High intensity interval training and molecular adaptive response of skeletal muscle

Ferenc Torma, Zoltan Gombos, Matyas Jokai, Masaki Takeda, Tatsuya Mimura, Zsolt Radak

Sports Medicine and Health Science ›› 2019, Vol. 1 ›› Issue (1) : 24-32. DOI: 10.1016/j.smhs.2019.08.003
Original article

High intensity interval training and molecular adaptive response of skeletal muscle

Author information +
History +

Abstract

Increased cardiovascular fitness, V˙O2max, is associated with enhanced endurance capacity and a decreased rate of mortality. High intensity interval training (HIIT) is one of the best methods to increase V˙O2max and endurance capacity for top athletes and for the general public as well. Because of the high intensity of this type of training, the adaptive response is not restricted to Type I fibers, as found for moderate intensity exercise of long duration. Even with a short exercise duration, HIIT can induce activation of AMPK, PGC-1α, SIRT1 and ROS pathway as well as by the modulation of Ca2+ homeostasis, leading to enhanced mitochondrial biogenesis, and angiogenesis. The present review summarizes the current knowledge of the adaptive response of HIIT.

Keywords

High intensity interval training / Cellular adaptation / Molecular pathways / Redox signaling / Maximal oxygen uptake / Mitochondrial biogenesis

Cite this article

Download citation ▾
Ferenc Torma, Zoltan Gombos, Matyas Jokai, Masaki Takeda, Tatsuya Mimura, Zsolt Radak. High intensity interval training and molecular adaptive response of skeletal muscle. Sports Medicine and Health Science, 2019, 1(1): 24‒32 https://doi.org/10.1016/j.smhs.2019.08.003

