Effects of polygenes, parent–child relationship and frustration on junior high school students' aggressive behaviors

Minghao Zhang , Zhenli Jiang , Kedi Zhao , Yaohua Zhang , Min Xu , Xiaohui Xu

Psych Journal ›› 2024, Vol. 13 ›› Issue (2) : 265 -275.

PDF
Psych Journal ›› 2024, Vol. 13 ›› Issue (2) : 265 -275. DOI: 10.1002/pchj.717
ORIGINAL ARTICLE

Effects of polygenes, parent–child relationship and frustration on junior high school students' aggressive behaviors

Author information +
History +
PDF

Abstract

The effects of the interaction between polygenes and the parentchild relationship on junior high school students' aggressive behaviors were explored through the frameworks of gene-endophenotype-behavior and neurophysiological basis. A total of 892 junior high school students participated in this study. They were asked to complete self-reported questionnaires, and saliva samples were collected. Results showed that 5-HTTLPR, MAOA-uVNTR, COMT (rs4680), and Taq1 (rs1800497) of the DRD2 gene affected students' aggressive behaviors in an accumulative way. The polygenic risk score explained 3.4% of boys' aggression and 1.1% of girls' aggression. The interactions between polygenic risk score and parentchild conflict significantly affected the aggressive behaviors of male students, but did not show any significant effect on those of female students. The interactional effect of polygenic risk score and parentchild conflict on junior high school students' aggressive behaviors was completely mediated by frustration. However, the interaction effect of polygenic risk score and parentchild affinity on aggression was not affected by frustration. This study helps us better understand junior high school students' aggressive behaviors and promotes the prevention and correction of adolescents' problem behaviors.

Keywords

aggressive behaviors / frustration / junior high school students / parent–child relationship / polygenic risk score

Cite this article

Download citation ▾
Minghao Zhang, Zhenli Jiang, Kedi Zhao, Yaohua Zhang, Min Xu, Xiaohui Xu. Effects of polygenes, parent–child relationship and frustration on junior high school students' aggressive behaviors. Psych Journal, 2024, 13(2): 265-275 DOI:10.1002/pchj.717

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Aliev, F., Latendresse, S. J., Bacanu, S. A., Neale, M. C., & Dick, D. M. (2014). Testing for measured gene-environment interaction: Problems with the use of cross-product terms and a regression model reparameterization solution. Behavior Genetics, 44(2), 165–181.

[2]

Anderson, C. A., & Bushman, B. J. (2002). Human aggression. Annual Review of Psychology, 53, 27–51.

[3]

Armstrong-Carter, E., Wertz, J., & Domingue, B. W. (2021). Genetics and child development: Recent advances and their implications for developmental research. Child Development Perspectives, 15(1), 57–64.

[4]

Åslund, C., Comasco, E., Nordquist, N., Leppert, J., Oreland, L., & Nilsson, K. W. (2013). Self-reported family socioeconomic status, the 5-HTTLPR genotype, and delinquent behavior in a community-based adolescent population. Aggressive Behavior, 39(1), 52–63.

[5]

Beaver, K. M., Wright, J. P., De Lisi, M., Walsh, A., Vaughn, M. G., Boisvert, D., et al. (2007). A gene × gene interaction between DRD2 and DRD4 is associated with conduct disorder and antisocial behavior in males. Behavioral and Brain Functions, 3(1), 30.

[6]

Been, L. E., Gibbons, A. B., & Meisel, R. L. (2019). Towards a neurobiology of female aggression. Neuropharmacology, 156, 107451.

[7]

Belsky, J., & Beaver, K. M. (2011). Cumulative-genetic plasticity, parenting and adolescent self-regulation. Journal of Child Psychology and Psychiatry, 52(5), 619–626.

[8]

Belsky, J., Jonassaint, C., Pluess, M., Stanton, M., Brummett, B., & Williams, R. (2009). Vulnerability genes or plasticity genes? Molecular Psychiatry, 14(8), 746–754.

[9]

Bouchard, & Thomas, J. (2004). Genetic influence on human psychological traits. A survey. Current Directions in Psychological Science, 13(4), 148–151.

[10]

Buss, A. H., & Perry, M. (1992). The aggression questionnaire. Journal of Personality and Social Psychology, 63(3), 452–459.

[11]

Byrd, A. L., & Manuck, S. B. (2014). MAOA, childhood maltreatment, and antisocial behavior: Meta-analysis of a gene-environment interaction. Biological Psychiatry, 75(1), 9–17.

[12]

Carter, C. S. (2014). Oxytocin pathways and the evolution of human behavior. Annual Review of Psychology, 65, 17–39.

[13]

Caspi, A., McClay, J., Moffitt, T. E., Mill, J., Martin, J., Craig, I. W., Taylor, A., & Poulton, R. (2002). Role of genotype in the cycle of violence in maltreated children. Science, 297(5582), 851–854.

