Fiber Optic Vacuum Ultraviolet Sensor Based on an AlN-Microwire Probe

Ying Wang, Jiahui Ye, Dingbang Ma, Peiyao Wang, Baikui Li, Zhenhua Sun, Honglei Wu, Changrui Liao, Yiping Wang

PDF
Photonic Sensors ›› 2024, Vol. 15 ›› Issue (1) : 250117. DOI: 10.1007/s13320-024-0728-y
Regular

Fiber Optic Vacuum Ultraviolet Sensor Based on an AlN-Microwire Probe

Author information +
History +

Abstract

Vacuum ultraviolet (VUV) light sensing shows great potential applications in the space science, materials, biophysics, and plasma physics. In this work, an all-optical detection method is proposed for VUV sensing by constructing an optical fiber-end Fabry-Pérot interferometer based on a single aluminum nitride (AlN) microwire. Compared with the traditional electrical devices, this all-optical detection method overcomes the difficulties like the fast response and electromagnetic interference immunity in detecting VUV bands at the present stage, and improves the response speed. The proposed device shows the excellent performance of VUV detection, with the static sensitivity of 1.03 nm/(W·cm−2), response rise time of down to 10 µs, and decay time of 0.64 ms. Beneficial from the excellent radiation resistance of AlN microwires and UV resistance of silica fibers, the proposed device is expected to have the good stability and potential applications in the fields of the solar physics and space exploration.

Keywords

Optical fiber sensor / VUV / Fabry-Pérot interferometer / UV sensing

Cite this article

Download citation ▾
Ying Wang, Jiahui Ye, Dingbang Ma, Peiyao Wang, Baikui Li, Zhenhua Sun, Honglei Wu, Changrui Liao, Yiping Wang. Fiber Optic Vacuum Ultraviolet Sensor Based on an AlN-Microwire Probe. Photonic Sensors, 2024, 15(1): 250117 https://doi.org/10.1007/s13320-024-0728-y

