MSM Fiber Optic Surface Plasmon Resonance Glucose Sensor Based on SnO2 Nanofibers/Au Structure
Hongyu Song, Haoyu Wu, Yanpei Xu, Shaowei Ma, Meng Sun, Qi Wang
Photonic Sensors ›› 2024, Vol. 15 ›› Issue (1) : 0.
MSM Fiber Optic Surface Plasmon Resonance Glucose Sensor Based on SnO2 Nanofibers/Au Structure
Glucose is an indispensable nutrient for metabolism in living organisms and is widely used in food, industry, and medical fields. Glucose is often added as a sweetener in food and often used in industry as a reducing agent for various products. In medical treatment, glucose is added to many drugs as a nutritional additive, and it is also an indicator that diabetics need to pay attention to at all time. Therefore, the market has a great demand for low-cost, high-sensitivity, fast, and convenient glucose sensors, and the industry has always attached great importance to the work of creating new glucose sensor devices. Therefore, we proposed a SnO2 nanofibers/Au structure multimode-single-mode-multimode (MSM) fiber surface plasmon resonance (SPR) glucose sensor. SnO2 nanofibers were fixed to a single-mode fiber core that had been plated with the Au film by electrospinning. When the glucose concentration increased at 5 vol% intervals, the corresponding resonance wavelengths had different degrees of redshifts. Comparing the two structures, as the glucose concentration range increased from 0 vol% to 60 vol%, the sensitivity increased from 228.7 nm/vol% in the Au structure to 337.3 nm/vol% in the SnO2 nanofiber/Au structure. At the same time, the linear correlation between the resonant wavelength and the refractive index of the two structures was greater than 0.98. Moreover, the SnO2 nanofibers/Au structure significantly improved the practical application performance of SPR sensors.
MSM fiber surface plasmon resonance / electrospinning / SnO2 nanofibers/Au structure / glucose concentration
[1] |
|
[2] |
|
[3] |
|
[4] |
|
[5] |
|
[6] |
|
[7] |
|
[8] |
|
[9] |
|
[10] |
|
[11] |
|
[12] |
|
[13] |
|
[14] |
|
[15] |
|
[16] |
|
[17] |
|
[18] |
|
[19] |
|
[20] |
Q. Chai, Y. Luo, J. Ren, J. Zhang, J. Yang, L. Yuan, et al., “Review on fiber-optic sensing in health monitoring of power grids,” Optical Engineering, 58(7): 072007.
|
[21] |
|
[22] |
|
[23] |
Y. Zheng, Z. W. Zhu, W. Xiao, and Q. X. Deng, “Review of fiber optic sensors in geotechnical health monitoring,” Optical Fiber Technology, 54: 102127.
|
[24] |
|
[25] |
|
[26] |
|
[27] |
|
[28] |
|
[29] |
|
[30] |
|
[31] |
|
[32] |
|
[33] |
|
[34] |
|
[35] |
|
[36] |
|
[37] |
|
[38] |
|
[39] |
|
[40] |
|
[41] |
|
[42] |
|
[43] |
|
[44] |
|
[45] |
|
[46] |
|
[47] |
|
[48] |
|
[49] |
|
[50] |
|
[51] |
|
[52] |
|
/
〈 |
|
〉 |