High-Q Fabry-Pérot Cavity Based on Micro-Lens Array for Refractive Index Sensing

Qi Wang , Xuyang Zhao , Man Luo , Yuxiang Li , Junjie Liu , Xiang Wu

Photonic Sensors ›› 2023, Vol. 14 ›› Issue (4) : 240414

PDF
Photonic Sensors ›› 2023, Vol. 14 ›› Issue (4) : 240414 DOI: 10.1007/s13320-024-0716-2
Regular

High-Q Fabry-Pérot Cavity Based on Micro-Lens Array for Refractive Index Sensing

Author information +
History +
PDF

Abstract

Fabry-Pérot (FP) microcavities have attracted tremendous attention in recent years due to their favorable optical characteristics of the high quality (Q) factor and small mode volume. In this work, we presented a novel approach that utilized the soft lithography and imprinting technology to incorporate the convex micro-lens array structure into the FP (FP-lens) cavity. A strong mode-profile restriction of the micro-lens simultaneously reduced the mode volume and enhanced the Q factor, exhibiting high tolerance to non-parallelism of mirrors compared with that of the plane-plane FP (PP-FP) microcavities. In the experiment, the Q factor of the FP-lens cavity was measured to be 8.145×104, which exhibited a 5.6-fold increase than that of the PP-FP cavity. Furthermore, we experimentally measured the refractive index sensing performance of the FP-lens cavity with the sensitivity of 594.7 nm/RIU and a detection limit of 4.26×10−7 RIU. On the basis of this superior sensing performance, the FP-lens cavity has the great potential for applications in biosensors.

Cite this article

Download citation ▾
Qi Wang, Xuyang Zhao, Man Luo, Yuxiang Li, Junjie Liu, Xiang Wu. High-Q Fabry-Pérot Cavity Based on Micro-Lens Array for Refractive Index Sensing. Photonic Sensors, 2023, 14(4): 240414 DOI:10.1007/s13320-024-0716-2

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Vahala K V. Optical microcavities. Nature, 2003, 424(6950): 839-846

[2]

Zhi Y Y, Yu X C, Gong Q H, Yang L, Xiao Y F. Single nanoparticle detection using optical microcavities. Advanced Materials, 2017, 29(12): 1604920

[3]

Pasquazi A, Peccianti M, Razzari L, Moss D J, Coen S, Erkintalo M . Micro-combs: a novel generation of optical sources. Physics Reports, 2018, 729 1-81

[4]

Kuhn A, Ljunggren D. Cavity-based single-photon sources. Contemporary Physics, 2010, 51(4): 289-313

[5]

Muller A, Flagg E B, Lawall J R, Sollmon G S. Ultrahigh-finesse, low-mode-volume Fabry-Perot microcavity. Optical Letters, 2010, 35(13): 2293-2295

[6]

Zhao X Y, Guo Z H, Zhou Y, Guo J H, Liu Z R, Luo M . Highly sensitive, modification-free, and dynamic real-time stereo-optical immuno-sensor. Biosensors and Bioelectronics, 2023, 237 115477

[7]

Guo Y B, Li H, Reddy K, Shelar H S, Nittoor V R, Fan X D. Optofluidic Fabry-Pérot cavity biosensor with integrated flow-through micro-/nano-channels. Applied Physics Letters, 2011, 98(4): 041104

[8]

Zhao X Y, Li Y X, Wang Q, Luo M, Zhou Y, Guo Z H . Ultrasensitive, dynamic, and online monitoring photonic sensors for protein conformation. Sensors and Actuators B: Chemical, 2023, 401 134969

[9]

Yu J C, Cui Y J, Xu H, Yang Y, Wang Z Y, Chen B L . Confinement of pyridinium hemicyanine dye within an anionic metal-organic framework for two-photon-pumped lasing. Nature Communications, 2013, 4 2719

[10]

Cole G D, Zhang W, Martin M J, Ye J, Aspelmeyer M. Tenfold reduction of Brownian noise in high-reflectivity optical coatings. Nature Photonics, 2013, 7(8): 644-650

[11]

Consoli A, Caselli N, López C. Electrically driven random lasing from a modified Fabry-Pérot laser diode. Nature Photonics, 2022, 16(3): 219-225

[12]

He T Y, Chen M Q, Zhao Y, Wei H M. Optical fiber Fabry-Perot silica-microprobe for a gas pressure sensor. Optics & Laser Technology, 2022, 152 108106

[13]

Monteiro C S, Ferreira M S, Silva S O, Kobelke J, Schuster K, Bierlich J . Fiber Fabry-Perot interferometer for curvature sensing. Photonic Sensors, 2016, 6(4): 339-344

[14]

Lugiato L A, Prati F. Traveling wave formalism for the dynamics of optical systems in nonlinear Fabry-Perot cavities. Physica Scripta, 2018, 93(12): 124001

[15]

Azadpour F, Bahari A. All-optical bistability based on cavity resonances in nonlinear photonic crystal slab-reflector-based Fabry-Perot cavity. Optics Communications, 2019, 437 297-302

[16]

Wang D Q, Kelkar H, Martin-Cano D, Rattenbacher D, Shkarin A, Utikal T . Turning a molecule into a coherent two-level quantum system. Nature Physics, 2019, 15(5): 483-489

[17]

Najer D, Sollner I, Sekatski P, Dolique V, Löbl M C, Riedel D . A gated quantum dot strongly coupled to an optical microcavity. Nature, 2019, 575(7784): 622-627

[18]

Liu M, Chao X, Ye Z. Transmitting intensity distribution after a Gaussian beam incidenting nonnormally on a wedged Fabry-Perot cavity. Optik, 2008, 119(14): 661-665

