Structural brain differences between ultra-endurance athletes and sedentary persons

T. Paruk, L. Rauch, M. Jankiewicz, K. Van Breda, D.J. Stein, M. King

Sports Medicine and Health Science ›› 2020, Vol. 2 ›› Issue (2) : 89-94.

Sports Medicine and Health Science ›› 2020, Vol. 2 ›› Issue (2) : 89-94. DOI: 10.1016/j.smhs.2020.05.004
Original article

Structural brain differences between ultra-endurance athletes and sedentary persons

Author information +
History +

Abstract

Participation in ultra-endurance events has increased in recent years and requires extreme levels of moderate to vigorous physical activity (MVPA). Moderate levels of MVPA have been associated with increased brain volume but the effects of extreme levels of MVPA on brain volume is unknown. As a result, we sought to compare the brains of those who engage in extremely high levels of MVPA with those who are sedentary using magnetic resonance imaging. We performed whole brain volumetric analyses and voxel-based morphometry on 12 ultra-endurance athletes (1078.75 ± 407.86 min of MVPA/week) and 9 sedentary persons (18.0 ± 56.9 min of MVPA/week). Whole-brain analyses revealed that those who participate in ultra-endurance training have increased grey (p< 0.0001), white (p = 0.031), and total matter volume (p < 0.0001), while regional analyses revealed that ultra-endurance athletes have smaller regional grey matter volume in the right primary sensory and motor cortex, inferior and middle frontal gyrus, and left thalamus. Future research is warranted to determine why ultra-endurance athletes have lower regional volumes in these areas despite having overall increased grey and white matter volumes.

Keywords

Ironman athletes / Ultra-racing / Ultra-training / MRI / Ultra endurance

Cite this article

Download citation ▾
T. Paruk, L. Rauch, M. Jankiewicz, K. Van Breda, D.J. Stein, M. King. Structural brain differences between ultra-endurance athletes and sedentary persons. Sports Medicine and Health Science, 2020, 2(2): 89‒94 https://doi.org/10.1016/j.smhs.2020.05.004