References

[[1]]
M. Buchheit, P.B. Laursen. High-intensity interval training, solutions to the programming puzzle: Part I: cardiopulmonary emphasis. Sport Med, 43 (5) ( 2013), pp. 313-338, DOI: 10.1007/s40279-013-0029-x
[[2]]
L.V. Billat. Interval training for performance: a scientific and empirical practice. Special recommendations for middle- and long-distance running. Part I: aerobic interval training. Sport Med, 31 (1) ( 2001), pp. 13-31, DOI: 10.2165/00007256-200131010-00002
[[3]]
H. Roskamm, H. Reindell, J. Keul. [The physiological bases of various training methods]. Sportarzt Ver Sportmed, 13 ( 1962), pp. 109-123 concl
[[4]]
I. Astrand, P.O. Astrand, E.H. Christensen, R. Hedman. Intermittent muscular work. Acta Physiol Scand, 48 ( 1960), pp. 448-453, DOI: 10.1111/j.1748-1716.1960.tb01879.x
[[5]]
E.L. Fox, R.L. Bartels, C.E. Billings, D.K. Mathews, R. Bason, W.M. Webb. Intensity and distance of interval training programs and changes in aerobic power. Med Sci Sport, 5 (1) ( 1973), pp. 18-22
[[6]]
M.L. Cox, J.B.Bennett 3rd, G.A. Dudley. Exercise training-induced alterations of cardiac morphology. J Appl Physiol, 61 (3) ( 1986), pp. 926-931, DOI: 10.1152/jappl.1986.61.3.926
[[7]]
K.S. Weston, U. Wisloff, J.S. Coombes. High-intensity interval training in patients with lifestyle-induced cardiometabolic disease: a systematic review and meta-analysis. Br J Sports Med, 48 (16) ( 2014), pp. 1227-1234, DOI: 10.1136/bjsports-2013-092576
[[8]]
K.A. Burgomaster, K.R. Howarth, S.M. Phillips, et al.. Similar metabolic adaptations during exercise after low volume sprint interval and traditional endurance training in humans. J Physiol, 586 (1) ( 2008), pp. 151-160, DOI: 10.1113/jphysiol.2007.142109
[[9]]
Z. Radak, K. Ishihara, E. Tekus, et al.. Exercise, oxidants, and antioxidants change the shape of the bell-shaped hormesis curve. Redox Biol., 12 ( 2017), pp. 285-290, DOI: 10.1016/j.redox.2017.02.015
[[10]]
U. Wisloff, A. Stoylen, J.P. Loennechen, et al.. Superior cardiovascular effect of aerobic interval training versus moderate continuous training in heart failure patients: a randomized study. Circulation, 115 (24) ( 2007), pp. 3086-3094, DOI: 10.1161/CIRCULATIONAHA.106.675041
[[11]]
Z. Milanovic, G. Sporis, M. Weston. Effectiveness of high-intensity interval training (HIT) and continuous endurance training for V˙O2max improvements: a systematic review and meta-analysis of controlled trials. Sport Med, 45 (10) ( 2015), pp. 1469-1481, DOI: 10.1007/s40279-015-0365-0
[[12]]
J.S. Ramos, L.C. Dalleck, A.E. Tjonna, K.S. Beetham, J.S. Coombes. The impact of high-intensity interval training versus moderate-intensity continuous training on vascular function: a systematic review and meta-analysis. Sport Med, 45 (5) ( 2015), pp. 679-692, DOI: 10.1007/s40279-015-0321-z
[[13]]
U. Wisloff, O. Ellingsen, O.J. Kemi. High-intensity interval training to maximize cardiac benefits of exercise training?. Exerc Sport Sci Rev, 37 (3) ( 2009), pp. 139-146, DOI: 10.1097/JES.0b013e3181aa65fc
[[14]]
M.J. MacInnis, M.J. Gibala. Physiological adaptations to interval training and the role of exercise intensity. J Physiol, 595 (9) ( 2017), pp. 2915-2930, DOI: 10.1113/JP273196
[[15]]
C.E. Garber, B. Blissmer, M.R. Deschenes, et al.. American College of Sports Medicine position stand. Quantity and quality of exercise for developing and maintaining cardiorespiratory, musculoskeletal, and neuromotor fitness in apparently healthy adults: guidance for prescribing exercise. Med Sci Sport Exerc, 43 (7) ( 2011), pp. 1334-1359, DOI: 10.1249/MSS.0b013e318213fefb
[[16]]
I. Tabata, K. Irisawa, M. Kouzaki, K. Nishimura, F. Ogita, M. Miyachi. Metabolic profile of high intensity intermittent exercises. Med Sci Sport Exerc, 29 (3) ( 1997), pp. 390-395
[[17]]
M. Buchheit, P.B. Laursen. High-intensity interval training, solutions to the programming puzzle. Part II: anaerobic energy, neuromuscular load and practical applications. Sport Med, 43 (10) ( 2013), pp. 927-954, DOI: 10.1007/s40279-013-0066-5
[[18]]
A. Ross, M. Leveritt. Long-term metabolic and skeletal muscle adaptations to short-sprint training: implications for sprint training and tapering. Sport Med, 31 (15) ( 2001), pp. 1063-1082, DOI: 10.2165/00007256-200131150-00003
