Review on Hollow-Core Fiber Based Multi-Gas Sensing Using Raman Spectroscopy

Qilu Nie, Zhixiong Liu, Mengen Cheng, Shilong Pei, Dexun Yang, Donglai Guo, Minghong Yang

PDF
Photonic Sensors ›› 2024, Vol. 14 ›› Issue (4) : 240412. DOI: 10.1007/s13320-024-0730-4
Review

Review on Hollow-Core Fiber Based Multi-Gas Sensing Using Raman Spectroscopy

Author information +
History +

Abstract

In recent years, detecting and quantifying multiple gases have garnered widespread attention across various fields, particularly in volatile organic compound (VOC) detection, which holds significant importance for ecosystems and the medical field. The Raman spectroscopy has been widely used in multi-gas detection due to its advantages in fast response speed and non-destructive detection. This paper reviews the latest research progress of the multi-gas sensing technology in the Raman spectroscopy, focusing on using the hollow-core fiber to enhance the gas signal intensity. The basic principles of the fiber-enhanced Raman spectroscopy are introduced. The detailed discussion includes the system architecture, parameter configuration, and experimental results. Then, the latest advances in the coherent anti-Stokes Raman scattering multi-gas detection technology are reviewed. Finally, the challenges faced by the hollow-core fiber in practical applications are discussed.

Keywords

Raman spectroscopy / hollow-core fiber / fiber-enhanced Raman spectroscopy / coherent anti-Stokes Raman scattering / gas detection

Cite this article

Download citation ▾
Qilu Nie, Zhixiong Liu, Mengen Cheng, Shilong Pei, Dexun Yang, Donglai Guo, Minghong Yang. Review on Hollow-Core Fiber Based Multi-Gas Sensing Using Raman Spectroscopy. Photonic Sensors, 2024, 14(4): 240412 https://doi.org/10.1007/s13320-024-0730-4