References

[[1]]
K.L. Piercy, R.P. Troiano, R.M. Ballard, et al.. The physical activity guidelines for Americans. J Am Med Assoc, 320 (19) ( 2018), pp. 2020-2028, DOI: 10.1001/jama.2018.14854
[[2]]
B. Knechtle, A. Wirth, B. Baumann, P. Knechtle, T. Rosemann, S. Oliver. Differential correlations between anthropometry, training volume, and performance in male and female ironman triathletes. J Strength Condit Res, 24 (10) ( 2010), pp. 2785-2793, DOI: 10.1519/JSC.0b013e3181c643b6
[[3]]
M.D. Hoffman, J.C. Ong, G. Wang. Historical analysis of participation in 161 km ultramarathons in North America. Int J Hist Sport, 27 (11) ( 2010), pp. 1877-1891, DOI: 10.1080/09523367.2010.494385
[[4]]
N.B. Tiller.Physiological and Pathophysiological Consequences of a 25-Day Ultra-endurance Exercise Challenge. (May 2019), pp.1-8, DOI: 10.3389/fphys.2019.00589. fphys-10-00589tex
[[5]]
G. Vernillo, A. Savoldelli, A. La Torre, S. Skafidas, L. Bortolan, F. Schena. Injury and illness rates during ultratrail running. Int J Sports Med, 37 ( 2016), pp. 565-569, DOI: 10.1055/s-0035-1569347. 07
[[6]]
P. Rao, A.M. Hutter, A.L. Baggish. The limits of cardiac performance: can too much exercise damage the heart?. Am J Med, 131 (11) ( 2018), pp. 1279-1284, DOI: 10.1016/j.amjmed.2018.05.037
[[7]]
B. Knechtle, P.T. Nikolaidis.Physiology and pathophysiology in ultra-marathon running. Front Physiol, 9 ( 2018), p. 634, DOI: 10.3389/fphys.2018.00634
[[8]]
S. Perrey, K. Mandrick. Evidence from neuroimaging to explore brain plasticity in humans during an ultra-endurance burden. BMC Med, 10 (1) ( 2012), pp. 171-173, DOI: 10.1186/1741-7015-10-171
[[9]]
C.C.F. Howe, E. Pummell, S. Pang, O. Spendiff, H.J. Moir. Emotional intelligence and mood states impact on the stress response to a treadmill ultramarathon. J Sci Med Sport, 22 (7) ( 2019), pp. 763-768, DOI: 10.1016/j.jsams.2019.02.008
[[10]]
N. Skoluda, L. Dettenborn, T. Stalder, C. Kirschbaum. Elevated hair cortisol concentrations in endurance athletes. Psychoneuroendocrinology, 37 (5) ( 2012), pp. 611-617, DOI: 10.1016/j.psyneuen.2011.09.001
[[11]]
N.E. Simmons, H.M. Do, M.H. Lipper, E.R. Laws. Cerebral atrophy in Cushing's disease. Surg Neurol, 53 (1) ( 2000), pp. 72-76, DOI: 10.1016/S0090-3019(99)00197-4
[[12]]
K.I. Erickson, R.S. Prakash, M.W. Voss, et al.. Aerobic fitness is associated with hippocampal volume in elderly humans. Hippocampus, 19 (10) ( 2009), pp. 1030-1039, DOI: 10.1002/hipo.20547
[[13]]
L. Chaddock, K.I. Erickson, R.S. Prakash, et al.. A neuroimaging investigation of the association between aerobic fitness, hippocampal volume, and memory performance in preadolescent children. Brain Res, 1358 (C) ( 2010), pp. 172-183, DOI: 10.1016/j.brainres.2010.08.049
[[14]]
R.A. Swain, A.B. Harris, E.C. Wiener, et al.. Prolonged exercise induces angiogenesis and increases cerebral blood volume in primary motor cortex of the rat. Neuroscience, 117 (4) ( 2003), pp. 1037-1046, DOI: 10.1016/S0306-4522(02)00664-4
[[15]]
K.I. Erickson, M.W. Voss, R.S. Prakash, et al.. Exercise training increases size of hippocampus and improves memory. (January 2011), pp.1-6, DOI: 10.1073/pnas.1015950108/-/DCSupplemental/pnas.201015950SI.pdf
[[16]]
M.D. Hoffman, E. Krishnan. Health and exercise-related medical issues among 1,212 ultramarathon runners: baseline findings from the ultrarunners longitudinal TRAcking (ULTRA) study. A. Lucia (Ed.), PloS One, 9 (1) ( 2014), DOI: 10.1371/journal.pone.0083867. e83867-e83868
[[17]]
M.N. Braskie, C.P. Boyle, P. Rajagopalan, et al.. Physical activity, inflammation, and volume of the aging brain. Neuroscience, 273 ( 2014), pp. 199-209, DOI: 10.1016/j.neuroscience.2014.05.005
