, T cells, and antigen presentation. Am J Clin Nutr, 84 (6) ( 2006), pp. 1277-1289, DOI: 10.1093/ajcn/84.6.1277
[[124]]
D. Hu, L. Wan, M. Chen, et al.. Essential role of IL-10/STAT3 in chronic stress-induced immune suppression. Brain Behav Immun, 36 ( 2014), pp. 118-127, DOI: 10.1016/j.bbi.2013.10.016
[[125]]
G.S. Hotamisligil. Inflammation and metabolic disorders. Nature, 444 ( 2006), pp. 860-867, DOI: 10.1038/nature05485
[[126]]
B. Roediger, W. Weninger. Resolving a chronic inflammation mystery. Nat Med, 23 ( 2017), pp. 914-916, DOI: 10.1038/nm.4384
[[127]]
C.R. Macintyre, H. Seale, T.C. Dung, et al.. A cluster randomized trial of cloth masks compared with medical masks in healthcare workers. BMJ Open, 5 ( 2015), Article e006577, DOI: 10.1136/bmjopen-2014-006577
[[128]]
C.R. MacIntyre, A.A. Chughtai, H. Seale, et al.. Respiratory protection for healthcare workers treating Ebola virus disease (EVD): are facemasks sufficient to meet occupational health and safety obligations?. Int J Nurs Stud, 51 ( 2014), pp. 1421-1426
[[129]]
C.R. MacIntyre, A.A. Chughtai, H. Seale, G.A. Richards, P.M. Davidson.The efficacy of medical masks and respirators against respiratory infection in healthcare workers. Influenza and other Respiratory Viruses, 11 ( 2017), p. 6, DOI: 10.1016/j.ijnurstu.2014.09.002
[[130]]
C.R. MacIntyre, Q. Wang, S. Cauchemez, et al.. A cluster randomized clinical trial comparing fit-tested and non-fit-tested N95 respirators to medical masks to prevent respiratory virus infection in healthcare workers. Influenza and Other Respiratory Viruses, 5 ( 2011), p. 3, DOI: 10.1111/j.1750-2659.2011.00198.x
[[131]]
C.R. MacIntyre, A.A. Chughtai. Facemasks for the prevention of infection in healthcare and community settings. BMJ, 350 ( 2015), p. h694, DOI: 10.1136/bmj.h694
[[132]]
J.W. Arbogast, L. Moore-Schiltz, W.R. Jarvis, A. Harpster-Hagen, J. Hughes, A. Parker. Impact of a comprehensive workplace hand hygiene program on employer health care insurance claims and costs, absenteeism, and employee perceptions and practices. J Occup Environ Med, 58 (6) ( 2016), pp. 231-240, DOI: 10.1097/JOM.0000000000000738
[[133]]
E.K. Kurgat, J.D. Sexton, F. Garavito, et al.. Impact of a hygiene intervention on virus spread in an office building. Int J Hyg Environ Health, 222 (2) ( 2019), pp. 479-485, DOI: 10.1016/j.ijheh.2019.01.001
[[134]]
K.A. Reynolds, P.I. Beamer, K.R. Plotkin, L.Y. Sifuentes, D.W. Koenig, C.P. Gerba. The healthy workplace project: reduced viral exposure in an office setting. Arch Environ Occup Health, 71 (3) ( 2016), pp. 157-162, DOI: 10.1080/19338244.2015.1058234
[[135]]
N. van Doremalen, T. Bushmaker, D.H. Morris, et al.. Aerosols and surface stability of SARS-CoV-2 as compared with SARS-CoV-1. N Engl J Med, 382 ( 2020), pp. 1564-1567, DOI: 10.1056/NEJMc2004973
[[136]]
F. Ahmed, N. Zviedrite, A. Uzicanin.Effectiveness of workplace social distancing measures in reducing influenza transmission: a systematic review. BMC Publ Health, 18 ( 2018), p. 518, DOI: 10.1186/s12889-018-5446-1
[[137]]
M.W. Fong, H. Gao, J.Y. Wong, et al.. Nonpharmaceutical measures for pandemic influenza in nonhealthcare settings-social distancing measures. Emerg Infect Dis, 26 (5) ( 2020), DOI: 10.3201/eid2605.190995
[[138]]
T.P. Hovi, J. Ollgren, J. Haapakoski, A. Amiryousefi, C. Savolainen-Kopra. Exposure to persons with symptoms of respiratory or gastrointestinal infection and relative risk of disease: self reported observations by controls in a randomized intervention trial. Trials, 16 (168) ( 2015), DOI: 10.1186/s13063-015-0691-4
[[139]]
K. Kakimoto, H. Kamiya, T. Yamagishi, T. Matsui, M. Suzuki, T. Wakita. Initial investigation of transmission of COVID-19 among crew members during quarantine of a cruise ship - yokohama, Japan. February 2020. MMWR (Morb Mortal Wkly Rep), 69 (11) ( 2020), DOI: 10.15585/mmwr.mm6911e2
[[140]]
G. Wang, Y. Zhang, J. Zhang, F. Jiang. Mitigate the effects of home confinement on children during the COVID-19 outbreak. Lancet, 395 (10228) ( 2020), pp. 945-947, DOI: 10.1016/S0140-6736(20)30547-X