References

[[1]]
Khan F I, Aloke K G. Removal of volatile organic compounds from polluted air. Journal of Loss Prevention in the Process Industries, 2000, 13(6): 527-545,
CrossRef Google scholar
[[2]]
Lee S C, Chiu M Y, Ho K F, Zou S C, Wang X M. Volatile organic compounds (VOCs) in urban atmosphere of Hong Kong. Chemosphere, 2002, 48(3): 375-382,
CrossRef Google scholar
[[3]]
Liu Y, Shao M, Fu L L, Lu S H, Zeng L M, Tang D G. Source profiles of volatile organic compounds (VOCs) measured in China: part I. Atmospheric Environment, 2008, 42(25): 6247-6260,
CrossRef Google scholar
[[4]]
Al-Douseri F M, Chen Y, Zhang X C. THz wave sensing for petroleum industrial applications. International Journal of Infrared and Millimeter Waves, 2006, 27: 481-503,
CrossRef Google scholar
[[5]]
Salthammer T. Very volatile organic compounds: an understudied class of indoor air pollutants. Indoor Air, 2016, 26(1): 25-38,
CrossRef Google scholar
[[6]]
Al-Dabbous A N, Khan A R, Al-Tamimi S A, Shalash M, Bajoga A D, Malek M J. Oxides of carbon, particulate matters and volatile organic compounds impact on indoor air quality during waterpipe smoking. International Journal of Environmental Science and Technology, 2019, 16(6): 2849-2854,
CrossRef Google scholar
[[7]]
Rizk M, Guo F F, Verriele M, Ward M, Dusanter S, Blond N, et al.. Impact of material emissions and sorption of volatile organic compounds on indoor air quality in a low energy building: field measurements and modeling. Indoor Air, 2018, 28(6): 924-935,
CrossRef Google scholar
[[8]]
Schultz M G, Akimoto H, Bottenheim J, Buchmann B, Galbally I E, Gilge S, et al.. The global atmosphere watch reactive gases measurement network. Elementa, 2015, 3: 000067
[[9]]
Gentner D R, Jathar S H, Gordon T D, Bahreini R, Day D A, El Haddad I, et al.. Review of urban secondary organic aerosol formation from gasoline and diesel motor vehicle emissions. Environmental Science & Technology, 2017, 51(3): 1074-1093,
CrossRef Google scholar
[[10]]
Inaba H, Kobayasi T, Hirama M, Hamza M. Optical-fibre network system for air-pollution monitoring over a wide area by optical absorption method. Electronics Letters, 1979, 15: 749-751,
CrossRef Google scholar
[[11]]
Muhiyudin M, Kobayasi T, Hirama M, Waddell E, Song S, Ahmadzadeh S. Miniaturised infrared spectrophotometer for low power consumption multi-gas sensing. Sensors, 2020, 20(14): 3843,
CrossRef Google scholar
[[12]]
Liu N, Xu L, Zhou S, Zhang L, Li J. Simultaneous detection of multiple atmospheric components using an NIR and MIR laser hybrid gas sensing system. ACS Sensors, 2020, 5(11): 3607-3616,
CrossRef Google scholar
[[13]]
Dong M, Zheng C, Miao S, Zhang Y, Du Q, Wang Y, et al.. Development and measurements of a mid-infrared multi-gas sensor system for CO, CO2 and CH4 detection. Sensors, 2017, 17(10): 2221,
CrossRef Google scholar
[[14]]
Yang Y, Jiang J, Zeng J, Chen Z, Zhu X, Shi Y. CH4, C2H6, and CO2 multi-gas sensing based on portable mid-infrared spectroscopy and PCA-BP algorithm. Sensors, 2023, 23(3): 1413,
CrossRef Google scholar
[[15]]
Wang C, Peeyush S. Breath analysis using laser spectroscopic techniques: breath biomarkers, spectral fingerprints, and detection limits. Sensors, 2023, 9(10): 8230-8262,
CrossRef Google scholar
[[16]]
Yang X, Bond T C, Zhang J Z, Li Y, Gu C. Photonics crystal fiber Raman sensors. Information Optics and Optical Data Storage II, 2012, 8559: 855902,
CrossRef Google scholar
[[17]]
Buric M P, Mullen J, Woodruff S D, Chorpening B. Design and industrial testing of ultra-fast multi-gas Raman spectrometer. Next-Generation Spectroscopic Technologies VI, 2013, 8726: 115-124
[[18]]
Li M, Liu Q, Yang D, Guo J, Si G, Wu L, et al.. Underwater in situ dissolved gas detection based on multi-reflection Raman spectroscopy. Sensors, 2021, 21(14): 4831,
