Utility of cardiac biomarkers in sports medicine: Focusing on troponin, natriuretic peptides, and hypoxanthine

Anirban Mahanty, Lei Xi

Sports Medicine and Health Science ›› 2020, Vol. 2 ›› Issue (2) : 65-71.

Sports Medicine and Health Science ›› 2020, Vol. 2 ›› Issue (2) : 65-71. DOI: 10.1016/j.smhs.2020.05.003
Review Article

Utility of cardiac biomarkers in sports medicine: Focusing on troponin, natriuretic peptides, and hypoxanthine

Author information +
History +

Abstract

Evidence-based consensus suggests that physical activity and regular exercise training can reduce modifiable risk factors as well as rate of mortality and morbidity in patients with chronic diseases, such as cardiovascular disease (CVD), diabetes, obesity and cancer. Conversely, long-term exercise training and drastic increase in vigorous physical activity may also cause acute cardiovascular events (e.g. acute myocardial infarction) and deleterious cardiac remodeling, particularly when exercise is performed by unfit or susceptible individuals. There is a reversed J-shaped hormesis-like curve between the duration and intensity of exercise and level of CVD risks. Therefore, it is important for an early detection of cardiac injuries in professional and amateur athletes. Under this context, this article focuses on the use of biomarker testing, an indispensable component in the current clinical practices especially in Cardiology and Oncology. We attempt to justify the importance of using circulating biomarkers in routine practices of Sports Medicine for an objective assessment of CVD events following exercise. Special attentions are dedicated to three established or emerging cardiac biomarkers (i.e. cardiac troponins, natriuretic peptides, hypoxanthine) for myocardial tissue hypoxia/ischemia events, muscle stress, and the consequent cellular necrotic injury. Based on these focused analyses, we propose use of circulating biomarker testing in both laboratory and point-of-care settings with an increasingly broader involvement or participation of team physicians, trainers, coaches, primary care doctors, as well as educated athlete community. This diagnostic approach may improve the quality of medical surveillance and preventive measures on exercise-related CVD risks/outcomes.

Keywords

Biomarker / Cardiac troponin / Exercise / Hypoxanthine / Natriuretic peptide / Overtraining syndrome / Tissue ischemia / Risk factors

Cite this article

Download citation ▾
Anirban Mahanty, Lei Xi. Utility of cardiac biomarkers in sports medicine: Focusing on troponin, natriuretic peptides, and hypoxanthine. Sports Medicine and Health Science, 2020, 2(2): 65‒71 https://doi.org/10.1016/j.smhs.2020.05.003

