High-Q Fabry-Pérot Cavity Based on Micro-Lens Array for Refractive Index Sensing

Qi Wang, Xuyang Zhao, Man Luo, Yuxiang Li, Junjie Liu, Xiang Wu

PDF
Photonic Sensors ›› 2024, Vol. 14 ›› Issue (4) : 240414. DOI: 10.1007/s13320-024-0716-2
Regular

High-Q Fabry-Pérot Cavity Based on Micro-Lens Array for Refractive Index Sensing

Author information +
History +

Abstract

Fabry-Pérot (FP) microcavities have attracted tremendous attention in recent years due to their favorable optical characteristics of the high quality (Q) factor and small mode volume. In this work, we presented a novel approach that utilized the soft lithography and imprinting technology to incorporate the convex micro-lens array structure into the FP (FP-lens) cavity. A strong mode-profile restriction of the micro-lens simultaneously reduced the mode volume and enhanced the Q factor, exhibiting high tolerance to non-parallelism of mirrors compared with that of the plane-plane FP (PP-FP) microcavities. In the experiment, the Q factor of the FP-lens cavity was measured to be 8.145×104, which exhibited a 5.6-fold increase than that of the PP-FP cavity. Furthermore, we experimentally measured the refractive index sensing performance of the FP-lens cavity with the sensitivity of 594.7 nm/RIU and a detection limit of 4.26×10−7 RIU. On the basis of this superior sensing performance, the FP-lens cavity has the great potential for applications in biosensors.

Keywords

Fabry-Pérot cavity / micro-lens array / soft lithography and imprinting technology / refractive index sensing

Cite this article

Download citation ▾
Qi Wang, Xuyang Zhao, Man Luo, Yuxiang Li, Junjie Liu, Xiang Wu. High-Q Fabry-Pérot Cavity Based on Micro-Lens Array for Refractive Index Sensing. Photonic Sensors, 2024, 14(4): 240414 https://doi.org/10.1007/s13320-024-0716-2