[14]

Chan, R. C. K., Yang, B., & Wang, Y. (2008). Application of endophenotype approach in psychiatric research. Psychological Science, 16(3), 378–391.

[15]

Chhangur, R. R., Overbeek, G., Verhagen, M., Weeland, J., Matthys, W., & Engels, R. C. M. E. (2015). DRD4 and DRD2 genes, parenting, and adolescent delinquency: Longitudinal evidence for a gene by environment interaction. Journal of Abnormal Psychology, 124(4), 791–802.

[16]

Cleveland, H. H., Schlomer, G. L., Vandenbergh, D. J., Feinberg, M., Greenberg, M., Spoth, R., Redmond, C., Shriver, M. D., Zaidi, A. A., & Hair, K. L. (2015). The conditioning of intervention effects on early adolescent alcohol use by maternal involvement and dopamine receptor D4 (DRD4) and serotonin transporter linked polymorphic region (5-HTTLPR) genetic variants. Development and Psychopathology, 27(1), 51–67.

[17]

Craig, I. W., & Halton, K. E. (2009). Genetics of human aggressive behaviour. Human Genetics, 126, 101–113.

[18]

Davies, P. T., & Cicchetti, D. (2014). How and why does the 5-HTTLPR gene moderate associations between maternal unresponsiveness and children's disruptive problems? Child Development, 85(2), 484–500.

[19]

De Laet, S., Colpin, H., van Leeuwen, K., Wim, V. D. N., Claes, S., Janssens, A., Goossens, L., & Verschueren, K. (2016). Teacher-student relationships and adolescent behavioral engagement and rule-breaking behavior: The moderating role of dopaminergic genes. Journal of School Psychology, 56, 13–25.

[20]

Ellis, L. K., & Rothbart, M. K. (2001). Revision of the early adolescent temperament questionnaire. Poster presented at the Biennial Meeting of the Society for Research in Child Development in Minneapolis, Minnesota.

[21]

Fernàndez-Castillo, N., & Cormand, B. (2016). Aggressive behavior in humans: Genes and pathways identified through association studies. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 171(5), 676–696.

[22]

Fine, A., Mahler, A., Simmons, C., Chen, C., Moyzis, R., & Cauffman, E. (2016). Relations between three dopaminergic system genes, school attachment, and adolescent delinquency. Developmental Psychology, 52(11), 1893–1903.

[23]

Furman, W., & Buhrmester, D. (1985). Children's perceptions of the personal relationships in their social networks. Developmental Psychology, 21(6), 1016–1024.

[24]

Harden, K. P., & Koellinger, P. D. (2020). Using genetics for social science. Nature Human Behaviour, 4, 567–576.

[25]

IBM Corp. (2013). SPSS Statistic for Windows (Version 22.0). IBM Corp.

[26]

Jolicoeur-Martineau, A., Belsky, J., Szekely, E., Widaman, K., Pluess, M., Greenwood, C., & Wazana, A. (2017). Distinguishing differential susceptibility, diathesis-stress, and vantage sensitivity: Beyond the single gene and environment model. Development and Psychopathology, 32(1), 73–83.

[27]

Kim-Cohen, J., Caspi, A., Taylor, A., Williams, B., Newcombe, R., Craig, I. W., & Moffitt, T. E. (2006). MAOA, maltreatment, and gene–environment interaction predicting children's mental health: New evidence and a meta-analysis. Molecular Psychiatry, 11, 903–913.

[28]

Langevin, S., Mascheretti, S., Côté, S. M., Vitaro, F., Boivin, M., Turecki, G., Tremblay, R. E., & Ouellet-Morin, I. (2019). Cumulative risk and protection effect of serotonergic genes on male antisocial behaviour: Results from a prospective cohort assessed in adolescence and early adulthood. The British Journal of Psychiatry, 214(3), 137–145.

[29]

Li, J., Tang, L., Wang, Y., Li, F., Bao, M., Xiang, J., Lei, D., & Tang, B. (2017). Genetic associations and interactions between the NR3C1 (GR) and NR3C2 (MR) genes and aggressive behavior in a central south Chinese Han population. Genetic Testing and Molecular Biomarkers, 21(8), 497–505.

[30]

Malik, A. I., Zai, C. C., Abu, Z., Nowrouzi, B., & Beitchman, J. H. (2012). The role of oxytocin and oxytocin receptor gene variants in childhood-onset aggression. Genes, Brain, and Behavior, 11(5), 545–551.

[31]

Muthén, L. K., & Muthén, B. O. (1998-2017). Mplus user's guide (7th ed.). Muthén & Muthén.

[32]

Nikolova, Y. S., Ferrell, R. E., Manuck, S. B., & Hariri, A. R. (2011). Multilocus genetic profile for dopamine signaling predicts ventral striatum reactivity. Neuropsychopharmacology, 36, 1940–1947.

[33]

Pawliczek, C. M., Derntl, B., Kellermann, T., Gur, R. C., Schneider, F., & Habel, U. (2013). Anger under control: Neural correlates of frustration as a function of trait aggression. PLoS One, 8(10), e78503.

