An examination of acute cross-over effects following unilateral low intensity concentric and eccentric exercise☆

William Miller, Sunggun Jeon, Xin Ye

Sports Medicine and Health Science ›› 2020, Vol. 2 ›› Issue (3) : 141-152. DOI: 10.1016/j.smhs.2020.08.002
Original article

An examination of acute cross-over effects following unilateral low intensity concentric and eccentric exercise☆

Author information +
History +

Abstract

We compared the effects of low intensity concentric (CON) and eccentric (ECC) exercise on the force and neural responses of the dominant (exercised) elbow flexors (EFs), and studied if these conditions could induce cross-over effects to the contralateral (non-exercised) EFs. Fifteen subjects (8 males) completed all conditions (CON and ECC: 6 sets of low intensity exercise to failure; control: rest) in separate visits with a randomized order. Maximal isometric force and electromyography (EMG) of the dominant and contralateral EFs were assessed at pre, immediate-, 24-, and 48-h-post. Two-factor (condition and time) linear mixed-model analyses were performed to examine the force and EMG responses. Immediately post CON, contralateral EFs force was significantly (p = 0.026) higher (12.41%) than control, but no cross-over effects regarding the neural responses were observed. Immediately post ECC, dominant EFs force was significantly lower in ECC, compared to CON (p = 0.003) and control (p < 0.001). This force remained depressed at 24- and 48-h post ECC, when compared to CON (p < 0.001) and control (p < 0.001). Our data suggests that submaximal unilateral exercises are not likely to impair contralateral muscle strength performance. Instead, concentric exercises may acutely improve muscle strength for the contralateral limb. However, this effect is not explained by changes in muscle excitation.

Keywords

Contralateral / Rate of force development / Surface electromyography / Muscle damage / Submaximal

Cite this article

Download citation ▾
William Miller, Sunggun Jeon, Xin Ye. An examination of acute cross-over effects following unilateral low intensity concentric and eccentric exercise☆. Sports Medicine and Health Science, 2020, 2(3): 141‒152 https://doi.org/10.1016/j.smhs.2020.08.002

