Surface Functionalized Plasmonic Sensors for Uric Acid Detection With Gold-Graphene Stacked Nanocomposites

Olabisi Abdullahi Onifade , Dinie Dayana Mohamad Azri , Muhammad Hafiz Abu Bakar , Mohammed Thamer Alresheedi , Eng Khoon Ng , Mohd Adzir Mahdi , Ahmad Shukri Muhammad Noor

Photonic Sensors ›› 2025, Vol. 15 ›› Issue (1) : 250132

PDF
Photonic Sensors ›› 2025, Vol. 15 ›› Issue (1) : 250132 DOI: 10.1007/s13320-024-0751-z
Regular

Surface Functionalized Plasmonic Sensors for Uric Acid Detection With Gold-Graphene Stacked Nanocomposites

Author information +
History +
PDF

Abstract

This study presented a surface-functionalized sensor probe using 3-aminopropyltriethoxysilane (APTES) self-assembled monolayers on a Kretschmann-configured plasmonic platform. The probe featured stacked nanocomposites of gold (via sputtering) and graphene quantum dots (GQD, via spin-coating) for highly sensitive and accurate uric acid (UA) detection within the physiological ranges. Characterization encompassed the field emission scanning electron microscopy for detailed imaging, energy-dispersive X-ray spectroscopy for elemental analysis, and Fourier transform infrared spectroscopy for molecular identification. Surface functionalization increased sensor sensitivity by 60.64%, achieving 0.0221 °/(mg/dL) for the gold-GQD probe and 0.035 5 °/(mg/dL) for the gold-APTES-GQD probe, with linear correlation coefficients of 0.8249 and 0.8509, respectively. The highest sensitivity was 0.070 6 °/(mg/dL), with a linear correlation coefficient of 0.993 and a low limit of detection of 0.2 mg/dL. Furthermore, binding affinity increased dramatically, with the Langmuir constants of 14.29 µM−1 for the gold-GQD probe and 0.000 1 µM−1 for the gold-APTES-GQD probe, representing a 142 900-fold increase. The probe demonstrated notable reproducibility and repeatability with relative standard deviations of 0.166% and 0.013%, respectively, and exceptional temporal stability of 99.66%. These findings represented a transformative leap in plasmonic UA sensors, characterized by enhanced precision, reliability, sensitivity, and increased surface binding capacity, synergistically fostering unprecedented practicality.

Keywords

Plasmon / nanocomposite / gold-graphene quantum dot / uric acid, functionalize / sensor

Cite this article

Download citation ▾
Olabisi Abdullahi Onifade, Dinie Dayana Mohamad Azri, Muhammad Hafiz Abu Bakar, Mohammed Thamer Alresheedi, Eng Khoon Ng, Mohd Adzir Mahdi, Ahmad Shukri Muhammad Noor. Surface Functionalized Plasmonic Sensors for Uric Acid Detection With Gold-Graphene Stacked Nanocomposites. Photonic Sensors, 2025, 15(1): 250132 DOI:10.1007/s13320-024-0751-z

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Jin M, Yang F, Yang I, Yin Y, Luo J J, Wang H, et al. Hyperuricemia and vascular diseases. Front Biosci, 2012, 17(2): 656-669

[2]

El Ridi R, Tallima H. Physiological functions and pathogenic potential of uric acid: a review. Journal of Advances Research, 2017, 8(5): 487-493

[3]

Yu W, Cheng J D. Uric acid and cardiovascular disease: an update from molecular mechanism to clinical perspective. Front Pharmacol, 2020, 16(11): 582680

[4]

Ames B N, Cathcart R, Schwiers E, Hochstein P. Uric acid provides an antioxidant defense in humans against oxidant- and radical-caused aging and cancer: a hypothesis. Proceedings of the National Academy of Sciences of the United States of America, 1981, 78(11): 6858-6862

[5]

Maiuolo J, Oppedisano F, Gratteri S, Muscoli C, Mollace V. Regulation of uric acid metabolism and excretion. International Journal of Cardiology, 2016, 213: 8-14

[6]

Braga F, Pasqualetti S, Ferraro S, Panteghini M. Hyperuricemia as risk factor for coronary heart disease incidence and mortality in the general population: a systematic review and meta-analysis. Clinical Chemistry and Laboratory Medicine, 2016, 54(1): 7-15

[7]

Boban M, Kocic G, Radenkovic S, Pavlovic R, Cvetkovic T, Deljanin-Ilic M, et al. Circulating purine compounds, uric acid, and xanthine oxidase/dehydrogenase relationship in essential hypertension and end stage renal disease. Renal Failure, 2014, 36(4): 613-618