[[19]]
J. Karlsson, B. Saltin. Oxygen deficit and muscle metabolites in intermittent exercise. Acta Physiol Scand, 82 (1) ( 1971), pp. 115-122, DOI: 10.1111/j.1748-1716.1971.tb04948.x
[[20]]
H. Islam, L.K. Townsend, G.L. McKie, P.J. Medeiros, B.J. Gurd, T.J. Hazell. Potential involvement of lactate and interleukin-6 in the appetite-regulatory hormonal response to an acute exercise bout. J Appl Physiol, 123 (3) ( 2017), pp. 614-623, DOI: 10.1152/japplphysiol.00218.2017
[[21]]
L. Cipryan, G. Tschakert, P. Hofmann. Acute and post-exercise physiological responses to high-intensity interval training in endurance and sprint athletes. J Sport Sci Med, 16 (2) ( 2017), pp. 219-229
[[22]]
J.L. Langfort, R. Zarzeczny, K. Nazar, H. Kaciuba-Uscilko. The effect of low-carbohydrate diet on the pattern of hormonal changes during incremental, graded exercise in young men. Int J Sport Nutr Exerc Metab, 11 (2) ( 2001), pp. 248-257
[[23]]
P. Krustrup, M. Mohr, A. Steensberg, J. Bencke, M. Kjaer, J. Bangsbo. Muscle and blood metabolites during a soccer game: implications for sprint performance. Med Sci Sport Exerc, 38 (6) ( 2006), pp. 1165-1174, DOI: 10.1249/01.mss.0000222845.89262.cd
[[24]]
J.M. Peake, S.J. Tan, J.F. Markworth, J.A. Broadbent, T.L. Skinner, D. Cameron-Smith. Metabolic and hormonal responses to isoenergetic high-intensity interval exercise and continuous moderate-intensity exercise. Am J Physiol Endocrinol Metab, 307 (7) ( 2014), pp. E539-E552, DOI: 10.1152/ajpendo.00276.2014
[[25]]
D.E. Kristensen, P.H. Albers, C. Prats, O. Baba, J.B. Birk, J.F. Wojtaszewski. Human muscle fibre type-specific regulation of AMPK and downstream targets by exercise. J Physiol, 593 (8) ( 2015), pp. 2053-2069, DOI: 10.1113/jphysiol.2014.283267
[[26]]
E.B. Marliss, M. Vranic. Intense exercise has unique effects on both insulin release and its roles in glucoregulation: implications for diabetes. Diabetes, 51 (Suppl 1) ( 2002), pp. S271-S283
[[27]]
T.D. Scribbans, B.A. Edgett, K. Vorobej, et al.. Fibre-specific responses to endurance and low volume high intensity interval training: striking similarities in acute and chronic adaptation. PLoS One, 9 (6) ( 2014), Article e98119, DOI: 10.1371/journal.pone.0098119
[[28]]
K.A. Burgomaster, G.J. Heigenhauser, M.J. Gibala. Effect of short-term sprint interval training on human skeletal muscle carbohydrate metabolism during exercise and time-trial performance. J Appl Physiol, 100 (6) ( 2006), pp. 2041-2047, DOI: 10.1152/japplphysiol.01220.2005
[[29]]
T. Jue, D.L. Rothman, G.I. Shulman, B.A. Tavitian, R.A. DeFronzo, R.G. Shulman. Direct observation of glycogen synthesis in human muscle with 13C NMR. Proc Natl Acad Sci U S A, 86 (12) ( 1989), pp. 4489-4491
[[30]]
P.W. Hochachka, G.B. McClelland. Cellular metabolic homeostasis during large-scale change in ATP turnover rates in muscles. J Exp Biol, 200 (Pt 2) ( 1997), pp. 381-386
[[31]]
C.G. Perry, G.J. Heigenhauser, A. Bonen, L.L. Spriet. High-intensity aerobic interval training increases fat and carbohydrate metabolic capacities in human skeletal muscle. Appl Physiol Nutr Metabol, 33 (6) ( 2008), pp. 1112-1123, DOI: 10.1139/H08-097
[[32]]
E. Rampinini, A. Sassi, A. Azzalin, et al.. Physiological determinants of Yo-Yo intermittent recovery tests in male soccer players. Eur J Appl Physiol, 108 (2) ( 2010), pp. 401-409, DOI: 10.1007/s00421-009-1221-4
[[33]]
G. Dupont, S. Berthoin. Time spent at a high percentage of V˙O2max for short intermittent runs: active versus passive recovery. Can J Appl Physiol, 29 (Suppl) ( 2004), pp. S3-S16
[[34]]
L.V. Billat. Use of blood lactate measurements for prediction of exercise performance and for control of training. Recommendations for long-distance running. Sport Med, 22 (3) ( 1996), pp. 157-175, DOI: 10.2165/00007256-199622030-00003
[[35]]
R.A. Conwit, D. Stashuk, B. Tracy, M. McHugh, W.F. Brown, E.J. Metter. The relationship of motor unit size, firing rate and force. Clin Neurophysiol, 110 (7) ( 1999), pp. 1270-1275
[[36]]
D.J. Bishop, C. Granata, N. Eynon. Can we optimise the exercise training prescription to maximise improvements in mitochondria function and content?. Biochim Biophys Acta, 1840 (4) ( 2014), pp. 1266-1275, DOI: 10.1016/j.bbagen.2013.10.012
[[37]]