[34]

Pluess, M. (2017). Vantage sensitivity: Environmental sensitivity to positive experiences as a function of genetic differences. Journal of Personality, 85(1), 38–50.

[35]

Pluess, M., & Belsky, J. (2013). Vantage sensitivity: Individual differences in response to positive experiences. Psychological Bulletin, 139(4), 901–916.

[36]

Raffington, L., Mallard, T., & Harden, K. P. (2020). Polygenic scores in developmental psychology: Invite genetics in, leave biodeterminism behind. Annual Review of Developmental Psychology, 2(1), 389–411.

[37]

Reif, A., Rösler, M., Freitag, C. M., Schneider, M., Eujen, A., Kissling, C., Wenzler, D., Jacob, C. P., Retz-Junginger, P., Thome, J., Lesch, K., & Retz, W. (2007). Nature and nurture predispose to violent behavior: Serotonergic genes and adverse childhood environment. Neuropsychopharmacology, 32, 2375–2383.

[38]

Rohner, R. P., & Britner, P. A. (2002). Worldwide mental health correlates of parental acceptance-rejection: Review of cross-cultural and intracultural evidence. Cross-Cultural Research, 36(1), 16–47.

[39]

Rosell, D. R., & Siever, L. J. (2015). The neurobiology of aggression and violence. CNS Spectrums, 20(3), 254–279.

[40]

Sentse, M., & Laird, R. D. (2010). Parent–child relationships and dyadic friendship experiences as predictors of behavior problems in early adolescence. Journal of Clinical Child & Adolescent Psychology, 39(6), 873–884.

[41]

Shi, Y. Y., & He, L. (2005). SHEsis, a powerful software platform for analyses of linkage disequilibrium, haplotype construction, and genetic association at polymorphism loci. Cell Research, 15(2), 97–98.

[42]

Siever, L. J. (2008). Neurobiology of aggression and violence. American Journal of Psychiatry, 165(4), 429–442.

[43]

Tielbeek, J. J., Johansson, A., Polderman, T. J., Rautiainen, M. R., Jansen, P., Taylor, M., Tong, X., Lu, Q., Burt, A. S., Tiemeier, H., Viding, E., Plomin, R., Martin, N. G., Heath, A. C., Madden, P. A. F., Montgomery, G., Beaver, K. M., Waldman, I., Gelernter, J., … Posthuma, D. (2017). Genome-wide association studies of a broad spectrum of antisocial behavior. JAMA Psychiatry, 74(12), 1242–1250.

[44]

Tielbeek, J. J., Medland, S. E., Benyamin, B., Byrne, E. M., Heath, A. C., Madden, P. A., Martin, N. G., Wray, N. R., Verweij, K. J. H. (2012). Unraveling the genetic etiology of adult antisocial behavior: A genome-wide association study. PLoS One, 7(10), e45086.

[45]

Tuvblad, C., & Baker, L. A. (2011). Human aggression across the lifespan: Genetic propensities and environmental moderators. Advances in Genetics, 75, 171–214.

[46]

Uchiyama, R., Spicer, R., & Muthukrishna, M. (2021). Cultural evolution of genetic heritability. Behavioral and Brain Sciences, 45, e152.

[47]

Ullsperger, M. (2010). Genetic association studies of performance monitoring and learning from feedback: The role of dopamine and serotonin. Neuroscience and Biobehavioral Reviews, 34(5), 649–659.

[48]

van Goozen, S. H., Fairchild, G., Snoek, H., & Harold, G. T. (2007). The evidence for a neurobiological model of childhood antisocial behavior. Psychological Bulletin, 133(1), 149–182.

[49]

Waller, R., Corral-Frias, N. S., Vannucci, B., Bogdan, R., Knodt, A. R., Hariri, A. R., & Hyde, L. W. (2016). An oxytocin receptor polymorphism predicts amygdala reactivity and antisocial behavior in men. Social Cognitive and Affective Neuroscience, 11(8), 1218–1226.

[50]

Zhang, Y., Ming, Q. S., Yi, J. Y., Wang, X., Chai, Q. L., & Yao, S. Q. (2017). Gene-gene-environment interactions of serotonin transporter, monoamine oxidase a and childhood maltreatment predict aggressive behavior in Chinese adolescents. Frontiers in Behavioral Neuroscience, 11, 17.

[51]

Zhao, J. X., Liu, X., & Zhang, W. X. (2013). Peer rejection, peer acceptance and psychological adjustment of left-behind children: The roles of parental cohesion and children's cultural beliefs about adversity. Acta Psychologica Sinica, 45(7), 797–810.

RIGHTS & PERMISSIONS

2023 The Authors. PsyCh Journal published by Institute of Psychology, Chinese Academy of Sciences and John Wiley & Sons Australia, Ltd.

AI Summary AI Mindmap
PDF

148

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/