CrossRef Google scholar
[[19]]
Wen C, Huang X, Shen C. Multiple-pass-enhanced multiple-point gas Raman analyzer for industrial process control applications. Journal of Raman Spectroscopy, 2020, 51(10): 2046-2052,
CrossRef Google scholar
[[20]]
Han X, Huang Z, Chen X, Li Q F, Xu K X, Chen D. On-line multi-component analysis of gases for mud logging industry using data driven Raman spectroscopy. Fuel, 2017, 207: 146-153,
CrossRef Google scholar
[[21]]
Yan D, Popp J, Pletz M W, Frosch T. Highly sensitive broadband Raman sensing of antibiotics in step-index hollow-core photonic crystal fibers. ACS Photonics, 2017, 4(1): 138-145,
CrossRef Google scholar
[[22]]
Guo J, Luo Z, Liu Q, Yang D W, Dong H, Huang S K, et al.. High-sensitivity Raman gas probe for in situ multi-component gas detection. Sensors, 2021, 21(10): 3539,
CrossRef Google scholar
[[23]]
Knebl A, Popp J, Frosch T. Raman gas spectroscopy. Handbook of Optoelectronics: Applied Optical Electronics (Volume Three), 2017 Boca Raton CRC Press 245
[[24]]
Keiner R, Herrmann M, Küsel K, Popp J, Frosch T. Rapid monitoring of intermediate states and mass balance of nitrogen during denitrification by means of cavity enhanced Raman multi-gas sensing. Analytica Chimica Acta, 2015, 864: 39-47,
CrossRef Google scholar
[[25]]
Jochum T, Michalzik B, Bachmann A, Popp J, Frosch T. Microbial respiration and natural attenuation of benzene contaminated soils investigated by cavity enhanced Raman multi-gas spectroscopy. Analyst, 2015, 140(9): 3143-3149,
CrossRef Google scholar
[[26]]
Yan D, Popp J, Frosch T. Analysis of fiber-enhanced Raman gas sensing based on Raman chemical imaging. Analytical Chemistry, 2017, 89(22): 12269-12275,
CrossRef Google scholar
[[27]]
Keiner R, Gruselle M C, Michalzik B, Popp J, Frosch T. Raman spectroscopic investigation of 13CO2 labeling and leaf dark respiration of Fagus sylvatica L. (European beech). Analytical and Bioanalytical Chemistry, 2015, 407(7): 1813-1817,
CrossRef Google scholar
[[28]]
Qi Y, Zhao Y, Bao H, Jin W, Ho H L. Nanofiber enhanced stimulated Raman spectroscopy for ultra-fast, ultra-sensitive hydrogen detection with ultra-wide dynamic range. Optica, 2019, 6(5): 570-576,
CrossRef Google scholar
[[29]]
Knebl A, Yan D, Popp J, Frosch T. Fiber enhanced Raman gas spectroscopy. TrAC Trends in Analytical Chemistry, 2018, 103: 230-238,
CrossRef Google scholar
[[30]]
Hanf S, Keiner R, Yan D, Popp J, Frosch T. Fiber-enhanced Raman multigas spectroscopy: a versatile tool for environmental gas sensing and breath analysis. Analytical Chemistry, 2014, 86(11): 5278-5285,
CrossRef Google scholar
[[31]]
Wolf S, Frosch T, Popp J, Pletz M W, Frosch T. Highly sensitive detection of the antibiotic ciprofloxacin by means of fiber enhanced Raman spectroscopy. Molecules, 2019, 24(24): 4512,
CrossRef Google scholar
[[32]]
Sandfort V, Trabold B M, Abdolvand A, Bolwien C, Russell P S J, Wöllenstein J, et al.. Monitoring the Wobbe index of natural gas using fiber-enhanced Raman spectroscopy. Sensors, 2017, 17(12): 2714,
CrossRef Google scholar
[[33]]
Hanf S, Bögözi T, Keiner R, Frosch T, Popp J. Fast and highly sensitive fiber-enhanced Raman spectroscopic monitoring of molecular H2 and CH4 for point-of-care diagnosis of malabsorption disorders in exhaled human breath. Analytical Chemistry, 2015, 87(2): 982-988,
CrossRef Google scholar
[[34]]
Yan D, Popp J, Pletz M W, Frosch T. Fiber enhanced Raman sensing of levofloxacin by PCF bandgap-shifting into the visible range. Analytical Methods, 2018, 10(6): 586-592,
CrossRef Google scholar
[[35]]
Yan D, Domes C, Domes R, Frosch T, Popp J, Pletz M W, et al.. Fiber enhanced Raman spectroscopic analysis as a novel method for diagnosis and monitoring of diseases related to hyperbilirubinemia and hyperbiliverdinemia. Analyst, 2016, 141(21): 6104-6115,