C.W. Taylor, S.A. Ingham, J.E. Hunt, N.R. Martin, J.S. Pringle, R.A. Ferguson. Exercise duration-matched interval and continuous sprint cycling induce similar increases in AMPK phosphorylation, PGC-1alpha and VEGF mRNA expression in trained individuals. Eur J Appl Physiol, 116 (8) ( 2016), pp. 1445-1454, DOI: 10.1007/s00421-016-3402-2
[[38]]
Y. Kilian, U.F. Wehmeier, P. Wahl, J. Mester, T. Hilberg, B. Sperlich.Acute response of circulating vascular regulating MicroRNAs during and after high-intensity and high-volume cycling in children. Front Physiol, 7 ( 2016), p. 92, DOI: 10.3389/fphys.2016.00092
[[39]]
F.N. Daussin, J. Zoll, S.P. Dufour, et al.. Effect of interval versus continuous training on cardiorespiratory and mitochondrial functions: relationship to aerobic performance improvements in sedentary subjects. Am J Physiol Regul Integr Comp Physiol, 295 (1) ( 2008), pp. R264-R272, DOI: 10.1152/ajpregu.00875.2007
[[40]]
R. Tan, J.P. Nederveen, J.B. Gillen, et al.. Skeletal muscle fiber-type-specific changes in markers of capillary and mitochondrial content after low-volume interval training in overweight women. Phys Rep, 6 (5) ( 2018), DOI: 10.14814/phy2.13597
[[41]]
R.A. Casuso, J. Plaza-Diaz, F.J. Ruiz-Ojeda, et al.. High-intensity high-volume swimming induces more robust signaling through PGC-1alpha and AMPK activation than sprint interval swimming in m. triceps brachii. PLoS One, 12 (10) ( 2017), Article e0185494, DOI: 10.1371/journal.pone.0185494
[[42]]
J.P. Little, A. Safdar, G.P. Wilkin, M.A. Tarnopolsky, M.J. Gibala. A practical model of low-volume high-intensity interval training induces mitochondrial biogenesis in human skeletal muscle: potential mechanisms. J Physiol, 588 (Pt 6) ( 2010), pp. 1011-1022, DOI: 10.1113/jphysiol.2009.181743
[[43]]
E.L. Martins, J.C. Ricardo, E. de-Souza-Ferreira, J. Camacho-Pereira, D. Ramos-Filho, A. Galina. Rapid regulation of substrate use for oxidative phosphorylation during a single session of high intensity interval or aerobic exercises in different rat skeletal muscles. Comp Biochem Physiol B Biochem Mol Biol, 217 ( 2018), pp. 40-50, DOI: 10.1016/j.cbpb.2017.11.013
[[44]]
K.A. Burgomaster, S.C. Hughes, G.J. Heigenhauser, S.N. Bradwell, M.J. Gibala. Six sessions of sprint interval training increases muscle oxidative potential and cycle endurance capacity in humans. J Appl Physiol, 98 (6) ( 2005), pp. 1985-1990, DOI: 10.1152/japplphysiol.01095.2004
[[45]]
F.N. Daussin, E. Ponsot, S.P. Dufour, et al.. Improvement of V˙O2max by cardiac output and oxygen extraction adaptation during intermittent versus continuous endurance training. Eur J Appl Physiol, 101 (3) ( 2007), pp. 377-383, DOI: 10.1007/s00421-007-0499-3
[[46]]
M.J. MacInnis, E. Zacharewicz, B.J. Martin, et al.. Superior mitochondrial adaptations in human skeletal muscle after interval compared to continuous single-leg cycling matched for total work. J Physiol, 595 (9) ( 2017), pp. 2955-2968, DOI: 10.1113/JP272570
[[47]]
J.R. Trombold, K.M. Christmas, D.R. Machin, I.Y. Kim, E.F. Coyle. Acute high-intensity endurance exercise is more effective than moderate-intensity exercise for attenuation of postprandial triglyceride elevation. J Appl Physiol, 114 (6) ( 2013), pp. 792-800, DOI: 10.1152/japplphysiol.01028.2012
[[48]]
M.J. Gibala, J.P. Little, M. van Essen, et al.. Short-term sprint interval versus traditional endurance training: similar initial adaptations in human skeletal muscle and exercise performance. J Physiol, 575 (Pt 3) ( 2006), pp. 901-911, DOI: 10.1113/jphysiol.2006.112094
[[49]]
K. Burkewitz, Y. Zhang, W.B. Mair. AMPK at the nexus of energetics and aging. Cell Metabol, 20 (1) ( 2014), pp. 10-25, DOI: 10.1016/j.cmet.2014.03.002
[[50]]
B. Xiao, R. Heath, P. Saiu, et al.. Structural basis for AMP binding to mammalian AMP-activated protein kinase. Nature, 449 (7161) ( 2007), pp. 496-500, DOI: 10.1038/nature06161
[[51]]
J.T. Treebak, J.B. Birk, A.J. Rose, B. Kiens, E.A. Richter, J.F. Wojtaszewski. AS 160 phosphorylation is associated with activation of alpha2beta2gamma1- but not alpha2beta2gamma3-AMPK trimeric complex in skeletal muscle during exercise in humans. Am J Physiol Endocrinol Metab, 292 (3) ( 2007), pp. E715-E722, DOI: 10.1152/ajpendo.00380.2006
