Wearable positive end-expiratory pressure valve improves exercise performance

Stephen F. Crouse, Jason R. Lytle, Sean Boutros, William Benton, Michael Moreno, Patrick C. McCulloch, Brad S. Lambert

Sports Medicine and Health Science ›› 2020, Vol. 2 ›› Issue (3) : 159-165. DOI: 10.1016/j.smhs.2020.06.002
Original article

Wearable positive end-expiratory pressure valve improves exercise performance

Author information +
History +

Abstract

We tested a PEEP (4.2 cmH2O) mouthpiece (PMP) on maximal cycling performance in healthy adults. Experiment-1, PMP vs. non-PMP mouthpiece (CON) [n= 9 (5♂), Age = 30 ± 2 yr]; Experiment-2, PMP vs. no mouthpiece (NMP) [n = 10 (7♂), Age = 27 ± 1 yr]. At timepoint 1 in both experiments (mouthpiece condition randomized) subjects performed graded cycling testing (GXT) (Corival® cycle ergometer) to determine V˙O2peak (ml∗kg∗min−1), O2pulse (mlO2∗bt−1), GXT endurance time (GXT-T(s)), and V˙O2(ml∗kg∗min−1)-at-ventilatory-threshold (V˙O2 @VT). At timepoint 2 72 h later, subjects completed a ventilatory-threshold-endurance-ride [VTER(s)] timed to exhaustion at V˙O2 @VT power (W). One week later at timepoints 3 and 4 (time-of-day controlled), subjects repeated testing protocols under the alternate mouthpiece condition. Selected results (paired T-test, p<0.05): Experiment 1 PMP vs. CON, respectively: V˙O2peak ​= ​45.2 ​± ​2.4 vs. 42.4 ​± ​2.3 p<0.05; V˙O2@VT ​= ​33.7 ​± ​2.0 vs. 32.3 ​± ​1.6; GXT-TTE ​= ​521.7 ​± ​73.4 vs. 495.3 ​± ​72.8 (p<0.05); VTER ​= ​846.2 ​± ​166.0 vs. 743.1 ​± ​124.7; O2pulse ​= ​24.5 ​± ​1.4 vs. 23.1 ​± ​1.3 (p<0.05). Experiment 2 PMP vs. NMP, respectively: V˙O2peak ​= ​43.3 ​± ​1.6 vs. 41.7 ​± ​1.6 (p<0.05); V˙O2@VT ​= ​31.1 ​± ​1.2 vs. 29.1 ​± ​1.3 (p<0.05); GXT-TTE ​= ​511.7 ​± ​49.6 vs. 486.4 ​± ​49.6 (p<0.05); VTER 872.4 ​± ​134.0 vs. 792.9 ​± ​122.4; O2pulse ​= ​24.1 ​± ​0.9 vs. 23.4 ​± ​0.9 (p<0.05). Results demonstrate that the PMP conferred a significant performance benefit to cyclists completing high intensity cycling exercise.

Keywords

Oxygen uptake / Cycling exercise / Pulmonary system / Maximal working capacity / Oxygen saturation / Respiration

Cite this article

Download citation ▾
Stephen F. Crouse, Jason R. Lytle, Sean Boutros, William Benton, Michael Moreno, Patrick C. McCulloch, Brad S. Lambert. Wearable positive end-expiratory pressure valve improves exercise performance. Sports Medicine and Health Science, 2020, 2(3): 159‒165 https://doi.org/10.1016/j.smhs.2020.06.002