References

[[1]]
T.S. Talag. Residual muscular soreness as influenced by concentric, eccentric, and static contractions. Res Q Am Assoc Health Phys Educ Recreat, 44 (4) ( 1973), pp. 458-469, DOI: 10.1080/10671188.1973.10615226
[[2]]
P.M. Clarkson, D.J. Newham. Associations between muscle soreness, damage, and fatigue. Adv Exp Med Biol, 384 ( 1995), pp. 457-469, DOI: 10.1007/978-1-4899-1016-5_35
[[3]]
J.M. Dundon, J. Cirillo, J.G. Semmler. Low-frequency fatigue and neuromuscular performance after exercise-induced damage to elbow flexor muscles. J Appl Physiol, 105 (4) ( 2008), pp. 1146-1155, DOI: 10.1152/japplphysiol.01339.2007
[[4]]
R.B. Armstrong, G.L. Warren, J.A. Warren. Mechanisms of exercise-induced muscle fibre injury. Sports Med, 12 (3) ( 1991), pp. 184-207, DOI: 10.2165/00007256-199112030-00004
[[5]]
M. Cleak, R. Eston. Stiffness and strength loss after intense eccentric exercise. Br J Sports Med, 26 (4) ( 1992), pp. 267-272
[[6]]
R. Eston, D. Peters. Effects of cold water immersion on the symptoms of exercise-induced muscle damage. J Sports Sci, 17 (3) ( 1999), pp. 231-238, DOI: 10.1080/026404199366136
[[7]]
M.J. Hubal, S.R. Rubinstein, P.M. Clarkson. Muscle function in men and women during maximal eccentric exercise. J Strength Condit Res, 22 (4) ( 2008), pp. 1332-1338, DOI: 10.1519/JSC.0b013e31817392ec
[[8]]
D.A. Jones, D.J. Newham, P.M. Clarkson. Skeletal muscle stiffness and pain following eccentric exercise of the elbow flexors. Pain, 30 (2) ( 1987), pp. 233-242, DOI: 10.1016/0304-3959(87)91079-7
[[9]]
J.G. Semmler, K.J. Tucker, T.J. Allen, U. Proske. Eccentric exercise increases EMG amplitude and force fluctuations during submaximal contractions of elbow flexor muscles. J Appl Physiol, 103 (3) ( 2007), pp. 979-989, DOI: 10.1152/japplphysiol.01310.2006
[[10]]
U. Proske, D.L. Morgan. Muscle damage from eccentric exercise: mechanism, mechanical signs, adaptation and clinical applications. J Physiol, 537 (2) ( 2001), pp. 333-345
[[11]]
R. Souron, K. Nosaka, M. Jubeau. Changes in central and peripheral neuromuscular fatigue indices after concentric versus eccentric contractions of the knee extensors. Eur J Appl Physiol, 118 (4) ( 2018), pp. 805-816, DOI: 10.1007/s00421-018-3816-0
[[12]]
N. Weerakkody, P. Percival, D.L. Morgan, J.E. Gregory, U. Proske. Matching different levels of isometric torque in elbow flexor muscles after eccentric exercise. Exp Brain Res, 149 (2) ( 2003), pp. 141-150, DOI: 10.1007/s00221-002-1341-0
[[13]]
X. Ye, T.W. Beck, J.M. Defreitas, N.P. Wages.An examination of the strength and electromyographic responses after concentric vs. eccentric exercise of the forearm flexors. J Strength Condit Res, 28 (4) ( 2014), pp. 1072-1080, DOI: 10.1519/JSC.0000000000000251
[[14]]
T.W. Beck, P.R. Kasishke, M.S. Stock, J.M. DeFreitas.Neural contributions to concentric vs. eccentric exercise-induced strength loss. J Strength Condit Res, 26 (3) ( 2012), pp. 633-640, DOI: 10.1519/JSC.0b013e3182474296
[[15]]
C. Brockett, N. Warren, J. Gregory, D. Morgan, U. Proske. A comparison of the effects of concentric versus eccentric exercise on force and position sense at the human elbow joint. Brain Res, 771 ( 1997), pp. 251-258, DOI: 10.5465/ambpp.2016.46
[[16]]
M.D. Grabiner, T.M. Owings. Effects of eccentrically and concentrically induced unilateral fatigue on the involved and uninvolved limbs. J Electromyogr Kinesiol, 9 (3) ( 1999), pp. 185-189, DOI: 10.1016/S1050-6411(98)00031-5
[[17]]
D. Kay, A. St Clair Gibson, M.J. Mitchell, M.I. Lambert, T.D. Noakes. Different neuromuscular recruitment patterns during eccentric, concentric and isometric contractions. J Electromyogr Kinesiol, 10 (6) ( 2000), pp. 425-431, DOI: 10.1016/S1050-6411(00)00031-6
[[18]]
B. Pasquet, A. Carpentier, J. Duchateau, K. Hainaut. Muscle fatigue during concentric and eccentric contractions. Muscle Nerve, 23 (11) ( 2000), pp. 1727-1735, DOI: 10.1002/1097-4598(200011)23:113.0.CO;2-Y
[[19]]
P.G. Martin, J. Rattey. Central fatigue explains sex differences in muscle fatigue and contralateral cross-over effects of maximal contractions. Pflugers Arch Eur J Physiol, 454 (6) ( 2007), pp. 957-969, DOI: 10.1007/s00424-007-0243-1
[[20]]
G. Todd, N.T. Petersen, J.L. Taylor, S.C. Gandevia. The effect of a contralateral contraction on maximal voluntary activation and central fatigue in elbow flexor muscles. Exp Brain Res, 150 (3) ( 2003), pp. 308-313, DOI: 10.1007/s00221-003-1379-7
[[21]]
B.K. Barry, R.M. Enoka. The neurobiology of muscle fatigue: 15 years later. Integr Comp Biol, 47 (4) ( 2007), pp. 465-473, DOI: 10.1093/icb/icm047
[[22]]