[8]

Forman J P, Choi H, Curhan G C. Uric acid and insulin sensitivity and risk of hypertension. Archives Internal Medicine, 2009, 169(2): 155-162

[9]

Bjornstad P, Laffel L, Lynch J, El Ghormli L, Weinstock R S, Tollefsen S E, et al. Elevated serum uric acid is associated with greater risk for hypertension and diabetic kidney diseases in obese adolescents with type 2 diabetes: an observational analysis from the treatment options for type 2 diabetes in adolescents and youth (today) study. Diabetes Care, 2019, 42(6): 1120-1128

[10]

P. S. Adarakatti, K. Sureshkumar, and T. Ramakrishnappa, “Carbon nanomaterial-based sensors: an efficient tool in the environmental sectors,” Carbon Nanomaterials-Based Sensors: Emerging Research Trends in Devices and Applications, 2022: 149–165.

[11]

R. İlktaç and E. Henden, “Molecularly imprinted polymer-based optical sensors for pesticide determination,” Molecular Imprinting for Nanosensors and Other Sensing Applications, 2021: 93–115.

[12]

Eddaif L, Shaban A. Barhoum A, Altintas Z. Fundamentals of sensor technology. Advanced Sensor Technology: Biomedical, Environmental, and Construction Applications, 2023 17-49

[13]

Damborský P, Švitel J, Katrlík J. Optical biosensors. Essays Biochem, 2016, 60(1): 91-100

[14]

Dey D, Goswami T. Optical biosensors: a revolution towards quantum nanoscale electronics device fabrication. Journal of Biomedicine and Biotechnology, 2011, 2011: 348218

[15]

Law C S, Marsal L F, Santos A. Hussain C M. Electrochemically engineered nanoporous photonic crystal structures for optical sensing and biosensing. Handbook of Nanomaterials in Analytical Chemistry: Modern Trends in Analysis, 2019 201-226

[16]

Nejadmansouri M, Majdinasab M, Nunes G S, Marty J L. An overview of optical and electrochemical sensors and biosensors for analysis of antioxidants in food during the last 5 years. Sensors, 2021, 21(4): 1176

[17]

Akgönüllü S, Denizli A. Recent advances in optical biosensing approaches for biomarkers detection. Biosens Bioelectron, 2022, X12: 100269

[18]

Tai J, Fan S, Ding S, Ren L. Gold nanoparticles based optical biosensors for cancer biomarker proteins: a review of the current practices. Frontiers in Bioengineering and Biotechnology, 2022, 10: 877193

[19]

Son M H, Park S W, Sagong H Y, Jung Y K. Recent advances in electrochemical and optical biosensors for cancer biomarker detection. BioChip Journal, 2023, 17: 44-67

[20]

Haes A J, Chang L, Klein W L, Van Duyne R P. Detection of a biomarker for Alzheimer’s disease from synthetic and clinical samples using a nanoscale optical biosensor. Journal of the American Chemical Society, 2005, 127(7): 2264-2271

[21]

Gharatape A, Khosroushahi A Y. Optical biomarker-based biosensors for cancer/infectious disease medical diagnoses. Applied Immunohistochemistry and Molecular Morphology, 2019, 27(4): 278-286

[22]

Park J H, Cho Y W, Kim T H. Recent advances in surface plasmon resonance sensors for sensitive optical detection of pathogens. Biosensors, 2022, 12(3): 180

[23]

Zeni L, Perri C, Cennamo N, Arcadio F, D’Agostino G, Salmona M, et al. A portable optical-fibre-based surface plasmon resonance biosensor for the detection of therapeutic antibodies in human serum. Scientific Reports, 2020, 10: 11154

[24]

Mowbray S E, Amiri A M. A brief overview of medical fiber optic biosensors and techniques in the modification for enhanced sensing ability. Diagnostics, 2019, 9(1): 23

[25]

Singh L, Agarwal N, Barthwal H, Arya B, Singh T. Huerta-Cuellar G. Application of fiber optics in bio-sensing. Fiber Optics-Technology and Applications, 2021, London: IntechOpen

[26]

Camarca A, Varriale A, Capo A, Pennacchio A, Calabrese A, Giannattasio C, et al. Emergent biosensing technologies based on fluorescence spectroscopy and surface plasmon resonance. Sensors, 2021, 21(3): 906

[27]

Qu H, Fan C, Chen M, Zhang X, Yan Q, Wang Y, et al. Recent advances of fluorescent biosensors based on cyclic signal amplification technology in biomedical detection. Journal of Nanobiotechnology, 2021, 19: 403

[28]

