Cellular mechanism of immobilization-induced muscle atrophy: A mini review

Li Li Ji, Dongwook Yeo

Sports Medicine and Health Science ›› 2019, Vol. 1 ›› Issue (1) : 19-23. DOI: 10.1016/j.smhs.2019.08.004
Original article

Cellular mechanism of immobilization-induced muscle atrophy: A mini review

Author information +
History +

Abstract

It is well-established that regular contraction maintains morphological and functional integrity of skeletal muscle, whereas rigorous exercise training can upregulate muscle metabolic and contractile function. However, when muscles stop contraction, such as during immobilization (IM) and denervation, withdrawal of IGF/Akt/mTOR signaling allows FoxO-controlled protein degradation pathways to dominate. Mitochondria play an important role in regulating both protein synthesis and degradation via several redox sensitive signaling pathways such as mitochondrial biogenesis, fusion and fission dynamics, ubiquitin-proteolysis, autophagy/mitophagy, and apoptosis. During prolonged IM, downregulation of PGC-1α and increased mitochondrial oxidative damage facilitate fission protein and inflammatory cytokine production and activate mitophagic process, leading to a vicious cycle of protein degradation. This “mitostasis theory of muscle atrophy” is the opposite pathway of hormesis, which defines enhanced muscle function with contractile overload. The demonstration that PGC-1α overexpression via transgene or in vivo DNA transfection can successfully restore mitochondrial homeostasis and reverse myocyte atrophy supports such a proposition. Understanding the mechanism governing mitostasis can be instrumental to the treatment of muscle atrophy associated with bedrest, cancer cachexia and sarcopenia.

Keywords

Atrophy / Immobilization / Mitochondria / Muscle

Cite this article

Download citation ▾
Li Li Ji, Dongwook Yeo. Cellular mechanism of immobilization-induced muscle atrophy: A mini review. Sports Medicine and Health Science, 2019, 1(1): 19‒23 https://doi.org/10.1016/j.smhs.2019.08.004