CrossRef Google scholar
[[36]]
Knebl A, Domes R, Wolf S, Domes C, Popp J, Frosch T, et al.. Fiber-enhanced Raman gas spectroscopy for the study of microbial methanogenesis. Analytical Chemistry, 2020, 92(18): 12564-12571,
CrossRef Google scholar
[[37]]
Okita Y, Katagiri T, Matsuura Y. A Raman cell based on hollow optical fibers for breath analysis. Optical Fibers and Sensors for Medical Diagnostics and Treatment Applications X, 2010, 7559: 42-46
[[38]]
Okita Y, Katagiri T, Matsuura Y. Small-volume cavity cell using hollow optical fiber for Raman scattering-based gas detection. Optical Fibers, Sensors, and Devices for Biomedical Diagnostics and Treatment XI, 2011, 7894: 138-143
[[39]]
Kudelski A. Analytical applications of Raman spectroscopy. Talanta, 2008, 76(1): 1-8,
CrossRef Google scholar
[[40]]
Jochum T, von Fischer J C, Trumbore S, Popp J, Frosch T. Multigas leakage correction in static environmental chambers using sulfur hexafluoride and Raman spectroscopy. Analytical Chemistry, 2015, 87(21): 11137-11142,
CrossRef Google scholar
[[41]]
Bögözi T, Popp J, Frosch T. Fiber-enhanced Raman multi-gas spectroscopy: what is the potential of its application to breath analysis?. Bioanalysis, 2015, 7(3): 281-284,
CrossRef Google scholar
[[42]]
Sieburg A, Jochum T, Trumbore S E, Popp J, Frosch T. Onsite cavity enhanced Raman spectrometry for the investigation of gas exchange processes in the earth’s critical zone. Analyst, 2017, 142(18): 3360-3369,
CrossRef Google scholar
[[43]]
Kiefer J, Seeger T, Steuer S, Schorsch S, Weikl M C, Leipertz A. Design and characterization of a Raman-scattering-based sensor system for temporally resolved gas analysis and its application in a gas turbine power plant. Measurement Science and Technology, 2008, 19(8): 085408,
CrossRef Google scholar
[[44]]
Fleischmann M, Hendra P J, McQuillan A J. Raman spectra of pyridine adsorbed at a silver electrode. Chemical Physics Letters, 1974, 26(2): 163-166,
CrossRef Google scholar
[[45]]
Campion A, Kambhampati P. Surface-enhanced Raman scattering. Chemical Society Reviews, 1998, 27(4): 241-250,
CrossRef Google scholar
[[46]]
Sharma S K, Kumar P, Barthwal S, Sharma S, Sharma A. Highly sensitive surface-enhanced Raman scattering (SERS)-based multi gas sensor: Au nanoparticles decorated on partially embedded 2D colloidal crystals into elastomer. ChemistrySelect, 2017, 2(24): 6961-6969,
CrossRef Google scholar
[[47]]
Zeng Z C, Huang S C, Wu D Y, Meng L Y, Li M H, Huang T X, et al.. Electrochemical tip-enhanced Raman spectroscopy. Journal of the American Chemical Society, 2015, 137(37): 11928-11931,
CrossRef Google scholar
[[48]]
Stöckle R M, Suh Y D, Deckert V, Zenobi R. Nanoscale chemical analysis by tip-enhanced Raman spectroscopy. Chemical Physics Letters, 2000, 318(1–3): 131-136,
CrossRef Google scholar
[[49]]
Sonntag M D, Klingsporn J M, Garibay L K, Roberts J M, Dieringer J A, Seideman T, et al.. Single-molecule tip-enhanced Raman spectroscopy. The Journal of Physical Chemistry C, 2012, 116(1): 478-483,
CrossRef Google scholar
[[50]]
Hercher M, Mueller W, Klainer S, Adamowicz R F, Meyers R E, Schwartz S E. An efficient intracavity laser Raman spectrometer. Applied Spectroscopy, 1978, 32(3): 298-302,
CrossRef Google scholar
[[51]]
King D A, Pittaro R J. Simple diode pumping of a power-buildup cavity. Optics Letters, 1998, 23(10): 774-776,
CrossRef Google scholar
[[52]]
Taylor D J, Glugla M, Penzhorn R D. Enhanced Raman sensitivity using an actively stabilized external resonator. Review of Scientific Instruments, 2001, 72(4): 1970-1976,
CrossRef Google scholar
[[53]]