References

[[1]]
E.D. Anderson, J.L. Durstine. Physical activity, exercise, and chronic diseases: a brief review. Sports Med Health Sci, 1 ( 2019), pp. 3-10, DOI: 10.1016/j.smhs.2019.08.006
[[2]]
D.A. Bennett, H. Du, R. Clarke, et al.. Association of physical activity with risk of major cardiovascular diseases in Chinese men and women. JAMA Cardiol, 2 ( 2017), pp. 1349-1358, DOI: 10.1001/jamacardio.2017.4069
[[3]]
S.A. Lear, W. Hu, S. Rangarajan, et al.. The effect of physical activity on mortality and cardiovascular disease in 130 000 people from 17 high-income, middle-income, and low-income countries: the PURE study. Lancet, 390 ( 2017), pp. 2643-2654, DOI: 10.1016/S0140-6736(17)31634-3
[[4]]
B.K. Pedersen, B. Saltin. Exercise as medicine - evidence for prescribing exercise as therapy in 26 different chronic diseases. Scand J Med Sci Sports, 25 (Suppl 3) ( 2015), pp. 1-72, DOI: 10.1111/sms.12581
[[5]]
P.A. Ades, G.J. Balady, K. Berra. Transforming exercise-based cardiac rehabilitation programs into secondary prevention centers: a national imperative. J Cardiopulm Rehabil, 21 ( 2001), pp. 263-272, DOI: 10.1097/00008483-200109000-00003
[[6]]
L. Anderson, N. Oldridge, D.R. Thompson, et al.. Exercise-based cardiac rehabilitation for coronary heart disease: cochrane systematic review and meta-analysis. J Am Coll Cardiol, 67 ( 2016), pp. 1-12, DOI: 10.1016/j.jacc.2015.10.044
[[7]]
D. Jia, L. Hou, Y. Lv, L. Xi, Z. Tian. Postinfarction exercise training alleviates cardiac dysfunction and adverse remodeling via mitochondrial biogenesis and SIRT1/PGC-1α/PI3K/Akt signaling. J Cell Physiol, 234 ( 2019), pp. 23705-23718, DOI: 10.1002/jcp.28939
[[8]]
B.A. Franklin, P.D. Thompson, S.S. Al-Zaiti, et al.. American Heart Association Physical Activity Committee of the Council on Lifestyle and Cardiometabolic Health; Council on Cardiovascular and Stroke Nursing; Council on Clinical Cardiology; and Stroke Council. Exercise-related acute cardiovascular events and potential deleterious adaptations following long-term exercise training: placing the risks into perspective-an update: a scientific statement from the American Heart Association. Circulation, 141 (13) ( 2020), pp. e705-e736, DOI: 10.1161/CIR.0000000000000749
[[9]]
Biomarkers Definitions Working Group. Biomarkers and surrogate endpoints: preferred definitions and conceptual framework. Clin Pharmacol Ther, 69 ( 2001), pp. 89-95, DOI: 10.1067/mcp.2001.113989
[[10]]
H.A. Katus, A. Remppis, F.J. Neumann, et al.. Diagnostic efficiency of troponin T measurements in acute myocardial infarction. Circulation, 83 ( 1991), pp. 902-912, DOI: 10.1161/01.cir.83.3.902
[[11]]
J. Mair, C. Wieser, I. Seibt, et al.. Troponin T to diagnose myocardial infarction in bypass surgery. Lancet, 337 ( 1991), pp. 434-435, DOI: 10.1016/0140-6736(91)91218-j
[[12]]
B. Seamonds, N. Yang, K. Anderson, B. Whitaker, L.M. Shaw, J.R. Bollinger. Evaluation of prostate-specific antigen and prostatic acid phosphatase as prostate cancer markers. Urology, 28 ( 1986), pp. 472-479, DOI: 10.1016/0090-4295(86)90146-9
[[13]]
J.K. Siddall, E.H. Cooper, D.W. Newling, M.R. Robinson, P. Whelan. An evaluation of the immunochemical measurement of prostatic acid phosphatase and prostatic specific antigen in carcinoma of the prostate. Eur Urol, 12 ( 1986), pp. 123-130, DOI: 10.1159/000472596
[[14]]
M. Abela, L. Sammut. Cardiac troponin: more than meets the eye. Postgrad Med J, 93 ( 2017), pp. 762-765, DOI: 10.1136/postgradmedj-2017-134984
[[15]]
A.J. Siegel, K.B. Lewandrowski, H.W. Strauss, A.J. Fischman, T. Yasuda. Normal post-race antimyosin myocardial scintigraphy in asymptomatic marathon runners with elevated serum creatine kinase MB isoenzyme and troponin T levels. Evidence against silent myocardial cell necrosis. Cardiology, 86 ( 1995), pp. 451-456, DOI: 10.1159/000176922
[[16]]
L. Laslett, E. Eisenbud, R. Lind. Evidence of myocardial injury during prolonged strenuous exercise. Am J Cardiol, 78 ( 1996), pp. 488-490, DOI: 10.1016/0002-9149(97)00003-9
[[17]]