References

[1]
Vahala K V. Optical microcavities. Nature, 2003, 424(6950): 839-846,
CrossRef Google scholar
[2]
Zhi Y Y, Yu X C, Gong Q H, Yang L, Xiao Y F. Single nanoparticle detection using optical microcavities. Advanced Materials, 2017, 29(12): 1604920,
CrossRef Google scholar
[3]
Pasquazi A, Peccianti M, Razzari L, Moss D J, Coen S, Erkintalo M, et al.. Micro-combs: a novel generation of optical sources. Physics Reports, 2018, 729: 1-81,
CrossRef Google scholar
[4]
Kuhn A, Ljunggren D. Cavity-based single-photon sources. Contemporary Physics, 2010, 51(4): 289-313,
CrossRef Google scholar
[5]
Muller A, Flagg E B, Lawall J R, Sollmon G S. Ultrahigh-finesse, low-mode-volume Fabry-Perot microcavity. Optical Letters, 2010, 35(13): 2293-2295,
CrossRef Google scholar
[6]
Zhao X Y, Guo Z H, Zhou Y, Guo J H, Liu Z R, Luo M, et al.. Highly sensitive, modification-free, and dynamic real-time stereo-optical immuno-sensor. Biosensors and Bioelectronics, 2023, 237: 115477,
CrossRef Google scholar
[7]
Guo Y B, Li H, Reddy K, Shelar H S, Nittoor V R, Fan X D. Optofluidic Fabry-Pérot cavity biosensor with integrated flow-through micro-/nano-channels. Applied Physics Letters, 2011, 98(4): 041104,
CrossRef Google scholar
[8]
Zhao X Y, Li Y X, Wang Q, Luo M, Zhou Y, Guo Z H, et al.. Ultrasensitive, dynamic, and online monitoring photonic sensors for protein conformation. Sensors and Actuators B: Chemical, 2023, 401: 134969,
CrossRef Google scholar
[9]
Yu J C, Cui Y J, Xu H, Yang Y, Wang Z Y, Chen B L, et al.. Confinement of pyridinium hemicyanine dye within an anionic metal-organic framework for two-photon-pumped lasing. Nature Communications, 2013, 4: 2719,
CrossRef Google scholar
[10]
Cole G D, Zhang W, Martin M J, Ye J, Aspelmeyer M. Tenfold reduction of Brownian noise in high-reflectivity optical coatings. Nature Photonics, 2013, 7(8): 644-650,
CrossRef Google scholar
[11]
Consoli A, Caselli N, López C. Electrically driven random lasing from a modified Fabry-Pérot laser diode. Nature Photonics, 2022, 16(3): 219-225,
CrossRef Google scholar
[12]
He T Y, Chen M Q, Zhao Y, Wei H M. Optical fiber Fabry-Perot silica-microprobe for a gas pressure sensor. Optics & Laser Technology, 2022, 152: 108106,
CrossRef Google scholar
[13]
Monteiro C S, Ferreira M S, Silva S O, Kobelke J, Schuster K, Bierlich J, et al.. Fiber Fabry-Perot interferometer for curvature sensing. Photonic Sensors, 2016, 6(4): 339-344,
CrossRef Google scholar
[14]
Lugiato L A, Prati F. Traveling wave formalism for the dynamics of optical systems in nonlinear Fabry-Perot cavities. Physica Scripta, 2018, 93(12): 124001,
CrossRef Google scholar
[15]
Azadpour F, Bahari A. All-optical bistability based on cavity resonances in nonlinear photonic crystal slab-reflector-based Fabry-Perot cavity. Optics Communications, 2019, 437: 297-302,
CrossRef Google scholar
[16]
Wang D Q, Kelkar H, Martin-Cano D, Rattenbacher D, Shkarin A, Utikal T, et al.. Turning a molecule into a coherent two-level quantum system. Nature Physics, 2019, 15(5): 483-489,
CrossRef Google scholar
[17]
Najer D, Sollner I, Sekatski P, Dolique V, Löbl M C, Riedel D, et al.. A gated quantum dot strongly coupled to an optical microcavity. Nature, 2019, 575(7784): 622-627,
CrossRef Google scholar
[18]
Liu M, Chao X, Ye Z. Transmitting intensity distribution after a Gaussian beam incidenting nonnormally on a wedged Fabry-Perot cavity. Optik, 2008, 119(14): 661-665,
CrossRef Google scholar
[19]
Marques D M, Guggenheim J A, Munro P R T. Analysing the impact of non-parallelism in Fabry-Perot etalons through optical modelling. Optics Express, 2021, 29(14): 21603-21614,
CrossRef Google scholar
[20]
Wu X Q, Chen Q S, Wang Y P, Tan X T, Fan X D. Stable high-Q bouncing ball modes inside a Fabry-Pérot cavity. ACS Photonics, 2019, 6(10): 2470-2478,
CrossRef Google scholar
[21]
Lee J Y, Hahn J W, Lee H W. Spatiospectral transmission of a plane-mirror Fabry-Perot interferometer with nonuniform finite-size diffraction beam illuminations. Optical Society of America, 2002, 19(5): 973-984,
CrossRef Google scholar
[22]
Barone S R, Newstein M C. Fabry-Perot resonances at small Fresnel numbers. Applied Optics, 1964, 3(10): 1194,
CrossRef Google scholar
[23]
Arnaud J A, Saleh A M, Ruscio J T. Walk-off effects in Fabry-Perot diplexers. IEEE Transactions on Microwave Theory and Techniques, 1974, 22(5): 486-493,