Pettinger B, Ren B, Picardi G, Schuster R, Ertl G. Nanoscale probing of adsorbed species by tip-enhanced Raman spectroscopy. Physical Review Letters, 2004, 92(9): 096101,
CrossRef Google scholar
[[54]]
Moskovits M. Surface-enhanced Raman spectroscopy: a brief retrospective. Journal of Raman Spectroscopy, 2005, 36(6–7): 485-496,
CrossRef Google scholar
[[55]]
Cai H, Yu X, Chu Q, Jin Z, Lin B, Wang G. Hollow-core fiber-based Raman probe extension kit for in situ and sensitive ultramicro-analysis. Chinese Optics Letters, 2019, 17(11): 110601,
CrossRef Google scholar
[[56]]
Russell P. Photonic crystal fibers. Science, 2003, 299(5605): 358-362,
CrossRef Google scholar
[[57]]
Xiao L, Demokan M S, Jin W, Wang Y, Zhao C L. Fusion splicing photonic crystal fibers and conventional single-mode fibers: microhole collapse effect. Journal of Lightwave Technology, 2007, 25(11): 3563-3574,
CrossRef Google scholar
[[58]]
Cheng T, Li S, Zhou G. Relation between power fraction in the core of hollow-core photonic crystal fibers and their bandgap property. Chinese Journal of Lasers, 2007, 34(2): 249
[[59]]
Zhang W, Lou S, Wang X, Yan S, Tang Z, Xing Z. A broadband single mode single polarization metal wires-embedded hollow core anti-resonant fiber for polarization filter. Optical Fiber Technology, 2019, 53: 102011,
CrossRef Google scholar
[[60]]
Buric M P, Chen K P, Falk J, Woodruff S D. Enhanced spontaneous Raman scattering and gas composition analysis using a photonic crystal fiber. Applied Optics, 2008, 47(23): 4255-4261,
CrossRef Google scholar
[[61]]
Yang X, Chang A S, Chen B, Gu C, Bond T C. High sensitivity gas sensing by Raman spectroscopy in photonic crystal fiber. Sensors and Actuators B: Chemical, 2013, 176: 64-68,
CrossRef Google scholar
[[62]]
Buric M P, Chen K P, Falk J, Woodruff S D. Improved sensitivity gas detection by spontaneous Raman scattering. Applied Optics, 2009, 48(22): 4424-4429,
CrossRef Google scholar
[[63]]
Sieburg A, Knebl A, Jacob J M, Frosch T. Characterization of fuel gases with fiber-enhanced Raman spectroscopy. Analytical and Bioanalytical Chemistry, 2019, 411: 7399-7408,
CrossRef Google scholar
[[64]]
Wan F, Kong W, Liu Q, Wang P, Wang M, Li Q. Fluorescence noise eliminating fiber-enhanced Raman spectroscopy for simultaneous and multiprocess analysis of intermediate compositions for C2H2 and H2 production. Analytical Chemistry, 2023, 95(22): 8596-8604,
CrossRef Google scholar
[[65]]
Knebl A, Domes C, Domes R, Wolf S, Popp J, Frosch T. Hydrogen and C2-C6 alkane sensing in complex fuel gas mixtures with fiber-enhanced Raman spectroscopy. Analytical Chemistry, 2021, 93(30): 10546-10552,
CrossRef Google scholar
[[66]]
Wang J, Chen W, Wang P, Zhang Z, Wan F, Zhou F, et al.. Fiber-enhanced Raman spectroscopy for highly sensitive H2 and SO2 sensing with a hollow-core anti-resonant fiber. Optics Express, 2021, 29(20): 32296-32311,
CrossRef Google scholar
[[67]]
Yang M, Ye Y, Zhou Y, Liu Z, Xiong L, Guo D. Rapid response of Raman gas sensing based on node-less anti-resonant fiber. Advanced Sensor Systems and Applications XII, 2022, 12321: 63-67
[[68]]
Q. Nie, Z. Liu, M. Chen, D. Yang, M. Yang, and D. Guo, “Gas Raman sensors based on anti-resonant hollow core fibers using metal coated capillaries and their applications in leakage detection of electrolytes in lithium-ion batteries,” Optical Fiber Sensors, 2023, Th6.6.
[[69]]
Knebl A, Domes R, Yan D, Popp J, Trumbore S, Frosch T. Fiber-enhanced Raman gas spectroscopy for 18O-13C-labeling experiments. Analytical Chemistry, 2019, 91(12): 7562-7569,
CrossRef Google scholar
[[70]]
Bai Y, Xiong D, Yao Z, Wang X, Zuo D. Analysis of CH4, C2H6, C2H4, C2H2, H2, CO, and H2S by forward Raman scattering with a hollow-core anti-resonant fiber. Journal of Raman Spectroscopy, 2022, 53(5): 1023-1031,
CrossRef Google scholar
[[71]]