N.A. Maffiuletti, P. Aagaard, A.J. Blazevich, J. Folland, N. Tillin, J. Duchateau. Rate of force development: physiological and methodological considerations. Eur J Appl Physiol, 116 (6) ( 2016), pp. 1091-1116, DOI: 10.1007/s00421-016-3346-6
[[23]]
P. Aagaard, E.B. Simonsen, J.L. Andersen, P. Magnusson, P. Dyhre-Poulsen. Increased rate of force development and neural drive of human skeletal muscle following resistance training. J Appl Physiol, 93 (4) ( 2002), pp. 1318-1326, DOI: 10.1152/japplphysiol.00283.2002
[[24]]
L.L. Andersen, P. Aagaard. Influence of maximal muscle strength and intrinsic muscle contractile properties on contractile rate of force development. Eur J Appl Physiol, 96 (1) ( 2006), pp. 46-52, DOI: 10.1007/s00421-005-0070-z
[[25]]
E.C. Huskisson. Measurement of pain. The Lancet1, 304 (7889) ( 1974), pp. 1127-1131
[[26]]
N. Hedayatpour, D. Falla. Physiological and neural adaptations to eccentric exercise: mechanisms and considerations for training. BioMed Res Int, 2015 ( 2015), DOI: 10.1155/2015/193741
[[27]]
F. Faul, E. Erdfelder, A.G. Lang, A.G. Buchner. ∗Power 3: a flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behav Res Methods, 39 (2) ( 2007), pp. 175-191, DOI: 10.1088/1755-1315/148/1/012022
[[28]]
J. Cohen.Statistical Power Analysis for the Behavioral Sciences. (second ed.), L. Erlbaum Associates, Hillsdale, N.J. ( 1988). org/psycinfo/1987-98267-000
[[29]]
J.M. Kalmar, E. Cafarelli. Effects of caffeine on neuromuscular function. J Appl Physiol, 87 (2) ( 1999), pp. 801-808.
[[30]]
H.Y. Chen, Y.C. Chen, K. Tung, H.H. Chao, H.S. Wang. Effects of caffeine and sex on muscle performance and delayed-onset muscle soreness after exercise-induced muscle damage: a double-blind randomized trial. J Appl Physiol, 127 (3) ( 2019), pp. 798-805, DOI: 10.1152/japplphysiol.01108.2018
[[31]]
C.F. Hurley, D.L. Hatfield, D. Riebe. The effect of caffeine ingestion on delayed onset of muscle soreness. J Strength Condit Res, 27 (11) ( 2013), pp. 3101-3109, DOI: 10.1097/JSC.0000000000000227
[[32]]
H.J. Hermens, B. Freriks, R. Merletti, et al.. European recommendations for surface ElectroMyoGraphy results of the SENIAM project. Roessingh Res Dev, 8 (2) ( 1999), pp. 13-54.
[[33]]
U. Granacher, M. Gruber, A. Gollhofer. Resistance training and neuromuscular performance in seniors. Int J Sports Med, 30 (9) ( 2009), pp. 652-657, DOI: 10.1055/s-0029-1224178
[[34]]
R. Little. A test of missing completely at random for multivariate data with missing values. J Am Stat Assoc, 83 (404) ( 1988), pp. 1198-1202
[[35]]
J. Cohen. Eta-squared and partial eta-squared in fixed factor anova designs. Educ Psychol Meas, 33 (1) ( 1973), pp. 107-112, DOI: 10.1177/001316447303300111
[[36]]
X. Ye, T.W. Beck, N.P. Wages, J.C. Carr. Sex comparisons of non-local muscle fatigue in human elbow flexors and knee extensors. J Musculoskelet Neuronal Interact, 18 (1) ( 2018), pp. 92-99
[[37]]
L. Chiu, A. Fry, L. Weiss, B. Schilling, L. Brown, S. Smith. Postactivation potentiation response in athletic and recreationally trained individuals. J Strength Condit Res, 17 (4) ( 2003), pp. 671-677. 14636093
[[38]]
K. Rixon, H. Lamont, B. Mg. Influence of type of muscle contraction, gender, and lifting experience on postactivation potentiation performance. J Strength Condit Res, 21 (2) ( 1999), pp. 500-505
[[39]]
D.G. Sale. Postactivation potentiation: role in human performance. Exerc Sport Sci Rev, 30 (3) ( 2002), pp. 138-143
[[40]]
X. Ye, T.W. Beck, N.P. Wages.Acute effects of concentric vs. eccentric exercise on force steadiness and electromyographic responses of the forearm flexors. J Strength Condit Res, 29 (3) ( 2015), pp. 604-611, DOI: 10.1519/JSC.0000000000000674
[[41]]
J. Duchateau, S. Baudry. Insights into the neural control of eccentric contractions. J Appl Physiol, 116 (11) ( 2014), pp. 1418-1425, DOI: 10.1152/japplphysiol.00002.2013
[[42]]
M. Van-Cutsem, J. Duchateau, K. Hainaut. Changes in single motor unit behaviour contribute to the increase in contraction speed after dynamic training in humans. J Physiol, 513 (1) ( 1998), pp. 295-305, DOI: 10.1111/j.1469-7793.1998.295by.x
[[43]]
S.C. Gandevia. Spinal and supraspinal factors in human muscle fatigue. Physiol Rev, 81 (4) ( 2001), pp. 1725-1789, DOI: 10.1152/physrev.2001.81.4.1725
[[44]]
D.L. Morgan, D.G. Allen. Early events in stretch-induced muscle damage. J Appl Physiol, 87 (6) ( 1999), pp. 2007-2015
[[45]]
R. Sarwar, B.B. Niclos, O.M. Rutherford. Changes in muscle strength, relaxation rate and fatiguability during the human menstrual cycle. J Physiol, 493 (1) ( 1996), pp. 267-272, DOI: 10.1113/jphysiol.1996.sp021381

Accesses

Citations

Detail

Sections
Recommended

/