References

[[1]]
Jia L, Zheng W, Huang F. Vacuum-ultraviolet photodetectors. PhotoniX, 2020, 1(1): 1-25,
CrossRef Google scholar
[[2]]
Baker D N, Kanekal S G, Li X, Monk S P, Goldstein J, Burch J L. An extreme distortion of the Van Allen belt arising from the ‘Hallowe’en’ solar storm in 2003. Nature, 2004, 432(7019): 878-881,
CrossRef Google scholar
[[3]]
H. V. Cane and I. G. Richardson, “Interplanetary coronal mass ejections in the near-earth solar wind during 1996–2002,” Journal of Geophysical Research-Space Physics, 2003, 108(A4).
[[4]]
Cheng C C. The solar wind control of the magnetopause shape: a comparison of a model magnetopause and empirical models. Terrestrial Atmospheric and Oceanic Sciences, 1998, 9(2): 239-254,
CrossRef Google scholar
[[5]]
Guerrero M A, De Marco O. Analysis of far-UV data of central stars of planetary nebulae: occurrence and variability of stellar winds. Astronomy & Astrophysics, 2013, 553: A126,
CrossRef Google scholar
[[6]]
Lazarus A, Kasper J, Szabo A, Ogilvie K. Solar wind streams and their interactions. AIP Conference Proceedings, 2003, 679(1): 187-189,
CrossRef Google scholar
[[7]]
Sibeck D G, Lopez R E, Roelof E C. Solar wind control of the magnetopause shape, location, and motion. Journal of Geophysical Research: Space Physics, 1991, 96(A4): 5489-5495,
CrossRef Google scholar
[[8]]
Basting D, Marowsky G. . Excimer Laser Technology, 2005 Heidelberg Springer Berlin 86-21,
CrossRef Google scholar
[[9]]
Chini M, Wang X, Cheng Y, Wang H, Wu Y, Cunningham E, et al.. Coherent phase-matched VUV generation by field-controlled bound states. Nature Photonics, 2014, 8(6): 437-441,
CrossRef Google scholar
[[10]]
Antonelli M, Di Fraia M, Carrato S, Cautero G, Menk R H, Jark W H, et al.. Fast synchrotron and FEL beam monitors based on single-crystal diamond detectors and InGaAs/InAlAs quantum well devices. Nuclear Instruments & Methods in Physics Research Section A: Accelerators Spectrometers Detectors and Associated Equipment, 2013, 730: 164-167,
CrossRef Google scholar
[[11]]
BenMoussa A, Dammasch I E, Hochedez J F, Schuehle U, Koller S, Stockman Y, et al.. Pre-flight calibration of LYRA, the solar VUV radiometer on board PROBA2. Astronomy & Astrophysics, 2009, 508(2): 1085-1094,
CrossRef Google scholar
[[12]]
Shea M A, Smart D F, McCracken K G, Dreschhoff G A M, Spence H E. Solar proton events for 450 years: the Carrington event in perspective. Advances in Space Research, 2006, 38(2): 232-238,
CrossRef Google scholar
[[13]]
Ishihara H, Sugio S, Kanno T, Matsuoka M, Hayashi K. Characterization of photoconductive diamond detectors-candidate vacuum ultraviolet radiation and extreme ultraviolet radiation light source detectors for lithography. Sensors and Materials, 2010, 22(7): 357-364
[[14]]
S. C. Wallace, “Nonlinear optics and laser spectroscopy in the vacuum ultraviolet,” Photophysics and Photochemistry in the Vacuum Ultraviolet. Dordrecht: Springer Netherlands, 1985: 105–131.
[[15]]
De Oliveira N, Joyeux D, Nahon L. Spectroscopy in the vacuum-ultraviolet. Nature Photonics, 2011, 5(5): 249-249,
CrossRef Google scholar
[[16]]
O. Venot, N. Fray, Y. Bénilan, M. C. Gazeau, E. Hebrard, G. Larcher, et al., “VUV-absorption cross section of CO2 at high temperatures and impact on exoplanet atmospheres,” in Colloquium of the CNRS Interdisciplinary Initiative “Planetary Enviroments and Origins of Life, Paris, France, 2014, pp. 01002.
[[17]]
Dujardin C, Amans D, Belsky A, Chaput F, Ledoux G, Pillonnet A. Luminescence and scintillation properties at the nanoscale. IEEE Transactions on Nuclear Science, 2010, 57(3): 1348-1354,
CrossRef Google scholar
[[18]]
Paredes B L, Araújo H M, Froborg F, Marangou N, Marangou N, Sumner T J, et al.. Response of photomultiplier tubes to xenon scintillation light. Astroparticle Physics, 2018, 102: 56-66,
CrossRef Google scholar
[[19]]
Hamamatsu Photonics K. K.. . Photomultiplier Tubes: Basics and Applications, 2007 Edition 3a Hamamatsu Hamamatsu Photonics 38
[[20]]
Richter M, Gottwald A, Kroth U, Sorokin A A, Bobashev S V, Shmaenok L A, et al.. Measurement of gigawatt radiation pulses from a vacuum and extreme ultraviolet free-electron laser. Applied Physics Letters, 2003, 83(14): 2970-2972,
CrossRef Google scholar
[[21]]
BenMoussa A, Soltani A, Schühle U, Haenen K, Chong Y M, Zhang W J, et al.. Recent developments of wide-bandgap semiconductor based UV sensors. Diamond and Related Materials, 2009, 18(5–8): 860-864,
CrossRef Google scholar
[[22]]
Zheng W, Huang F, Zheng R S, Wu H L. Low-dimensional structure vacuum-ultraviolet-sensitive (lambda<200 nm) photodetector with fast-response speed based on high-quality AlN micro/nanowire. Advanced Materials, 2015, 27(26): 3921-3927,
CrossRef Google scholar
[[23]]
Li T T, Wang F, Lin R C, Xie W T, Li Y Q, Zheng W, et al.. In-plane enhanced epitaxy for step-flow AlN yielding a high-performance vacuum-ultraviolet photovoltaic detector. CrystEngComm, 2020, 22(4): 654-659,
CrossRef Google scholar
[[24]]
Zhang L, Wang Y, Wu H, Hou M X, Wang J R, Zhang L C, et al.. A ZnO nanowire-based microfiber coupler for all-optical photodetection applications. Nanoscale, 2019, 11(17): 8319-8326,
CrossRef Google scholar
[[25]]
Bennett B R, Soref R A, Del Alamo J A. Carrier-induced change in refractive index of InP, GaAs and InGaAsP. IEEE Journal of Quantum Electronics, 1990, 26(1): 113-122,
CrossRef Google scholar
[[26]]
Berggren K F, Sernelius B E. Band-gap narrowing in heavily doped many-valley semiconductors. Physical Review B, 1981, 24(4): 1971-1986,
CrossRef Google scholar
[[27]]
Liao C, Wang D, Li Y, Sun T, Grattan K T V. Temporal thermal response of Type II-IR fiber Bragg gratings. Applied Optics, 2009, 48(16): 3001-3007,
CrossRef Google scholar
[[28]]
Liu Y, Gorla C R, Liang S, Emanetoglu N, Lu Y, Shen H, et al.. Ultraviolet detectors based on epitaxial ZnO films grown by MOCVD. Journal of Electronic Materials, 2000, 29: 69-74,
CrossRef Google scholar
[[29]]
Zheng W, Lin R, Zhang D, Jia L, Ji X, Huang F. Vacuum-ultraviolet photovoltaic detector with improved response speed and responsivity via heating annihilation trap state mechanism. Advanced Optical Materials, 2018, 6(21): 1800697,
CrossRef Google scholar
[[30]]
Soltani A, Barkad H A, Mattalah M, Benbakhti B, De Jaeger J C, Chong Y M, et al.. 193 nm deep-ultraviolet solar-blind cubic boron nitride based photodetectors. Applied Physics Letters, 2008, 92(5): 053501,
CrossRef Google scholar
[[31]]
BenMoussa A, Hochedez J F, Dahal R, Li J, Lin J Y, Jiang H X, et al.. Characterization of AlN metal-semiconductor-metal diodes in the spectral range of 44–360 nm: photoemission assessments. Applied Physics Letters, 2008, 92(2): 022108,
CrossRef Google scholar
[[32]]
Balducci A, Marinelli M, Milani E, Morgada M E, Tucciarone A, Verona-Rinati G, et al.. Extreme ultraviolet single-crystal diamond detectors by chemical vapor deposition. Applied Physics Letters, 2005, 86(19): 193509,
CrossRef Google scholar
[[33]]
Zheng W, Lin R, Zhu Y, Zhang Z, Ji X, Huang F. Vacuum ultraviolet photodetection in two-dimensional oxides. ACS Applied Materials & Interfaces, 2018, 10(24): 20696-20702,
CrossRef Google scholar
[[34]]
Fan Z L, Qin Z Y, Jin L, Yue Z Y, Li B K, Zhang W F, et al.. A solar-blind vacuum-ultraviolet photodetector based won free-standing lamellar aluminum nitride single crystal. Applied Physics Letters, 2023, 123(23): 232104,
CrossRef Google scholar
PDF

Accesses

Citations

Detail

Sections
Recommended

/