Koveal D, Díaz-García C M, Yellen G. Fluorescent biosensors for neuronal metabolism and the challenges of quantitation. Current Opinion Neurobiology, 2020, 63: 111-121

[29]

Yang S, Zahn J D. Li D Q. Biosensors using surface-enhanced Raman scattering. Encyclopedia of Microfluidics and Nanofluidics, 2008, Boston: Springer 120-127

[30]

Notingher I. Raman spectroscopy cell-based biosensors. Sensors, 2007, 7(8): 1343-1358

[31]

Serebrennikova K V, Berlina A N, Sotnikov D V, Dzantiev B B, Zherdev A V. Raman scattering-based biosensing: new prospects and opportunities. Biosensors, 2021, 11(12): 512

[32]

Chauhan P, Bhargava A, Kumari R, Ratre P, Tiwari R, Srivastava R K, et al. Surface-enhanced Raman scattering biosensors for detection of oncomiRs in breast cancer. Drug Discovery Today, 2022, 27(8): 2121-2136

[33]

Pollet J, Delport F, Janssen K P F, Jans K, Maes G, Pfeiffer H, et al. Fiber optic SPR biosensing of DNA hybridization and DNA-protein interactions. Biosensors and Bioelectronics, 2009, 25(4): 864-869

[34]

Iwasaki Y, Horiuchi T, Niwa O. Detection of electrochemical enzymatic reactions by surface plasmon resonance measurement. Analytical Chemistry, 2001, 73(7): 1595-1598

[35]

Nguyen H H, Park J, Kang S, Kim M. Surface plasmon resonance: a versatile technique for biosensor applications. Sensors, 2015, 15(5): 10481-10510

[36]

Maurya J B, Prajapati Y K, Singh V, Saini J P, Tripathi R. Improved performance of the surface plasmon resonance biosensor based on graphene or MoS2 using silicon. Optics Communications, 2016, 359: 426-434

[37]

Aksimsek S, Jussila H, Sun Z. Graphene-MoS2-metal hybrid structures for plasmonic biosensors. Optics Communications, 2018, 428: 233-239

[38]

Rahman M S, Hasan M R, Rikta K A, Anower M S. A novel graphene coated surface plasmon resonance biosensor with tungsten disulfide (WS2) for sensing DNA hybridization. Optical Materials, 2018, 75: 567-573

[39]

Wijaya E, Lenaerts C, Maricot S, Hastanin J, Habraken S, Vilcot J P, et al. Surface plasmon resonance-based biosensors: from the development of different SPR structures to novel surface functionalization strategies. Current Opinion in Solid State and Materials Science, 2011, 15(5): 208-224

[40]

Howarter J A, Youngblood J P. Optimization of silica silanization by 3-aminopropyltriethoxysilane. Langmuir, 2006, 22(26): 11142-11147

[41]

Vandenberg E T, Bertilsson L, Liedberg B, Uvdal K, Erlandsson R, Elwing H, et al. Structure of 3-aminopropyl triethoxy silane on silicon oxide. Journal of Colloid and Interface Science, 1991, 147(1): 103-118

[42]

Wang W, Vaughn M W. Morphology and amine accessibility of (3-aminopropyl) triethoxysilane films on glass surfaces. Scanning, 2008, 30(2): 65-77

[43]

Ghorbanpour M, Falamaki C. A novel method for the fabrication of ATPES silanized SPR sensor chips: exclusion of Cr or Ti intermediate layers and optimization of optical/adherence properties. Applied Surface Science, 2014, 301: 544-550

[44]

Wu X, Guo S, Zhang J. Selective oxidation of veratryl alcohol with composites of Au nanoparticles and graphene quantum dots as catalysts. Chemical Communications, 2015, 51(29): 6318-6321

[45]

Yang Y, Zhang J, Zhang F, Guo S. Preparation of AuNPs/GQDs/SiO2 composite and its catalytic performance in oxidation of veratryl alcohol. Journal of Nanomaterials, 2017, 2017(1): 4130569

[46]

Simon A H. Seshan K, Schepis D. Sputter processing. Handbook of Thin Film Deposition, 2018 Fourth Edition New York: William Andrew Publishing 195-230

[47]

Depla D, Mahieu S, Greene J E. Martin P M. Sputter deposition processes. Handbook of Deposition Technologies for Films and Coatings (Third Edition): Science, Applications and Technology, 2009, New York: William Andrew Publishing 253-296

[48]

Abu-Thabit N Y, Makhlouf A S H. Fundamental of smart coatings and thin films: synthesis, deposition methods, and industrial applications, advances in smart coatings and thin films for future industrial and biomedical engineering application, 2020, Amsterdam: Elsevier 3-35