S. A. Akhmanov and N. I. Koroteev, “Methods of nonlinear optics in light scattering spectroscopy,” 1981: 991.
[[72]]
Eesley G L. . Coherent Raman spectroscopy, 2013 Oxford Pergamon
[[73]]
Roy S, Meyer T R, Lucht R P, Belovich V M, Corporan E, Gord J R. Temperature and CO2 concentration measurements in the exhaust stream of a liquid-fueled combustor using dual-pump coherent anti-Stokes Raman scattering (CARS) spectroscopy. Combustion and Flame, 2004, 138(3): 273-284,
CrossRef Google scholar
[[74]]
Vestin F, Bengtsson P E. Rotational CARS for simultaneous measurements of temperature and concentrations of N2, O2, CO, and CO2 demonstrated in a CO/air diffusion flame. Proceedings of the Combustion Institute, 2009, 32(1): 847-854,
CrossRef Google scholar
[[75]]
Zaitsu S, Imasaka T. Intracavity phase-matched coherent anti-Stokes Raman spectroscopy for trace gas detection. Analytical Sciences, 2014, 30(1): 75-79,
CrossRef Google scholar
[[76]]
Green S M, Rubas P J, Paul M A, Peters J E, Lucht R P. Annular phase-matched dual-pump coherent anti-Stokes Raman spectroscopy system for the simultaneous detection of nitrogen and methane. Applied Optics, 1998, 37(9): 1690-1701,
CrossRef Google scholar
[[77]]
Schenk M, Seeger T, Leipertz A. Simultaneous temperature and relative O2-N2 concentration measurements by single-shot pure rotational coherent anti-Stokes Raman scattering for pressures as great as 5 MPa. Applied Optics, 2000, 39(36): 6918-6925,
CrossRef Google scholar
[[78]]
Maker P D, Terhune R W. Study of optical effects due to an induced polarization third order in the electric field strength. Physical Review, 1965, 137(3A): A801,
CrossRef Google scholar
[[79]]
Begley R F, Harvey A B, Byer R L. Coherent anti-Stokes Raman spectroscopy. Applied Physics Letters, 1974, 25(7): 387-390,
CrossRef Google scholar
[[80]]
Miles R B, Laufer G, Bjorklund G C. Coherent anti-Stokes Raman scattering in a hollow dielectric waveguide. Applied Physics Letters, 1977, 30(8): 417-419,
CrossRef Google scholar
[[81]]
Fedotov A B, Konorov S O, Mitrokhin V P, Serebryannikov E E, Zheltikov A M. Coherent anti-Stokes Raman scattering in isolated air-guided modes of a hollow-core photonic-crystal fiber. Physical Review A, 2004, 70(4): 045802,
CrossRef Google scholar
[[82]]
Trabold B M, Hupfer R J, Abdolvand A, Frosz M H, Russell P S J. Broadband high-resolution multi-species CARS in gas-filled hollow-core photonic crystal fiber. Optics Letters, 2017, 42(17): 3283-3286,
CrossRef Google scholar
[[83]]
Tyumenev R, Späth L, Trabold B M, Ahmed G, Frosz M H, Russell P S J. Pump-probe multi-species CARS in a hollow-core PCF with a 20 ppm detection limit under ambient conditions. Optics Letters, 2019, 44(10): 2486-2489,
CrossRef Google scholar
[[84]]
R. J. Hupfer, B. M. Trabold, A. Abdolvand, et al., “Multi-species coherent anti-Stokes Raman spectroscopy in gas-filled hollow-core photonic crystal fiber,” in Frontiers in Optics 2016, OSA Technical Digest, New York, USA, 2016, pp.135.
[[85]]
R. Tyumenev, B. M. Trabold, L. Späth, M. H. Frosz, and P. S. J. Russell, “Broadband multi-species CARS in gas-filled hollow-core photonic crystal fiber,” in CLEO: Science and Innovations, San Jose, USA, 2018, pp. 1–2.
[[86]]
R. Tyumenev, L. Späth, B. M. Trabold, G. Ahmed, M. H. Frosz, and P. S. J. Russell, “Dual-colour-pump broadband CARS in single-ring gas-filled photonic crystal fibre,” in the European Conference on Lasers and Electro-Optics, Munich, Germany, 2019, pp. jsii_1_3.
[[87]]
Xiong D, Bai Y, Zuo D, Wang X. High-resolution continuous-wave coherent anti-Stokes Raman spectroscopy in a CO2-filled hollow-core photonic crystal fiber. Journal of Raman Spectroscopy, 2021, 52(4): 857-864,
CrossRef Google scholar
PDF

Accesses

Citations

Detail

Sections
Recommended

/