References

[[1]]
P. Acosta, E. Santisbon, J. Varon. The use of positive end-expiratory pressure in mechanical ventilation. Crit Care Clin, 23 (2) ( 2007), pp. 251-261
[[2]]
C.C. Oliveira, C.R. Carrascosa, A. Borghi-Silva, et al.. Influence of respiratory pressure support on hemodynamics and exercise tolerance in patients with COPD. Eur J Appl Physiol, 109 (4) ( 2010), pp. 681-689, DOI: 10.1007/s00421-010-1408-8
[[3]]
C. Ubolsakka-Jones, K. Pongpanit, W. Boonsawat, et al.. Positive expiratory pressure breathing speeds recovery of postexercise dyspnea in chronic obstructive pulmonary disease. Physiother Res Int, 24 (1) ( 2019), DOI: 10.1002/pri.1750
[[4]]
D.H. Kim, J.Y. Park, J. Yu, et al.. Positive end-expiratory pressure increases arterial oxygenation in elderly patients undergoing urological surgery using laryngeal mask airway in lithotomy position. J Clin Monit Comput ( 2019), DOI: 10.1007/s10877-019-00281-4. Epub 2019/02/23, PubMed PMID: 30788809
[[5]]
T.C. Smith, J.J. Marini. Impact of PEEP on lung mechanics and work of breathing in severe airflow obstruction. J Appl Physiol, 65 (4) ( 1988), pp. 1488-1499
[[6]]
K.J. Falke, H. Pontoppidan, A. Kumar, et al.. Ventilation with end-expiratory pressure in acute lung disease. J Clin Invest, 51 (9) ( 1972), pp. 2315-2323
[[7]]
O. Diaz, R. Iglesia, M. Ferrer, et al.. Effects of noninvasive ventilation on pulmonary gas exchange and hemodynamics during acute hypercapnic exacerbations of chronic obstructive pulmonary disease. Am J Respir Crit Care Med, 156 (6) ( 1997), pp. 1840-1845
[[8]]
D. Kyroussis, M. Polkey, C. Hamnegard, et al.. Respiratory muscle activity in patients with COPD walking to exhaustion with and without pressure support. Eur Respir J, 15 (4) ( 2000), pp. 649-655
[[9]]
R.G. Bannister, D.J.C. Cunningham. The effects on the respiration and performance during exercise of adding oxygen to the inspired air. J Physiol-London, 125 (1) ( 1954), pp. 118-137. PubMed PMID: WOS:A1954UH83800008
[[10]]
H.G. Welch. Effects of hypoxia and hyperoxia on human-performance. Exerc Sport Sci Rev, 15 ( 1987), pp. 191-221. PubMed PMID: WOS:A1987H560900007
[[11]]
B.J. Whipp, M.B. Higgenbotham, F.C. Cobb. Estimating exercise stroke volume from asymptotic oxygen pulse in humans. J Appl Physiol, 81 (6) ( 1996), pp. 2674-2679, DOI: 10.1152/jappl.1996.81.6.2674. PubMed PMID: 9018521
[[12]]
G.A.V. Borg. Perceived exertion - note on history and methods. Med Sci Sports Exerc, 5 (2) ( 1973), pp. 90-93. PubMed PMID: WOS:A1973Q260100005
[[13]]
E.T. Howley, D.R. Bassett, H.G. Welch. Criteria for maximal oxygen-uptake - review and commentary. Med Sci Sports Exerc, 27 (9) ( 1995), pp. 1292-1301. PubMed PMID: WOS:A1995RU23500009
[[14]]
W.L. Beaver, K. Wasserman, B.J. Whipp. A new method for detecting anaerobic threshold by gas-exchange. J Appl Physiol, 60 (6) ( 1986), pp. 2020-2027. PubMed PMID: WOS:A1986C850400031
[[15]]
D. Lakens.Calculating and reporting effect sizes to facilitate cumulative science: a practical primer for t-tests and ANOVAs. Front Psychol, 4 ( 2013), p. 863, DOI: 10.3389/fpsyg.2013.00863. PubMed PMID: 24324449
[[16]]
H. Nespoulet, T. Rupp, D. Bachasson, et al.. Positive expiratory pressure improves oxygenation in healthy subjects exposed to hypoxia. PloS One, 8 (12) ( 2013), DOI: 10.1371/journal.pone.0085219
[[17]]
H.Y. Park, W. Park, K. Lim. Living high-training low for 21 days enhances exercise economy, hemodynamic function, and exercise performance of competitive runners. J Sports Sci Med, 18 (3) ( 2019), pp. 427-437. Epub 2019/08/21. PubMed PMID: 31427864; PubMed Central PMCID: PMCPMC6683611
[[18]]
J. Stray-Gundersen, R.F. Chapman, B.D. Levine. "Living high-training low" altitude training improves sea level performance in male and female elite runners. J Appl Physiol, 91 (3) ( 2001), pp. 1113-1120. PubMed PMID: WOS:000170552800014
[[19]]
J.A. Davis. Anaerobic threshold: review of the concept and directions for future research. Med Sci Sports Exerc, 17 (1) ( 1985), pp. 6-21. Epub 1985/02/01. PubMed PMID: 3884961
[[20]]
J.A. Davis, M.H. Frank, B.J. Whipp, et al.. Anaerobic threshold alterations caused by endurance training in middle-aged men. J Appl Physiol, 46 (6) ( 1979), pp. 1039-1046
[[21]]
B.R. Londeree. Effect of training on lactate/ventilatory thresholds: a meta-analysis. Med Sci Sports Exerc, 29 (6) ( 1997), pp. 837-843, DOI: 10.1097/00005768-199706000-00016. PubMed PMID: WOS:A1997XH57000016
[[22]]
A. Nicolò, M. Sacchetti, M. Girardi, et al.. A comparison of different methods to analyse data collected during time-to-exhaustion tests. Sport Sci Health, 15 (3) ( 2019), pp. 667-679, DOI: 10.1007/s11332-019-00585-7
[[23]]
A. Jeukendrup, W.H.M. Saris, F. Brouns, et al.. A new validated endurance performance test. Med Sci Sports Exerc, 28 (2) ( 1996), pp. 266-270. PubMed PMID: WOS:A1996TV61200017
[[24]]
M. Amann, W.G. Hopkins, S.M. Marcora. Similar sensitivity of time to exhaustion and time-trial time to changes in endurance. Med Sci Sports Exerc, 40 (3) ( 2008), pp. 574-578. PubMed PMID: WOS:000253289700025
[[25]]
Y.N. Bhambhani. Prediction of stroke volume during upper and lower-body exercise in men and women. Arch Phys Med Rehabil, 76 (8) ( 1995), pp. 713-718, DOI: 10.1016/s0003-9993(95)80524-9
[[26]]
Welnetz RJ.Altitude Mask Simulator. Google Patents; 1998.
[[27]]
J.P. Porcari, L. Probst, K. Forrester, et al.. Effect of wearing the elevation training mask on aerobic capacity, lung function, and hematological variables. J Sports Sci Med, 15 (2) ( 2016), p. 379
[[28]]
N.C. Biggs, B.S. England, N.J. Turcotte, et al.. Effects of Simulated altitude on maximal oxygen uptake and inspiratory fitness. IJES, 10 (1) ( 2017), p. 127
[[29]]
T. Heimdal, L. Rajan, J. Vickery, et al. (Eds.), Chronic Effects of an Elevation Training Mask on Aerobic Capacity, Anaerobic Endurance, and Pulmonary Function, IJES ( 2018)
[[30]]
B.G. Warren, F. Spaniol, R. Bonnette. The effects of an elevation training mask on vo2max of male reserve officers training corps cadets. IJES, 10 (1) ( 2017), pp. 37-43

Accesses

Citations

Detail

Sections
Recommended

/