[49]

Onifade O A, Zin Z H M, Bakar M H B A, Alresheedi M T, Bin Mahdi M A, Noor A S M. Salivary uric acid detection with graphene-gold bilayers surface plasmon resonance. IEEE Sensors Journal, 2023, 23(22): 27186-27198

[50]

Onifade O A, Yusairie F A, Bakar M H A, Alresheedi M T, Ng E K, Mahdi M A, et al. Uricase biofunctionalized plasmonic sensor for uric acid detection with APTES-modified gold nanotopping. Biosensors and Bioelectronics, 2024, 261(1): 116486

[51]

Fauzi N I M, Fen Y W, Eddin F B K, Daniyal W M E M M. Structural and optical properties of graphene quantum dots-polyvinyl alcohol composite thin film and its potential in plasmonic sensing of carbaryl. Nanomaterials, 2022, 12(22): 4105

[52]

Lee U G, Kim W B, Han D H, Chung H S. A modified equation for thickness of the film fabricated by spin coating. Symmetry, 2019, 11(9): 1183

[53]

Pan D, Zhang J, Li Z, Wu M. Hydrothermal route for cutting graphene sheets into blue-luminescent graphene quantum dots. Advanced Materials, 2010, 22(6): 734-738

[54]

Bokare A, Nordlund D, Melendrez C, Robinson R, Keles O, Wolcott A, et al. Surface functionality and formation mechanisms of carbon and graphene quantum dots. Diamond and Related Materials, 2020, 110: 108101

[55]

Yang S, Zhu C, Sun J, He P, Yuan N, Ding J, et al. Triphenylphosphine modified graphene quantum dots: spectral modulation for full spectrum of visible light with high quantum yield. RSC Advances, 2015, 5(42): 33347-33350

[56]

Paternò G M, Goudappagouda, Chen Q, Lanzani G, Scotognella F, Narita A. Large polycyclic aromatic hydrocarbons as graphene quantum dots: from synthesis to spectroscopy and photonics. Advanced Optical Materials, 2021, 9(23): 2100508

[57]

Kim J, Seidler P, Wan L S, Fill C. Formation, structure, and reactivity of amino-terminated organic films on silicon substrates. Journal of Colloid and Interface Science, 2009, 329(1): 114-119

[58]

Kale K H, Palaskar S S. Plasma enhanced chemical vapor deposition of tetraethylorthosilicate and hexamethyldisiloxane on polyester fabrics under pulsed and continuous wave discharge. Journal of Applied Polymer Science, 2012, 125(5): 3996-4006

[59]

Volcke C, Gandhiraman R P, Gubala V, Raj J, Cummins T, Fonder G, et al. Reactive amine surfaces for biosensor applications, prepared by plasma-enhanced chemical vapour modification of polyolefin materials. Biosensors and Bioelectronics, 2010, 25(8): 1875-1880

[60]

Rao X, Hassan A A, Guyon C, Zhang M, Ognier S, Tatoulian M. Plasma polymer layers with primary amino groups for immobilization of nano- and microparticles. Plasma Chemistry and Plasma Processing, 2020, 40: 589-606

[61]

Lewczuk B, Szyrynska N. Field-emission scanning electron microscope as a tool for large-area and large-volume ultrastructural studies. Animals, 2021, 11(12): 3390

[62]

Ye W, Pan Y Q, He L J, Chen B Q, Liu J J, Gao J, et al. Goodfellow H D, Wang Y, et al. Design with modeling techniques. Industrial Ventilation Design Guidebook (Volume 2): Engineering Design and Applications, 2021 Second Edition San Diego: Academic Press 109-183

[63]

VanDer Kamp K A, Qiang D, Aburub A, Wurster D E. Modified langmuir-like model for modeling the adsorption from aqueous solutions by activated carbons. Langmuir, 2005, 21(1): 217-224

[64]

Foo K Y, Hameed B H. Insights into the modeling of adsorption isotherm systems. Chemical Engineering Journal, 2010, 156(1): 2-10

[65]

Azizian S, Eris S. Adsorption isotherms and kinetics. Interface Science and Technology, 2021, 33: 445-509

[66]

Jamil N A, Mei G S, Khairulazdan N B, Thiagarajah S P, Hamzah A A, Majlis B Y, et al. Detection of uric acid using kretschmann-based SPR biosensor with MoS2-graphene. 2018 IEEE 16th Student Conference on Research and Development, 2018 1-4

[67]

Rana L, Gupta R, Tomar M, Gupta V. Highly sensitive Love wave acoustic biosensor for uric acid. Sensors and Actuators B: Chemical, 2018, 261: 169-177