[19]

Marques D M, Guggenheim J A, Munro P R T. Analysing the impact of non-parallelism in Fabry-Perot etalons through optical modelling. Optics Express, 2021, 29(14): 21603-21614

[20]

Wu X Q, Chen Q S, Wang Y P, Tan X T, Fan X D. Stable high-Q bouncing ball modes inside a Fabry-Pérot cavity. ACS Photonics, 2019, 6(10): 2470-2478

[21]

Lee J Y, Hahn J W, Lee H W. Spatiospectral transmission of a plane-mirror Fabry-Perot interferometer with nonuniform finite-size diffraction beam illuminations. Optical Society of America, 2002, 19(5): 973-984

[22]

Barone S R, Newstein M C. Fabry-Perot resonances at small Fresnel numbers. Applied Optics, 1964, 3(10): 1194

[23]

Arnaud J A, Saleh A M, Ruscio J T. Walk-off effects in Fabry-Perot diplexers. IEEE Transactions on Microwave Theory and Techniques, 1974, 22(5): 486-493

[24]

Li F, Li Y, Cai Y, Li P, Tang H, Zhang Y. Tunable open-access microcavities for solid-state quantum photonics and polaritonics. Advanced Quantum Technologies, 2019, 2(10): 1900060

[25]

Wang W, Zhou C, Zhang T, Chen J, Liu S, Fan X. Optofluidic laser array based on stable high-Q Fabry-Pérot microcavities. Lab on a Chip, 2015, 15(19): 3862-3869

[26]

Xu P, He X, Wang J, Zhan M. Trapping a single atom in a blue detuned optical bottle beam trap. Optics Letters, 2010, 35(13): 2164-2166

[27]

Zhou K, Cui J M, Huang Y F, Wang Z, Qian Z H, Wu Q M . An ultraviolet fiber Fabry-Pérot cavity for florescence collection of trapped ions. Chinese Physics Letters, 2017, 34(1): 013701

[28]

Colombe Y, Steinmetz T, Dubois G, Linke F, Hunger D, Reichel J. Strong atom-field coupling for Bose-Einstein condensates in an optical cavity on a chip. Nature, 2007, 450(7167): 272-276

[29]

Qing P, Gong J, Yao N, Shen W, Rahimi-Iman A, Fang W, Tong L. A simple approach to fiber-based tunable microcavity with high coupling efficiency. Applied Physics Letters, 2019, 114(2): 021106

[30]

Dolan P R, Hughes G M, Grazioso F, Patton B R, Smith J M. Femtoliter tunable optical cavity arrays. Optics Letters, 2010, 35(21): 3556-3558

[31]

Li X F, Lin S, Liang J X, Oigawa H, Ueda T. High-sensitivity fiber-optic Fabry-Perot interferometer temperature sensor. Japanese Journal of Applied Physics, 2012, 51(6S): 06FL10

[32]

Albrecht R, Bommer A, Pauly C, Mücklich F, Schell A W, Engel P . Narrow-band single photon emission at room temperature based on a single nitrogen-vacancy center coupled to an all-fiber-cavity. Applied Physics Letters, 2014, 105(7): 073113

[33]

Gather M C, Yun S H. Single-cell biological lasers. Nature Photonics, 2011, 5(7): 406-410

[34]

Wu X, Wang Y, Chen Q, Chen Y, Li X, Tong L . High-Q, low-mode-volume microsphere-integrated Fabry-Perot cavity for optofluidic lasing applications. Photonics Research, 2018, 7(1): 50-60

[35]

Chen X, Zhao X, Guo Z, Fu L, Lu Q, Xie S . Optofluidic microbubble Fabry-Pérot cavity. Optics Express, 2020, 28(10): 15161-15172

[36]

Zhang Q, Schambach M, Schlisske S, Jin Q, Mertens A, Rainer C . Fabrication of microlens arrays with high quality and high fill factor by inkjet printing. Advanced Optical Materials, 2022, 10(14): 2200677

[37]

Wang L, Jiang W, Liu H, Yang Z, Shi Y, Yin L . Adjusting light distribution for generating microlens arrays with a controllable profile and fill factor. Journal of Micromechanics and Microengineering, 2014, 24(12): 125012

[38]

Gissibl T, Thiele S, Herkommer A, Giessen H. Two-photon direct laser writing of ultracompact multi-lens objectives. Nature Photonics, 2016, 10(8): 554-560

[39]

Jung H, Jeong K H. Monolithic polymer microlens arrays with high numerical aperture and high packing density. ACS Applied Materials & Interfaces, 2015, 7(4): 2160-2165

[40]

Jürgensen N, Fritz B, Mertens A, Tisserant J N, Kolle M, Gomard G . A single-step hot embossing process for integration of microlens arrays in biodegradable substrates for improved light extraction of light-emitting devices. Advanced Materials Technologies, 2021, 6(2): 1900933

[41]

Chan E P, Crosby A J. Fabricating microlens arrays by surface wrinkling. Advanced Materials, 2006, 18(24): 3238-3242

[42]

Y. Aishan, Y. Yalikun, S. Amaya, Y. Shen, and Y. Tanaka, “Thin glass micro-dome structure based microlens fabricated by accurate thermal expansion of microcavities,” Applied Physics Letters, 2019, 115(26).

[43]

Ding Y, Lin Y, Zhao L, Xue C, Zhang M, Hong Y . High-throughput and controllable fabrication of soft screen protectors with microlens arrays for light enhancement of OLED displays. Advanced Materials Technologies, 2020, 5(10): 2000382

RIGHTS & PERMISSIONS

The Author(s)

AI Summary AI Mindmap
PDF

261

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/