[[52]]
N.J. Hoffman, B.L. Parker, R. Chaudhuri, et al.. Global phosphoproteomic analysis of human skeletal muscle reveals a network of exercise-regulated kinases and AMPK substrates. Cell Metabol, 22 (5) ( 2015), pp. 922-935, DOI: 10.1016/j.cmet.2015.09.001
[[53]]
R.S. Lee-Young, B.J. Canny, D.E. Myers, G.K. McConell. AMPK activation is fiber type specific in human skeletal muscle: effects of exercise and short-term exercise training. J Appl Physiol, 107 (1) ( 2009), pp. 283-289, DOI: 10.1152/japplphysiol.91208.2008
[[54]]
N. Fujii, T. Hayashi, M.F. Hirshman, et al.. Exercise induces isoform-specific increase in 5'AMP-activated protein kinase activity in human skeletal muscle. Biochem Biophys Res Commun, 273 (3) ( 2000), pp. 1150-1155, DOI: 10.1006/bbrc.2000.3073
[[55]]
J.B. Birk, J.F. Wojtaszewski. Predominant alpha2/beta2/gamma3 AMPK activation during exercise in human skeletal muscle. J Physiol, 577 (Pt 3) ( 2006), pp. 1021-1032, DOI: 10.1113/jphysiol.2006.120972
[[56]]
S.B. Jorgensen, J.F. Wojtaszewski, B. Viollet, et al.. Effects of alpha-AMPK knockout on exercise-induced gene activation in mouse skeletal muscle. FASEB J, 19 (9) ( 2005), pp. 1146-1148, DOI: 10.1096/fj.04-3144fje
[[57]]
E.M. Capes, R. Loaiza, H.H. Valdivia.Ryanodine receptors. Skelet Muscle, 1 (1) ( 2011), p. 18, DOI: 10.1186/2044-5040-1-18
[[58]]
N. Place, N. Ivarsson, T. Venckunas, et al.. Ryanodine receptor fragmentation and sarcoplasmic reticulum Ca2+ leak after one session of high-intensity interval exercise. Proc Natl Acad Sci U S A, 112 (50) ( 2015), pp. 15492-15497, DOI: 10.1073/pnas.1507176112
[[59]]
E. Koltai, Z. Bori, P. Osvath, et al.. Master athletes have higher miR-7, SIRT3 and SOD 2 expression in skeletal muscle than age-matched sedentary controls. Redox Biol., 19 ( 2018), pp. 46-51, DOI: 10.1016/j.redox.2018.07.022
[[60]]
J. Brandauer, M.A. Andersen, H. Kellezi, et al.. AMP-activated protein kinase controls exercise training- and AICAR-induced increases in SIRT3 and MnSOD. Front Physiol, 6 ( 2015), p. 85, DOI: 10.3389/fphys.2015.00085
[[61]]
H. Wu, S.B. Kanatous, F.A. Thurmond, et al.. Regulation of mitochondrial biogenesis in skeletal muscle by CaMK. Science, 296 (5566) ( 2002), pp. 349-352, DOI: 10.1126/science.1071163
[[62]]
D.P. Kelly, R.C. Scarpulla. Transcriptional regulatory circuits controlling mitochondrial biogenesis and function. Genes Dev, 18 (4) ( 2004), pp. 357-368, DOI: 10.1101/gad.1177604
[[63]]
Z. Radak, Z. Zhao, E. Koltai, H. Ohno, M. Atalay. Oxygen consumption and usage during physical exercise: the balance between oxidative stress and ROS-dependent adaptive signaling. Antioxidants Redox Signal, 18 (10) ( 2013), pp. 1208-1246, DOI: 10.1089/ars.2011.4498
[[64]]
S.A. Hawley, D.A. Pan, K.J. Mustard, et al.. Calmodulin-dependent protein kinase kinase-beta is an alternative upstream kinase for AMP-activated protein kinase. Cell Metabol, 2 (1) ( 2005), pp. 9-19, DOI: 10.1016/j.cmet.2005.05.009
[[65]]
C. Ye, D. Zhang, L. Zhao, et al.. CaMKK 2 suppresses muscle regeneration through the inhibition of myoblast proliferation and differentiation. Int J Mol Sci, 17 (10) ( 2016), DOI: 10.3390/ijms17101695
[[66]]
S. Summermatter, R. Thurnheer, G. Santos, et al.. Remodeling of calcium handling in skeletal muscle through PGC-1alpha: impact on force, fatigability, and fiber type. Am J Physiol Cell Physiol, 302 (1) ( 2012), pp. C88-C99, DOI: 10.1152/ajpcell.00190.2011
[[67]]
R.C. Scarpulla, R.B. Vega, D.P. Kelly. Transcriptional integration of mitochondrial biogenesis. Trends Endocrinol Metab, 23 (9) ( 2012), pp. 459-466, DOI: 10.1016/j.tem.2012.06.006
[[68]]
H.C. Chang, L. Guarente.SIRT1 and other sirtuins in metabolism. Trends Endocrinol Metab, 25 (3) ( 2014), pp. 138-145, DOI: 10.1016/j.tem.2013.12.001
[[69]]
R.C. Scarpulla, R.B. Vega, D.P. Kelly. Transcriptional integration of mitochondrial biogenesis. Trends Endocrinol Metab, 23 (9) ( 2012), pp. 459-466, DOI: 10.1016/j.tem.2012.06.006
[[70]]
H. Islam, B.A. Edgett, B.J. Gurd. Coordination of mitochondrial biogenesis by PGC-1alpha in human skeletal muscle: a re-evaluation. Metabolism, 79 ( 2018), pp. 42-51, DOI: 10.1016/j.metabol.2017.11.001
[[71]]