[68]

Koresawa H, Seki K, Nishimoto K, Hase E, Tokizane Y, Yano T A, et al. Real-time hybrid angular-interrogation surface plasmon resonance sensor in the near-infrared region for wide dynamic range refractive index sensing. Scientific Reports, 2023, 13: 15655

[69]

Guo J, Hastings J T, Keathley P D. Dual-mode surface-plasmon-resonance sensors using angular interrogation. Optics Letters, 2008, 33(5): 512-514

[70]

Kant R, Tabassum R, Gupta B D. Fiber optic SPR-based uric acid biosensor using uricase entrapped polyacrylamide gel. IEEE Photonics Technology Letters, 2016, 28(9): 2050-2053

[71]

Mustaffa S N, Md Yatim N, Abdul Rashid A R, Md Yatim N, Pithaih V, Sha’ari N S, et al. Visible and angular interrogation of Kretschmann-based SPR using hybrid Au-ZnO optical sensor for hyperuricemia detection. Heliyon, 2023, 9(12): e22926

[72]

Singh L, Singh R, Zhang B, Cheng S, Kumar Kaushik B, Kumar S. LSPR based uric acid sensor using graphene oxide and gold nanoparticles functionalized tapered fiber. Optical Fiber Technology, 2019, 53: 102043

[73]

Sankaya A, Osman B, Çam T, Denizli A. Molecularly imprinted surface plasmon resonance (SPR) sensor for uric acid determination. Sensors and Actuators B: Chemical, 2017, 251: 763-772

[74]

Batumalay M, Harith Z, Rafaie H A, Ahmad F, Khasanah M, Harun S W, et al. Tapered plastic optical fiber coated with ZnO nanostructures for the measurement of uric acid concentrations and changes in relative humidity. Sensors and Actuators A: Physical, 2014, 210: 190-196

[75]

Kumar S, Singh R, Zhu G, Yang Q, Zhang X, Cheng S, et al. Development of uric acid biosensor using gold nanoparticles and graphene oxide functionalized micro-ball fiber sensor probe. IEEE Transactions on NanoBioscience, 2020, 19(2): 173-182

[76]

Singh L, Zhu G, Singh R, Zhang B, Wang W, Kaushik B K, et al. Gold nanoparticles and uricase functionalized tapered fiber sensor for uric acid detection. IEEE Sensors Journal, 2020, 20(1): 219-226

[77]

Salari M, Askari H R. Theoretical investigation of absorption and sensitivity of nano-plasmonic fiber optic sensors. Optics & Laser Technology, 2013, 48: 315-325

[78]

Mumtaz F, Roman M, Zhang B, Abbas L G, Ashraf M A, Fiaz M A, et al. A simple optical fiber SPR sensor with ultra-high sensitivity for dual-parameter measurement. IEEE Photonics Journal, 2022, 14(5): 6852907

[79]

Omar N A S, Irmawati R, Fen Y W, Muhamad E N, Eddin F B K, Anas N A A, et al. Surface refractive index sensor based on titanium dioxide composite thin film for detection of cadmium ions. Measurement, 2022, 187: 110287

[80]

Kushwaha A S, Kumar A, Kumar R, Srivastava S K. A study of surface plasmon resonance (SPR) based biosensor with improved sensitivity. Photonics and Nanostructures-Fundamentals and Applications, 2018, 31: 99-106

[81]

Akib T B A, Mou S F, Rahman M M, Rana M M, Islam M R, Mehedi I M, et al. Design and numerical analysis of a graphene-coated SPR biosensor for rapid detection of the novel coronavirus. Sensors, 2021, 21(10): 3491

[82]

Kamal Eddin F B, Fen Y W, Liew J Y C, Fauzi N I M, Daniyal W M E M M, Abdullah H. Development of plasmonic-based sensor for highly sensitive and selective detection of dopamine. Optics & Laser Technology, 2023, 161: 109221

[83]

Omar N A S, Fen Y W, Abdullah J, Sadrolhosseini A R, Kamil Y M, Fauzi N I M, et al. Quantitative and selective surface plasmon resonance response based on a reduced graphene oxide-polyamidoamine nanocomposite for detection of dengue virus E-proteins. Nanomaterials, 2020, 10(3): 569

[84]

Meng Q Q, Zhao X, Lin C Y, Chen S J, Ding Y C, Chen Z Y. Figure of merit enhancement of a surface plasmon resonance sensor using a low-refractive-index porous silica film. Sensors, 2017, 17(8): 1846

AI Summary AI Mindmap
PDF

177

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/