[[18]]
J.S. Rhodes, H. van Praag, S. Jeffrey, et al.. Exercise increases hippocampal neurogenesis to high levels but does not improve spatial learning in mice bred for increased voluntary wheel running. Behav Neurosci, 117 (5) ( 2003), pp. 1006-1016, DOI: 10.1037/0735-7044.117.5.1006
[[19]]
K. van Breda.The Influence of Methylphenidate on Heart Rate and Brain Connectivity. PhD Thesis. University of Cape Town, South Africa ( 2018). Available from:. net/11427/27818
[[20]]
S.J. Colcombe, K.I. Erickson, P.E. Scalf, et al.. Aerobic exercise training increases brain volume in aging humans. J. Gerontol. Biol. Med. Sci., 61 (11) ( 2006), pp. 1166-1170
[[21]]
S.A.H. Batouli, V. Saba. At least eighty percent of brain grey matter is modifiable by physical activity. A review study. Behav Brain Res, 332 ( 2017), pp. 204-217, DOI: 10.1016/j.bbr.2017.06.002
[[22]]
C.G.S. Araújo, J. Scharhag. Athlete: a working definition for medical and health sciences research. Scand J Med Sci Sports, 26 (1) ( 2016), pp. 4-7, DOI: 10.1111/sms.12632
[[23]]
F.C. Bull, T.S. Maslin, T. Armstrong. Global physical activity questionnaire (GPAQ): nine country reliability and validity study. J Phys Activ Health, 6 (6) ( 2009), pp. 790-804
[[24]]
P. Amorim, Y. Lecrubier, E. Weiller, T. Hergueta, D. Sheehan. DSM-IH-R psychotic disorders: procedural validity of the mini international neuropsychiatric interview (MINI). Concordance and causes for discordance with the CIDI. Eur Psychiatr, 13 (1) ( 1998), pp. 26-34, DOI: 10.1016/S0924-9338(97)86748-X
[[25]]
M. King, K. van Breda, L.H. Rauch, S.J. Brooks, D.J. Stein, J. Ipser. Methylphenidate alters brain connectivity after enhanced physical performance. Brain Res, 1679 ( 2018), pp. 26-32, DOI: 10.1016/j.brainres.2017.10.026
[[26]]
M. King, L.H.G. Rauch, S.J. Brooks, D.J. Stein, K. Lutz. Methylphenidate enhances grip force and alters brain connectivity. Med Sci Sports Exerc, 49 (7) ( 2017), pp. 1443-1451, DOI: 10.1249/MSS.0000000000001252
[[27]]
M. King. Predicting the ergogenic response to methylphenidate. Eur J Appl Physiol (2018), DOI: 10.1007/s00421-018-3800-8. 0(0):0-0
[[28]]
C.M. Leonard, S. Towler, S. Welcome, et al.. Size matters: cerebral volume influences sex differences in neuroanatomy. Cerebr Cortex, 18 (12) ( 2008), pp. 2920-2931, DOI: 10.1093/cercor/bhn052
[[29]]
C. Sanchis-Segura, M.V. Ibañez-Gual, J. Adrián-Ventura, et al.. Sex differences in gray matter volume: how many and how large are they really?. (June 2019), pp.1-19, DOI: 10.1186/s13293-019-0245-7
[[30]]
R.A. Poldrack, P.C. Fletcher, R.N. Henson, K.J. Worsley, M. Brett, T.E. Nichols. Guidelines for reporting an fMRI study. Neuroimage, 40 (2) ( 2008), pp. 409-414, DOI: 10.1016/j.neuroimage.2007.11.048
[[31]]
J. Ashburner, K.J. Friston. Voxel-based morphometry—the methods. Neuroimage, 11 (6) ( 2000), pp. 805-821, DOI: 10.1006/nimg.2000.0582
[[32]]
S. Hayasaka, K.L. Phan, I. Liberzon, K.J. Worsley, T.E. Nichols. Nonstationary cluster-size inference with random field and permutation methods. Neuroimage, 22 (2) ( 2004), pp. 676-687, DOI: 10.1016/j.neuroimage.2004.01.041
[[33]]
S.B. Eickhoff, K.E. Stephan, H. Mohlberg, et al.. A new SPM toolbox for combining probabilistic cytoarchitectonic maps and functional imaging data. Neuroimage, 25 (4) ( 2005), pp. 1325-1335, DOI: 10.1016/j.neuroimage.2004.12.034
[[34]]
K. Amunts, K. Zilles. Advances in cytoarchitectonic mapping of the human cerebral cortex. Neuroimaging Clin, 11 (2) ( 2001), pp. 151-169. (vii)
[[35]]
J. Cohen.Statistical Power Analysis for the Behavioral Sciences. (second ed.), Erlbaum, Hillsdale, NJ ( 1988)
[[36]]