B. Egan, B.P. Carson, P.M. Garcia-Roves, et al.. Exercise intensity-dependent regulation of peroxisome proliferator-activated receptor coactivator-1 mRNA abundance is associated with differential activation of upstream signalling kinases in human skeletal muscle. J Physiol, 588 (Pt 10) ( 2010), pp. 1779-1790, DOI: 10.1113/jphysiol.2010.188011
[[72]]
V. Martinez-Redondo, A.T. Pettersson, J.L. Ruas. The hitchhiker's guide to PGC-1alpha isoform structure and biological functions. Diabetologia, 58 (9) ( 2015), pp. 1969-1977, DOI: 10.1007/s00125-015-3671-z
[[73]]
M. Tadaishi, S. Miura, Y. Kai, et al.. Effect of exercise intensity and AICAR on isoform-specific expressions of murine skeletal muscle PGC-1alpha mRNA: a role of beta(2)-adrenergic receptor activation. Am J Physiol Endocrinol Metab, 300 (2) ( 2011), pp. E341-E349, DOI: 10.1152/ajpendo.00400.2010
[[74]]
J.L. Ruas, J.P. White, R.R. Rao, et al.. A PGC-1alpha isoform induced by resistance training regulates skeletal muscle hypertrophy. Cell, 151 (6) ( 2012), pp. 1319-1331, DOI: 10.1016/j.cell.2012.10.050
[[75]]
N. Brandt, M.M. Dethlefsen, J. Bangsbo, H. Pilegaard. PGC-1alpha and exercise intensity dependent adaptations in mouse skeletal muscle. PLoS One, 12 (10) ( 2017), Article e0185993, DOI: 10.1371/journal.pone.0185993
[[76]]
M.J. Gibala, S.L. McGee, A.P. Garnham, K.F. Howlett, R.J. Snow, M. Hargreaves. Brief intense interval exercise activates AMPK and p38 MAPK signaling and increases the expression of PGC-1alpha in human skeletal muscle. J Appl Physiol, 106 (3) ( 2009), pp. 929-934, DOI: 10.1152/japplphysiol.90880.2008
[[77]]
J.P. Little, A. Safdar, D. Bishop, M.A. Tarnopolsky, M.J. Gibala. An acute bout of high-intensity interval training increases the nuclear abundance of PGC-1alpha and activates mitochondrial biogenesis in human skeletal muscle. Am J Physiol Regul Integr Comp Physiol, 300 (6) ( 2011), pp. R1303-R1310, DOI: 10.1152/ajpregu.00538.2010
[[78]]
F.H. Li, T. Li, J.Y. Ai, et al.. Beneficial autophagic activities, mitochondrial function, and metabolic phenotype Adaptations promoted by high-intensity interval training in a rat model. Front Physiol, 9 ( 2018), p. 571, DOI: 10.3389/fphys.2018.00571
[[79]]
S. Summermatter, G. Santos, J. Perez-Schindler, C. Handschin. Skeletal muscle PGC-1alpha controls whole-body lactate homeostasis through estrogen-related receptor alpha-dependent activation of LDH B and repression of LDH A. Proc Natl Acad Sci U S A, 110 (21) ( 2013), pp. 8738-8743, DOI: 10.1073/pnas.1212976110
[[80]]
M. Fiorenza, T.P. Gunnarsson, M. Hostrup, et al.. Metabolic stress-dependent regulation of the mitochondrial biogenic molecular response to high-intensity exercise in human skeletal muscle. J Physiol, 596 (14) ( 2018), pp. 2823-2840, DOI: 10.1113/JP275972
[[81]]
C. Canto, K.J. Menzies, J. Auwerx. NAD(+) metabolism and the control of energy homeostasis: a balancing act between mitochondria and the nucleus. Cell Metabol, 22 (1) ( 2015), pp. 31-53, DOI: 10.1016/j.cmet.2015.05.023
[[82]]
S. Nemoto, M.M. Fergusson, T. Finkel. SIRT 1 functionally interacts with the metabolic regulator and transcriptional coactivator PGC-1{alpha}. J Biol Chem, 280 (16) ( 2005), pp. 16456-16460, DOI: 10.1074/jbc.M501485200
[[83]]
J.T. Rodgers, C. Lerin, W. Haas, S.P. Gygi, B.M. Spiegelman, P. Puigserver. Nutrient control of glucose homeostasis through a complex of PGC-1alpha and SIRT1. Nature, 434 (7029) ( 2005), pp. 113-118, DOI: 10.1038/nature03354
[[84]]
A.T. White, S. Schenk. NAD(+)/NADH and skeletal muscle mitochondrial adaptations to exercise. Am J Physiol Endocrinol Metab, 303 (3) ( 2012), pp. E308-E321, DOI: 10.1152/ajpendo.00054.2012
[[85]]
H.J. Green, S. Jones, M. Ball-Burnett, B. Farrance, D. Ranney. Adaptations in muscle metabolism to prolonged voluntary exercise and training. J Appl Physiol, 78 (1) ( 1995), pp. 138-145, DOI: 10.1152/jappl.1995.78.1.138
[[86]]
D. Morales-Alamo, J.G. Ponce-Gonzalez, A. Guadalupe-Grau, et al.. Critical role for free radicals on sprint exercise-induced CaMKII and AMPKalpha phosphorylation in human skeletal muscle. J Appl Physiol, 114 (5) ( 2013), pp. 566-577, DOI: 10.1152/japplphysiol.01246.2012
[[87]]
S.M. Phillips, H.J. Green, M.A. Tarnopolsky, G.J. Heigenhauser, S.M. Grant. Progressive effect of endurance training on metabolic adaptations in working skeletal muscle. Am J Physiol, 270 (2 Pt 1) ( 1996), pp. E265-E272, DOI: 10.1152/ajpendo.1996.270.2.E265