CrossRef Google scholar
[24]
Li F, Li Y, Cai Y, Li P, Tang H, Zhang Y. Tunable open-access microcavities for solid-state quantum photonics and polaritonics. Advanced Quantum Technologies, 2019, 2(10): 1900060,
CrossRef Google scholar
[25]
Wang W, Zhou C, Zhang T, Chen J, Liu S, Fan X. Optofluidic laser array based on stable high-Q Fabry-Pérot microcavities. Lab on a Chip, 2015, 15(19): 3862-3869,
CrossRef Google scholar
[26]
Xu P, He X, Wang J, Zhan M. Trapping a single atom in a blue detuned optical bottle beam trap. Optics Letters, 2010, 35(13): 2164-2166,
CrossRef Google scholar
[27]
Zhou K, Cui J M, Huang Y F, Wang Z, Qian Z H, Wu Q M, et al.. An ultraviolet fiber Fabry-Pérot cavity for florescence collection of trapped ions. Chinese Physics Letters, 2017, 34(1): 013701,
CrossRef Google scholar
[28]
Colombe Y, Steinmetz T, Dubois G, Linke F, Hunger D, Reichel J. Strong atom-field coupling for Bose-Einstein condensates in an optical cavity on a chip. Nature, 2007, 450(7167): 272-276,
CrossRef Google scholar
[29]
Qing P, Gong J, Yao N, Shen W, Rahimi-Iman A, Fang W, Tong L. A simple approach to fiber-based tunable microcavity with high coupling efficiency. Applied Physics Letters, 2019, 114(2): 021106,
CrossRef Google scholar
[30]
Dolan P R, Hughes G M, Grazioso F, Patton B R, Smith J M. Femtoliter tunable optical cavity arrays. Optics Letters, 2010, 35(21): 3556-3558,
CrossRef Google scholar
[31]
Li X F, Lin S, Liang J X, Oigawa H, Ueda T. High-sensitivity fiber-optic Fabry-Perot interferometer temperature sensor. Japanese Journal of Applied Physics, 2012, 51(6S): 06FL10,
CrossRef Google scholar
[32]
Albrecht R, Bommer A, Pauly C, Mücklich F, Schell A W, Engel P, et al.. Narrow-band single photon emission at room temperature based on a single nitrogen-vacancy center coupled to an all-fiber-cavity. Applied Physics Letters, 2014, 105(7): 073113,
CrossRef Google scholar
[33]
Gather M C, Yun S H. Single-cell biological lasers. Nature Photonics, 2011, 5(7): 406-410,
CrossRef Google scholar
[34]
Wu X, Wang Y, Chen Q, Chen Y, Li X, Tong L, et al.. High-Q, low-mode-volume microsphere-integrated Fabry-Perot cavity for optofluidic lasing applications. Photonics Research, 2018, 7(1): 50-60,
CrossRef Google scholar
[35]
Chen X, Zhao X, Guo Z, Fu L, Lu Q, Xie S, et al.. Optofluidic microbubble Fabry-Pérot cavity. Optics Express, 2020, 28(10): 15161-15172,
CrossRef Google scholar
[36]
Zhang Q, Schambach M, Schlisske S, Jin Q, Mertens A, Rainer C, et al.. Fabrication of microlens arrays with high quality and high fill factor by inkjet printing. Advanced Optical Materials, 2022, 10(14): 2200677,
CrossRef Google scholar
[37]
Wang L, Jiang W, Liu H, Yang Z, Shi Y, Yin L, et al.. Adjusting light distribution for generating microlens arrays with a controllable profile and fill factor. Journal of Micromechanics and Microengineering, 2014, 24(12): 125012,
CrossRef Google scholar
[38]
Gissibl T, Thiele S, Herkommer A, Giessen H. Two-photon direct laser writing of ultracompact multi-lens objectives. Nature Photonics, 2016, 10(8): 554-560,
CrossRef Google scholar
[39]
Jung H, Jeong K H. Monolithic polymer microlens arrays with high numerical aperture and high packing density. ACS Applied Materials & Interfaces, 2015, 7(4): 2160-2165,
CrossRef Google scholar
[40]
Jürgensen N, Fritz B, Mertens A, Tisserant J N, Kolle M, Gomard G, et al.. A single-step hot embossing process for integration of microlens arrays in biodegradable substrates for improved light extraction of light-emitting devices. Advanced Materials Technologies, 2021, 6(2): 1900933,
CrossRef Google scholar
[41]
Chan E P, Crosby A J. Fabricating microlens arrays by surface wrinkling. Advanced Materials, 2006, 18(24): 3238-3242,
CrossRef Google scholar
[42]
Y. Aishan, Y. Yalikun, S. Amaya, Y. Shen, and Y. Tanaka, “Thin glass micro-dome structure based microlens fabricated by accurate thermal expansion of microcavities,” Applied Physics Letters, 2019, 115(26).
[43]
Ding Y, Lin Y, Zhao L, Xue C, Zhang M, Hong Y, et al.. High-throughput and controllable fabrication of soft screen protectors with microlens arrays for light enhancement of OLED displays. Advanced Materials Technologies, 2020, 5(10): 2000382,
CrossRef Google scholar
PDF

Accesses

Citations

Detail

Sections
Recommended

/