[[141]]
S.K. Brooks, R.K. Webster, L.E. Smith, et al.. The psychological impact of quarantine and how to reduce it: rapid review of the evidence. Lancet, 395 (10227) ( 2020), pp. 912-920, DOI: 10.1016/S0140-6736(20)30460-8
[[142]]
F. Scarmozzino, F. Visioli. Covid-19 and the subsequent lockdown modified dietary habits of almost half the population in an Italian sample. Foods, 9 (5) ( 2020), p. 675, DOI: 10.3390/foods9050675
[[143]]
J.U. Kim, A. Majid, R. Judge, et al.. Effect of COVID-19 lockdown on alcohol consumption in patients with pre-existing alcohol use disorder. The Lancet Gastroenterol. And Hepatol. ( 2020), DOI: 10.1016/S2468-1253(20)30251-X
[[144]]
H. Reuter, L.S. Jenkins, M. De Jong, S. Reid, M. Vonk. Prohibiting alcohol sales during the coronavirus disease 2019 pandemic has positive effects on health services in South Africa. Afr J Prim Health Care Fam Med, 12 (1) ( 2020), pp. e1-e4, DOI: 10.4102/phcfm.v12i1.2528
[[145]]
F. Del Sole, A. Farcomeni, L. Loffredo, et al.. Features of severe COVID-19: a systematic review and meta-analysis. Eur J Clin Invest ( 2020), Article e13378, DOI: 10.1111/eci.13378
[[146]]
Elhence A. Shalimar M. Vaishnav R. Kumar P. Pathak K. Dev Soni, et al.. Poor outcomes in patients with cirrhosis and corona virus disease-19. Indian J Gastroenterol ( 2020), pp. 1-7, DOI: 10.1007/s12664-020-01074-3
[[147]]
J. Carretero Gomez, M.C. Mafe Nogeroles, F. Garrachon Vallo, et al.. [Inflammation, malnutrition, and SARS-CoV-2 infection: a disastrous combination]. Rev Clin Esp ( 2020), DOI: 10.1016/j.rce.2020.07.007
[[148]]
R. Jayawardena, P. Sooriyaarachchi, M. Chourdakis, C. Jeewandara, P. Ranasighe.Enhancing immunity in viral infections, with special emphasis on COVID-19: a review. Diabetes and Metabolic Syndrome: Clin Res Rev, 14 ( 2020), pp. 367-382, DOI: 10.1016/j.dsx.2020.04.015
[[149]]
S.N. Meydani, L.S. Leka, B.C. Fine, et al.. Vitamin E and respiratory tract infections in elderly nursing home residents: a randomized controlled trial. J Am Med Assoc, 292 (7) ( 2004), pp. 828-836, DOI: 10.1001/jama.292.7.828
[[150]]
P.C. Ilie, S. Stefanescu, L. Smith. The role of vitamin D in the prevention of coronavirus disease 2019 infection and mortality. Aging Clin Exp Res, 32 (7) ( 2020), pp. 1195-1198, DOI: 10.1007/s40520-020-01570-8
[[151]]
A. Moghaddam, R.A. Heller, Q. Sun, J. Seelig, A. Cherkezov, L. Seibert.Selenium deficiency is associated with mortality risk from COVID-19. Nutrients, 12 (7) ( 2020), p. 2098, DOI: 10.3390/nu12072098
[[152]]
G. Panagiotou, S.A. Tee, Y. Ihsan, et al.. Low serum 25-hydroxyvitamin D (25[OH]D) levels in patients hospitalized with COVID-19 are associated with greater disease severity. Clin Endocrinol ( 2020), DOI: 10.1111/cen.14276
[[153]]
J. Zhang, E.W. Taylor, K. Bennett, R. Saad, M.P. Rayman. Association between regional selenium status and reported outcome of COVID-19 cases in China. Am J Clin Nutr, 111 (6) ( 2020), pp. 1297-1299, DOI: 10.1093/ajcn/nqaa095
[[154]]
E. Finzi. Treatment of SARS-CoV-2 with high dose oral zinc salts: a report on four patients. Int J Infect Dis, 99 ( 2020), pp. 307-309, DOI: 10.1016/j.ijid.2020.06.006
[[155]]
Y. Sattar, M. Connerney, H. Rauf, et al.. Three cases of COVID-19 disease with colonic manifestations. Am J Gastroenterol, 115 (6) ( 2020), pp. 948-950, DOI: 10.14309/ajg.0000000000000692
[[156]]
J. Alexander, A. Tincov, T.A. Strand, U. Alehagen, A. Skalny, J. Aaseth.Early nutritional interventions with zinc, selenium and vitamin D for raisint anti-viral resistance against progressive COVID-19. Nutrients, 12 (8) ( 2020), p. 2358, DOI: 10.3390/nu12082358
[[157]]
V.J. Lee, D.C. Lye, A. Wilder-Smith. Combination Strategies for pandemic influence response - a systematic review of mathematical modeling studies. BMC Med, 7 (76) ( 2009), DOI: 10.1186/1741-7015-7-76

No acknowledgements.

Accesses

Citations

Detail

Sections
Recommended

/