References

[[1]]
L.L. Ji, J. Gomez-Cabrera MC, Vina. Exercise and hormesis: activation of cellular antioxidant signaling pathway. Ann N Y Acad Sci, 1067 ( 2006), pp. 425-435
[[2]]
Z. Radak, H.Y. Chung, S. Goto. Exercise and hormesis: oxidative stress-related adaptation for successful aging. Biogerontology, 6 ( 2005), pp. 71-75
[[3]]
L.L. Ji, C. Kang, Y. Zhang. Exercise-induced hormesis and skeletal muscle health. Free Radic Biol Med, 98 ( 2016), pp. 113-122
[[4]]
J.M. Peake, J.F. Markworth, K. Nosaka, T. Raastad, G.D. Wadley, V.G. Coffey. Modulating exercise-induced hormesis: does less equal more?. J Appl Physiol, 119 ( 2015), pp. 172-189
[[5]]
J.A. Timmons, J. Norrbom, C. Scheele, H. Thonberg, C. Wahlestedt, P. Tesch. Expression profiling following local muscle inactivity in humans provides new perspective on diabetes-related genes. Genomics, 87 ( 2006), pp. 165-172
[[6]]
S.C. Kandarian, R.W. Jackman. Intracellular signaling during skeletal muscle atrophy. Muscle Nerve, 33 ( 2006), pp. 155-165
[[7]]
R.W. Jackman, S.C. Kandarian. The molecular basis of skeletal muscle atrophy. Am J Physiol Cell Physiol, 287 ( 2004), pp. C834-C843
[[8]]
S.C. Bodine, E. Latres, S. Baumhueter, et al.. Identification of ubiquitin ligases required for skeletal muscle atrophy. Science, 294 (80-) ( 2001), pp. 1704-1708
[[9]]
M.D. Gomes, S.H. Lecker, R.T. Jagoe, A. Navon, A.L. Goldberg. Atrogin-1, a muscle-specific F-box protein highly expressed during muscle atrophy. Proc Natl Acad Sci U S A, 98 ( 2001), pp. 14440-14445
[[10]]
B.A. Clarke, D. Drujan, M.S. Willis, et al.. The E 3 Ligase MuRF1 degrades myosin heavy chain protein in dexamethasone-treated skeletal muscle. Cell Metabol, 6 ( 2007), pp. 376-385
[[11]]
V. Kedar, H. McDonough, R. Arya, H.H. Li, H.A. Rockman, C. Patterson.Muscle-specific RING finger 1 is a bona fide ubiquitin ligase that degrades cardiac troponin I. Proc Natl Acad Sci U S A, 101 ( 2004), pp. 18135-18140
[[12]]
H.H. Li, V. Kedar, C. Zhang, et al.. Atrogin-1/muscle atrophy F-box inhibits calcineurin-dependent cardiac hypertrophy by participating in an SCF ubiquitin ligase complex. J Clin Investig, 114 ( 2004), pp. 1058-1071
[[13]]
L.A. Tintignac, J. Lagirand, S. Batonnet, V. Sirri, M.P. Leibovitch, S.A. Leibovitch. Degradation of MyoD mediated by the SCF (MAFbx) ubiquitin ligase. J Biol Chem, 280 ( 2005), pp. 2847-2856
[[14]]
C. Kang, L.L. Ji. Muscle immobilization and remobilization downregulates PGC-1alpha signaling and the mitochondrial biogenesis pathway. J Appl Physiol, 115 ( 2013), pp. 1618-1625
[[15]]
A.M. Sanchez, R.B. Candau, H. Bernardi. FoxO transcription factors: their roles in the maintenance of skeletal muscle homeostasis. Cell Mol Life Sci, 71 ( 2014), pp. 1657-1671
[[16]]
P. Bonaldo, M. Sandri. Cellular and molecular mechanisms of muscle atrophy. Dis Model Mech, 6 ( 2013), pp. 25-39
[[17]]
E.L. Greer, P.R. Oskoui, M.R. Banko, et al.. The energy sensor AMP-activated protein kinase directly regulates the mammalian FOXO 3 transcription factor. J Biol Chem, 282 ( 2007), pp. 30107-30119
[[18]]
M. Sandri, C. Sandri, A. Gilbert, et al.. Foxo transcription factors induce the atrophy-related ubiquitin ligase atrogin-1 and cause skeletal muscle atrophy. Cell, 117 ( 2004), pp. 399-412
[[19]]
C. Kang, D. Yeo, L.L. Ji. Muscle immobilization activates mitophagy and disrupts mitochondrial dynamics in mice. Acta Physiol, 218 ( 2016)
[[20]]
C. Kang, C.A. Goodman, T.A. Hornberger, L.L. Ji. PGC-1alpha overexpression by in vivo transfection attenuates mitochondrial deterioration of skeletal muscle caused by immobilization. FASEB J, 29 ( 2015), pp. 4092-4106
[[21]]
E.E. Talbert, A.J. Smuder, K. Min, O.S. Kwon, S.K. Powers. Calpain and caspase-3 play required roles in immobilization-induced limb muscle atrophy. J Appl Physiol, 114 ( 2013), pp. 1482-1489
[[22]]
H. Eshima, S. Miura, N. Senoo, K. Hatakeyama, D.C. Poole, Y. Kano. Improved skeletal muscle Ca(2+) regulation in vivo following contractions in mice overexpressing PGC-1alpha. Am J Physiol Regul Integr Comp Physiol, 312 ( 2017), pp. R1017-R1028
[[23]]
V. Romanello, M. Sandri. Mitochondrial biogenesis and fragmentation as regulators of muscle protein degradation. Curr Hypertens Rep, 12 ( 2010), pp. 433-439
[[24]]
P.J. Adhihetty, V. Ljubicic, K.J. Menzies, D.A. Hood. Differential susceptibility of subsarcolemmal and intermyofibrillar mitochondria to apoptotic stimuli. Am J Physiol Cell Physiol, 289 ( 2005), pp. C994-C1001
[[25]]
D.A. Krieger, C.A. Tate, J. McMillin-Wood, F.W. Booth. Populations of rat skeletal muscle mitochondria after exercise and immobilization. J Appl Physiol Respir Environ Exerc Physiol, 48 ( 1980), pp. 23-28
[[26]]