J. Scharhag, K. George, R. Shave, A. Urhausen, W. Kindermann. Exercise-associated increases in cardiac biomarkers. Med Sci Sports Exerc, 40 ( 2008), pp. 1408-1415, DOI: 10.1249/MSS.0b013e318172cf22
[[18]]
J. Scharhag, A. Urhausen, G. Schneider, et al.. Reproducibility and clinical significance of exercise-induced increases in cardiac troponins and N-terminal pro brain natriuretic peptide in endurance athletes. Eur J Cardiovasc Prev Rehabil, 13 ( 2006), pp. 388-397, DOI: 10.1097/01.hjr.0000219117.33038.90
[[19]]
M.L. Westermeyer, W.P. Eilbert. Elevation of troponin I in athletes: a case report in a marathon runner. J Emerg Med, 34 ( 2008), pp. 175-178, DOI: 10.1016/j.jemermed.2007.03.044
[[20]]
A. Koller. Exercise-induced increases in cardiac troponins and prothrombotic markers. Med Sci Sports Exerc, 35 ( 2003), pp. 444-448, DOI: 10.1249/01.MSS.0000053736.51903.0E
[[21]]
A. Peretti, L. Mauri, A. Masarin, et al.. Cardiac biomarkers release in preadolescent athletes after an high intensity exercise. High Blood Pres Cardiovasc Prev, 25 ( 2018), pp. 89-96, DOI: 10.1007/s40292-017-0243-y
[[22]]
S.M. Hosseini, M. Azizi, A. Samadi, N. Talebi, H. Gatterer, M. Burtscher. Impact of a soccer game on cardiac biomarkers in adolescent players. Pediatr Exerc Sci, 30 ( 2018), pp. 90-95, DOI: 10.1123/pes.2017-0060
[[23]]
F. Li, J. Nie, H. Zhang, et al.. Effects of matched intermittent and continuous exercise on changes of cardiac biomarkers in endurance runners. Front Physiol, 11 ( 2020), p. 30, DOI: 10.3389/fphys.2020.00030
[[24]]
J.A. Donaldson, J.D. Wiles, D.A. Coleman, M. Papadakis, R. Sharma, J.M. O'Driscoll. Left ventricular function and cardiac biomarker release-the influence of exercise intensity, duration and mode: a systematic review and meta-analysis. Sports Med, 49 ( 2019), pp. 1275-1289, DOI: 10.1007/s40279-019-01142-5
[[25]]
Z.L. Zhang, R. Li, F.Y. Yang, L. Xi. Natriuretic peptide family as diagnostic/prognostic biomarker and treatment modality in management of adult and geriatric patients with heart failure: remaining issues and challenges. J Geriatr Cardiol, 15 ( 2018), pp. 540-546, DOI: 10.11909/j.issn.1671-5411.2018.08.008
[[26]]
C. Vassalle, S. Masotti, V. Lubrano, et al.. Traditional and new candidate cardiac biomarkers assessed before, early, and late after half marathon in trained subjects. Eur J Appl Physiol, 118 ( 2018), pp. 411-417, DOI: 10.1007/s00421-017-3783-x
[[27]]
E. Roca, L. Nescolarde, J. Lupon, et al.. The dynamics of cardiovascular biomarkers in non-elite marathon runners. J Cardiovasc Transl Res, 10 ( 2017), pp. 206-208, DOI: 10.1007/s12265-017-9744-2
[[28]]
S. Cocking, T. Landman, M. Benson, et al.. The impact of remote ischemic preconditioning on cardiac biomarker and functional response to endurance exercise. Scand J Med Sci Sports, 27 ( 2017), pp. 1061-1069, DOI: 10.1111/sms.12724
[[29]]
M.J. Pearson, N. King, N.A. Smart. Effect of exercise therapy on established and emerging circulating biomarkers in patients with heart failure: a systematic review and meta-analysis. Open Heart, 5 ( 2018), Article e000819, DOI: 10.1136/openhrt-2018-000819
[[30]]
D.E. Farthing, C.A. Farthing, L. Xi. Inosine and hypoxanthine as novel biomarkers for cardiac ischemia: from bench to point-of-care. Exp Biol Med, 240 ( 2015), pp. 821-831, DOI: 10.1177/1535370215584931
[[31]]
R.B. Jennings, H.K. Hawkins, J.E. Lowe, M.L. Hill, S. Klotman, K.A. Reimer. Relation between high energy phosphate and lethal injury in myocardial ischemia in the dog. Am J Pathol, 92 ( 1978), pp. 187-214
[[32]]
R.B. Jennings, K.A. Reimer, M.L. Hill, S.E. Mayer.Total ischemia in dog hearts, in vitro. 1. Comparison of high energy phosphate production, utilization, and depletion, and of adenine nucleotide catabolism in total ischemia in vitro vs. severe ischemia in vivo. Circ Res, 49 ( 1981), pp. 892-900, DOI: 10.1161/01.res.49.4.892
[[33]]
M. Molina-Arcas, F.J. Casado, M. Pastor-Anglada. Nucleoside transporter proteins. Curr Vasc Pharmacol, 7 ( 2009), pp. 426-434, DOI: 10.2174/157016109789043892
[[34]]