[[88]]
H. Lollgen, T. Graham, G. Sjogaard. Muscle metabolites, force, and perceived exertion bicycling at varying pedal rates. Med Sci Sport Exerc, 12 (5) ( 1980), pp. 345-351
[[89]]
C. Canto, Z. Gerhart-Hines, J.N. Feige, et al.. AMPK regulates energy expenditure by modulating NAD+ metabolism and SIRT1 activity. Nature, 458 (7241) ( 2009), pp. 1056-1060, DOI: 10.1038/nature07813
[[90]]
Y. Li, R.K. Dash, J. Kim, G.M. Saidel, M.E. Cabrera. Role of NADH/NAD+ transport activity and glycogen store on skeletal muscle energy metabolism during exercise: in silico studies. Am J Physiol Cell Physiol, 296 (1) ( 2009), pp. C25-C46, DOI: 10.1152/ajpcell.00094.2008
[[91]]
L.R. Stein, S. Imai. The dynamic regulation of NAD metabolism in mitochondria. Trends Endocrinol Metab, 23 (9) ( 2012), pp. 420-428, DOI: 10.1016/j.tem.2012.06.005
[[92]]
T. Graham, G. Sjogaard, H. Lollgen, B. Saltin. NAD in muscle of man at rest and during exercise. Pflüg Arch, 376 (1) ( 1978), pp. 35-39
[[93]]
B.J. Gurd, C.G. Perry, G.J. Heigenhauser, L.L. Spriet, A. Bonen. High-intensity interval training increases SIRT1 activity in human skeletal muscle. Appl Physiol Nutr Metabol, 35 (3) ( 2010), pp. 350-357, DOI: 10.1139/H10-030
[[94]]
R. Nemes, E. Koltai, A.W. Taylor, K. Suzuki, F. Gyori, Z. Radak. Reactive oxygen and nitrogen species regulate key metabolic, anabolic, and catabolic pathways in skeletal muscle. Antioxidants, 7 (7) ( 2018), DOI: 10.3390/antiox7070085
[[95]]
S.K. Powers, Z. Radak, L.L. Ji. Exercise-induced oxidative stress: past, present and future. J Physiol, 594 (18) ( 2016), pp. 5081-5092, DOI: 10.1113/JP270646
[[96]]
L.F. Ferreira, O. Laitano. Regulation of NADPH oxidases in skeletal muscle. Free Radic Biol Med, 98 ( 2016), pp. 18-28, DOI: 10.1016/j.freeradbiomed.2016.05.011
[[97]]
J.W. Rush.Exercising an option to prevent age related decline of vascular BH4 and uncoupling of eNOS. J Physiol, 587 (Pt 15) ( 2009), p. 3755, DOI: 10.1113/jphysiol.2009.177261
[[98]]
S. Sachdev, K.J. Davies. Production, detection, and adaptive responses to free radicals in exercise. Free Radic Biol Med, 44 (2) ( 2008), pp. 215-223, DOI: 10.1016/j.freeradbiomed.2007.07.019
[[99]]
S.K. Powers, M.J. Jackson. Exercise-induced oxidative stress: cellular mechanisms and impact on muscle force production. Physiol Rev, 88 (4) ( 2008), pp. 1243-1276, DOI: 10.1152/physrev.00031.2007
[[100]]
D. Ramos-Filho, G. Chicaybam, E. de-Souza-Ferreira, et al.. High intensity interval training (HIIT) induces specific changes in respiration and electron leakage in the mitochondria of different rat skeletal muscles. PLoS One, 10 (6) ( 2015), Article e0131766, DOI: 10.1371/journal.pone.0131766
[[101]]
Z. Radak, K. Asano, M. Inoue, et al.. Superoxide dismutase derivative reduces oxidative damage in skeletal muscle of rats during exhaustive exercise. J Appl Physiol, 79 (1) ( 1995), pp. 129-135, DOI: 10.1152/jappl.1995.79.1.129
[[102]]
K.J. Davies, A.T. Quintanilha, G.A. Brooks, L. Packer. Free radicals and tissue damage produced by exercise. Biochem Biophys Res Commun, 107 (4) ( 1982), pp. 1198-1205
[[103]]
D. Radak, I. Resanovic, E.R. Isenovic. Link between oxidative stress and acute brain ischemia. Angiology, 65 (8) ( 2014), pp. 667-676, DOI: 10.1177/0003319713506516
[[104]]
Z. Radak, N. Hart, L. Sarga, et al.. Exercise plays a preventive role against Alzheimer's disease. J Alzheimer's Dis, 20 (3) ( 2010), pp. 777-783, DOI: 10.3233/JAD-2010-091531
[[105]]
E.J. Henriksen. Effects of H2O2 on insulin signaling the glucose transport system in mammalian skeletal muscle. Methods Enzymol, 528 ( 2013), pp. 269-278, DOI: 10.1016/B978-0-12-405881-1.00016-1
[[106]]
A.J. Trewin, L.S. Lundell, B.D. Perry, et al.. Effect of N-acetylcysteine infusion on exercise-induced modulation of insulin sensitivity and signaling pathways in human skeletal muscle. Am J Physiol Endocrinol Metab, 309 (4) ( 2015), pp. E388-E397, DOI: 10.1152/ajpendo.00605.2014
[[107]]
A. Contreras-Ferrat, P. Llanos, C. Vasquez, et al.. Insulin elicits a ROS-activated and an IP(3)-dependent Ca(2)(+) release, which both impinge on GLUT4 translocation. J Cell Sci, 127 (Pt 9) ( 2014), pp. 1911-1923, DOI: 10.1242/jcs.138982