Z. Wu, P. Puigserver, U. Andersson, et al.. Mechanisms controlling mitochondrial biogenesis and respiration through the thermogenic coactivator PGC-1. Cell, 98 ( 1999), pp. 115-124
[[27]]
J. Cannavino, L. Brocca, M. Sandri, R. Bottinelli, M.A. Pellegrino. PGC1-alpha over-expression prevents metabolic alterations and soleus muscle atrophy in hindlimb unloaded mice. J Physiol, 592 ( 2014), pp. 4575-4589
[[28]]
M. Sandri, J. Lin, C. Handschin, et al.. PGC-1alpha protects skeletal muscle from atrophy by suppressing FoxO 3 action and atrophy-specific gene transcription. Proc Natl Acad Sci U S A, 103 ( 2006), pp. 16260-16265
[[29]]
Y. Kim, M. Triolo, D.A. Hood.Impact of aging and exercise on mitochondrial quality control in skeletal muscle. Oxid Med Cell Longev, 2017 ( 2017), p. 3165396
[[30]]
D. Harman. The free radical theory of aging. Antioxidants Redox Signal, 5 ( 2003), pp. 557-561
[[31]]
G.K. Sakellariou, T. Pearson, A.P. Lightfoot, et al.. Mitochondrial ROS regulate oxidative damage and mitophagy but not age-related muscle fiber atrophy. Sci Rep, 6 ( 2016), p. 33944
[[32]]
D.R. Green, B. Van Houten. SnapShot: mitochondrial quality control. Cell, 147 ( 2011). 950, 950 e1
[[33]]
K. Palikaras, N. Tavernarakis. Mitochondrial homeostasis: the interplay between mitophagy and mitochondrial biogenesis. Exp Gerontol, 56 ( 2014), pp. 182-188
[[34]]
C. Mammucari, G. Milan, V. Romanello, et al.. FoxO 3 controls autophagy in skeletal muscle in vivo. Cell Metabol, 6 ( 2007), pp. 458-471
[[35]]
C. Kang, L.L. Ji. PGC-1alpha overexpression via local transfection attenuates mitophagy pathway in muscle disuse atrophy. Free Radic Biol Med, 93 ( 2016), pp. 32-40
[[36]]
D.C. Chan. Mitochondrial fusion and fission in mammals. Annu Rev Cell Dev Biol, 22 ( 2006), pp. 79-99
[[37]]
D. Bach, S. Pich, F.X. Soriano, et al.. Mitofusin-2 determines mitochondrial network architecture and mitochondrial metabolism. A novel regulatory mechanism altered in obesity. J Biol Chem, 278 ( 2003), pp. 17190-17197
[[38]]
S. Lokireddy, I.W. Wijesoma, S. Teng, et al.. The ubiquitin ligase Mul 1 induces mitophagy in skeletal muscle in response to muscle-wasting stimuli. Cell Metabol, 16 ( 2012), pp. 613-624
[[39]]
M.E. Gegg, J.M. Cooper, K.Y. Chau, M. Rojo, A.H. Schapira, J.W. Taanman. Mitofusin 1 and mitofusin 2 are ubiquitinated in a PINK1/parkin-dependent manner upon induction of mitophagy. Hum Mol Genet, 19 ( 2010), pp. 4861-4870
[[40]]
A.M.J. Sanchez, R.B. Candau, H. Bernardi. FoxO transcription factors: their roles in the maintenance of skeletal muscle homeostasis. Cell Mol Life Sci, 71 ( 2014), pp. 1657-1671
[[41]]
S.N. Schreiber, R. Emter, M.B. Hock, et al.. The estrogen-related receptor alpha (ERRalpha) functions in PPARgamma coactivator 1alpha (PGC-1alpha)-induced mitochondrial biogenesis. Proc Natl Acad Sci U S A, 101 ( 2004), pp. 6472-6477
[[42]]
T.N. Stitt, D. Drujan, B.A. Clarke, et al.. The IGF-1/PI3K/Akt pathway prevents expression of muscle atrophy-induced ubiquitin ligases by inhibiting FOXO transcription factors. Mol Cell, 14 ( 2004), pp. 395-403
[[43]]
D.C. Guttridge, M.W. Mayo, L.V. Madrid, C.Y. Wang, A.S. Baldwin Jr.. NF-kappaB-induced loss of MyoD messenger RNA: possible role in muscle decay and cachexia. Science, 289 (80-) ( 2000), pp. 2363-2366
[[44]]
C. Kang, W.S. Shin, D. Yeo, W. Lim, T. Zhang, L.L. Ji. Anti-inflammatory effect of avenanthramides via NF-kappaB pathways in C2C12 skeletal muscle cells. Free Radic Biol Med, 117 ( 2018), pp. 30-36
[[45]]
J. Zhang, P.A. Ney. Role of BNIP3 and NIX in cell death, autophagy, and mitophagy. Cell Death Differ, 16 ( 2009), pp. 939-946
[[46]]
C. Handschin, S. Chin, P. Li, et al.. Skeletal muscle fiber-type switching, exercise intolerance, and myopathy in PGC-1alpha muscle-specific knock-out animals. J Biol Chem, 282 ( 2007), pp. 30014-30021
[[47]]
T. Wenz, S.G. Rossi, R.L. Rotundo, B.M. Spiegelman, C.T. Moraes. Increased muscle PGC-1alpha expression protects from sarcopenia and metabolic disease during aging. Proc Natl Acad Sci U S A, 106 ( 2009), pp. 20405-20410
[[48]]
D. Yeo, C. Kang, M.C. Gomez-Cabrera, J. Vina, L.L. Ji. Intensified mitophagy in skeletal muscle with aging is downregulated by PGC-1alpha overexpression in vivo. Free Radic Biol Med, 130 ( 2019)
[[49]]
D. Yeo, C. Kang, M.C. Gomez-Cabrera, J. Vina, L.L. Ji. Data on in vivo PGC-1alpha overexpression model via local transfection in aged mouse muscle. Data Br, 22 ( 2019)
[[50]]
J. Baeza, M.J. Smallegan, J.M. Denu. Mechanisms and dynamics of protein acetylation in mitochondria. Trends Biochem Sci, 41 ( 2016), pp. 231-244

This work was supported in part by a grant-in-aid by the University of Minnesota Office of the Vice President for Research. There is not conflict of interest to be declared.

Accesses

Citations

Detail

Sections
Recommended

/