K. Sahlin, K. Ekberg, S. Cizinsky. Changes in plasma hypoxanthine and free radical markers during exercise in man. Acta Physiol Scand, 142 ( 1991), pp. 275-281, DOI: 10.1111/j.1748-1716.1991.tb09157.x
[[35]]
J. Atamaniuk, C. Vidotto, M. Kinzlbauer, N. Bachl, B. Tiran, H. Tschan. Cell-free plasma DNA and purine nucleotide degradation markers following weightlifting exercise. Eur J Appl Physiol, 110 ( 2010), pp. 695-701, DOI: 10.1007/s00421-010-1532-5
[[36]]
T. Gerber, M.L. Borg, A. Hayes, C.G. Stathis. High-intensity intermittent cycling increases purine loss compared with workload-matched continuous moderate intensity cycling. Eur J Appl Physiol, 114 ( 2014), pp. 1513-1520, DOI: 10.1007/s00421-014-2878-x
[[37]]
A. Siopi, O. Deda, V. Manou, et al.. Comparison of the serum metabolic fingerprint of different exercise modes in men with and without metabolic syndrome. Metabolites, 9 ( 2019), p. 116, DOI: 10.3390/metabo9060116
[[38]]
J. Zielinski, K. Kusy. Hypoxanthine: a universal metabolic indicator of training status in competitive sports. Exerc Sport Sci Rev, 43 ( 2015), pp. 214-221, DOI: 10.1249/JES.0000000000000055
[[39]]
J. Zielinski, E.M. Slominska, M. Krol-Zielinska, Z. Krasinski, K. Kusy.Purine metabolism in sprint- vs endurance-trained athletes aged20-90 years. Sci Rep, 9 ( 2019), p. 12075, DOI: 10.1038/s41598-019-48633-z
[[40]]
M. Wlodarczyk, K. Kusy, E. Slominska, Z. Krasinski, J. Zielinski. Changes in blood concentration of adenosine triphosphate metabolism biomarkers during incremental exercise in highly trained athletes of different sport specializations. J Strength Condit Res, 33 ( 2019), pp. 1192-1200, DOI: 10.1519/JSC.0000000000003133
[[41]]
B. Pospieszna, K. Kusy, E.M. Slominska, W. Dudzinska, M. Ciekot-Soltysiak, J. Zielinski. The effect of training on erythrocyte energy status and plasma purine metabolites in athletes. Metabolites, 10 ( 2019), DOI: 10.3390/metabo10010005. pii: E5
[[42]]
M. Wlodarczyk, K. Kusy, E. Slominska, Z. Krasinski, J. Zielinski. Change in lactate, ammonia, and hypoxanthine concentrations in a 1-year training cycle in highly trained athletes: applying biomarkers as tools to assess training status. J Strength Condit Res, 34 ( 2020), pp. 355-364, DOI: 10.1519/JSC.0000000000003375
[[43]]
J.D. Feng, P.K. Yeung. A simple high-performance liquid chromatography assay for simultaneous measurement of adenosine, guanosine, and the oxypurine metabolites in plasma. Ther Drug Monit, 22 ( 2000), pp. 177-183, DOI: 10.1097/00007691-200004000-00007
[[44]]
R. Kock, B. Delvoux, M. Sigmund, H. Greiling. A comparative study of the concentrations of hypoxanthine, xanthine, uric acid and allantoin in the peripheral blood of normals and patients with acute myocardial infarction and other ischaemic diseases. Eur J Clin Chem Clin Biochem, 32 ( 1994), pp. 837-842, DOI: 10.1515/cclm.1994.32.11.837
[[45]]
E. Harmsen, J.W. de Jong, P.W. Serruys. Hypoxanthine production by ischemic heart demonstrated by high pressure liquid chromatography of blood purine nucleosides and oxypurines. Clin Chim Acta, 115 ( 1981), pp. 73-84, DOI: 10.1016/0009-8981(81)90108-x
[[46]]
D.E. Farthing, D. Sica, M. Hindle, et al.. A rapid and simple chemiluminescence method for screening levels of inosine and hypoxanthine in non-traumatic chest pain patients. Luminescence, 26 ( 2011), pp. 65-75, DOI: 10.1002/bio.1187
[[47]]
S. Kistner, M.J. Rist, R. Kruger, M. Doring, S. Schlechtweg, A. Bub. High-intensity interval training decreases resting urinary hypoxanthine concentration in young active men-A metabolomic approach. Metabolites, 9 (7) ( 2019), p. 137, DOI: 10.3390/metabo9070137
[[48]]
C. Le Goff, J. Farre Segura, P. Dufour, J.F. Kaux, E. Cavalier. Intense sport practices and cardiac biomarkers. Clin Biochem, 79 ( 2020), pp. 1-8, DOI: 10.1016/j.clinbiochem.2020.02.008
[[49]]
G. Lombardi, S. Perego, V. Sansoni, G. Banfi. Circulating miRNA as fine regulators of the physiological responses to physical activity: pre-analytical warnings for a novel class of biomarkers. Clin Biochem, 49 ( 2016), pp. 1331-1339, DOI: 10.1016/j.clinbiochem.2016.09.017

Accesses

Citations

Detail

Sections
Recommended

/