M. Alvarez-Saavedra, Y. De Repentigny, D. Yang, et al.. Voluntary running triggers VGF-mediated oligodendrogenesis to prolong the lifespan of Snf2h-null ataxic mice. Cell Rep, 17 (3) ( 2016), pp. 862-875, DOI: 10.1016/j.celrep.2016.09.030
[[37]]
S.K. Jensen, V.W. Yong. Activity-dependent and experience-driven myelination provide new directions for the management of multiple sclerosis. Trends Neurosci, 39 (6) ( 2016), pp. 356-365, DOI: 10.1016/j.tins.2016.04.003
[[38]]
B.D. Eadie, Van A. Redila, B.R. Christie. Voluntary exercise alters the cytoarchitecture of the adult dentate gyrus by increasing cellular proliferation, dendritic complexity, and spine density. J Comp Neurol, 486 (1) ( 2005), pp. 39-47, DOI: 10.1002/cne.20493
[[39]]
M. King, L.H.G. Rauch, S.J. Brooks, D.J. Stein, K. Lutz. Methylphenidate enhances grip force and alters brain connectivity. Med Sci Sports Exerc, 49 (7) ( 2017), pp. 1443-1451, DOI: 10.1249/MSS.0000000000001252
[[40]]
L. Hilty, L. Jäncke, R. Luechinger, U. Boutellier, K. Lutz. Limitation of physical performance in a muscle fatiguing handgrip exercise is mediated by thalamo-insular activity. Hum Brain Mapp, 32 (12) ( 2011), pp. 2151-2160, DOI: 10.1002/hbm.21177
[[41]]
W. Freund, S. Faust, C. Gaser, et al.. Regionally accentuated reversible brain grey matter reduction in ultra marathon runners detected by voxel-based morphometry. BMC Sports Sci Med Rehabil, 6 (1) ( 2014), p. 4, DOI: 10.1186/2052-1847-6-4
[[42]]
A.J. Nelson, J.M. Juraska, T.I. Musch, G.A. Iwamoto. Neuroplastic adaptations to exercise: neuronal remodeling in cardiorespiratory and locomotor areas. J Appl Physiol, 99 (6) ( 2005), pp. 2312-2322, DOI: 10.1152/japplphysiol.00693.2005
[[43]]
A.M. Magariños, J.M. Verdugo, B.S. McEwen. Chronic stress alters synaptic terminal structure in hippocampus. Proc Natl Acad Sci Unit States Am, 94 (25) ( 1997), pp. 14002-14008, DOI: 10.1073/pnas.94.25.14002
[[44]]
S.D. Kuipers, A. Trentani, J.A. Boer Den, G.J. Horst Ter. Molecular correlates of impaired prefrontal plasticity in response to chronic stress. J Neurochem, 85 (5) ( 2003), pp. 1312-1323
[[45]]
W. Freund, S. Faust, F. Birklein, et al.. Substantial and reversible brain gray matter reduction but no acute brain lesions in ultramarathon runners: experience from the TransEurope-FootRace Project. BMC Med, 10 (1) ( 2012), p. 170, DOI: 10.1186/1741-7015-10-170
[[46]]
M. Peters. Sex differences in human brain size and the general meaning of differences in brain size. Can J Psychol, 45 (4) ( 1991), pp. 507-522
[[47]]
F. Kruggel. MRI-based volumetry of head compartments: normative values of healthy adults. Neuroimage, 30 (1) ( 2006), pp. 1-11, DOI: 10.1016/j.neuroimage.2005.09.063
[[48]]
M. Taubert, U. Wenzel, B. Draganski, et al.. Investigating neuroanatomical features in top athletes at the single subject level. S. Kotz (Ed.), PloS One, 10 (6) ( 2015), DOI: 10.1371/journal.pone.0129508. e0129508-e0129515
[[49]]
I. García-García, A. Michaud, M. Dadar, et al.. Neuroanatomical differences in obesity: meta-analytic findings and their validation in an independent dataset. Int J Obes, 43 (5) ( 2019), pp. 943-951, DOI: 10.1038/s41366-018-0164-4
[[50]]
D. Janowitz, K. Wittfeld, J. Terock, et al.. Association between waist circumference and gray matter volume in 2344 individuals from two adult community-based samples. Neuroimage, 122 ( 2015), pp. 149-157, DOI: 10.1016/j.neuroimage.2015.07.086
[[51]]
Y. Taki, S. Kinomura, K. Sato, et al.. Relationship between body mass index and gray matter volume in 1,428 healthy individuals. Obesity, 16 (1) ( 2008), pp. 119-124, DOI: 10.1038/oby.2007.4

Dan J. Stein was supported by the SAMRC.

Accesses

Citations

Detail

Sections
Recommended

/