[[108]]
D.L. Kellogg 3rd,K.M. McCammon, K.S. Hinchee-Rodriguez, M.L. Adamo, L.J. Roman. Neuronal nitric oxide synthase mediates insulin- and oxidative stress-induced glucose uptake in skeletal muscle myotubes. Free Radic Biol Med, 110 ( 2017), pp. 261-269, DOI: 10.1016/j.freeradbiomed.2017.06.018
[[109]]
I. Irrcher, V. Ljubicic, D.A. Hood. Interactions between ROS and AMP kinase activity in the regulation of PGC-1alpha transcription in skeletal muscle cells. Am J Physiol Cell Physiol, 296 (1) ( 2009), pp. C116-C123, DOI: 10.1152/ajpcell.00267.2007
[[110]]
V.N. Cunha, M. de Paula Lima, D. Motta-Santos, et al.. Role of exercise intensity on GLUT 4 content, aerobic fitness and fasting plasma glucose in type 2 diabetic mice. Cell Biochem Funct, 33 (7) ( 2015), pp. 435-442, DOI: 10.1002/cbf.3128
[[111]]
Z. Radak, H.Y. Chung, S. Goto. Systemic adaptation to oxidative challenge induced by regular exercise. Free Radic Biol Med, 44 (2) ( 2008), pp. 153-159, DOI: 10.1016/j.freeradbiomed.2007.01.029
[[112]]
F.H. Andrade, M.B. Reid, D.G. Allen, H. Westerblad. Effect of hydrogen peroxide and dithiothreitol on contractile function of single skeletal muscle fibres from the mouse. J Physiol, 509 (Pt 2) ( 1998), pp. 565-575
[[113]]
Z. Radak, F. Torma, I. Berkes, et al.. Exercise effects on physiological function during aging. Free Radic Biol Med ( 2018), DOI: 10.1016/j.freeradbiomed.2018.10.444
[[114]]
J. St-Pierre, S. Drori, M. Uldry, et al.. Suppression of reactive oxygen species and neurodegeneration by the PGC-1 transcriptional coactivators. Cell, 127 (2) ( 2006), pp. 397-408, DOI: 10.1016/j.cell.2006.09.024
[[115]]
L. Parker, A. Trewin, I. Levinger, C.S. Shaw, N.K. Stepto. Exercise-intensity dependent alterations in plasma redox status do not reflect skeletal muscle redox-sensitive protein signaling. J Sci Med Sport, 21 (4) ( 2018), pp. 416-421, DOI: 10.1016/j.jsams.2017.06.017
[[116]]
J.D. Bartlett, C. Hwa Joo, T.S. Jeong, et al.. Matched work high-intensity interval and continuous running induce similar increases in PGC-1alpha mRNA, AMPK, p38, and p53 phosphorylation in human skeletal muscle. J Appl Physiol, 112 (7) ( 2012), pp. 1135-1143, DOI: 10.1152/japplphysiol.01040.2011
[[117]]
E.G. Ciolac, E.A. Bocchi, L.A. Bortolotto, V.O. Carvalho, J.M. Greve, G.V. Guimaraes.Effects of high-intensity aerobic interval training vs. moderate exercise on hemodynamic, metabolic and neuro-humoral abnormalities of young normotensive women at high familial risk for hypertension. Hypertens Res, 33 (8) ( 2010), pp. 836-843, DOI: 10.1038/hr.2010.72
[[118]]
J. Edge, D. Bishop, C. Goodman. The effects of training intensity on muscle buffer capacity in females. Eur J Appl Physiol, 96 (1) ( 2006), pp. 97-105, DOI: 10.1007/s00421-005-0068-6
[[119]]
J. Helgerud, K. Hoydal, E. Wang, et al.. Aerobic high-intensity intervals improve V˙O2max more than moderate training. Med Sci Sport Exerc, 39 (4) ( 2007), pp. 665-671, DOI: 10.1249/mss.0b013e3180304570
[[120]]
C.L. Hwang, J.K. Yoo, H.K. Kim, et al.. Novel all-extremity high-intensity interval training improves aerobic fitness, cardiac function and insulin resistance in healthy older adults. Exp Gerontol, 82 ( 2016), pp. 112-119, DOI: 10.1016/j.exger.2016.06.009
[[121]]
J. Henriksson, J.S. Reitman. Quantitative measures of enzyme activities in type I and type II muscle fibres of man after training. Acta Physiol Scand, 97 (3) ( 1976), pp. 392-397, DOI: 10.1111/j.1748-1716.1976.tb10279.x
[[122]]
F.H. Baekkerud, F. Solberg, I.M. Leinan, U. Wisloff, T. Karlsen, O. Rognmo. Comparison of three popular exercise modalities on V O2max in overweight and obese. Med Sci Sport Exerc, 48 (3) ( 2016), pp. 491-498, DOI: 10.1249/MSS.0000000000000777
[[123]]
D.C. Poole, G.A. Gaesser. Response of ventilatory and lactate thresholds to continuous and interval training. J Appl Physiol, 58 (4) ( 1985), pp. 1115-1121, DOI: 10.1152/jappl.1985.58.4.1115
[[124]]
B. Saltin, K. Nazar, D.L. Costill, et al.. The nature of the training response; peripheral and central adaptations of one-legged exercise. Acta Physiol Scand, 96 (3) ( 1976), pp. 289-305, DOI: 10.1111/j.1748-1716.1976.tb10200.x

Accesses

Citations

Detail

Sections
Recommended

/