Review of Fiber-Optic Localized Surface Plasmon Resonance Sensors: Geometries, Fabrication Technologies, and Bio-Applications
Localized surface plasmon resonance (LSPR) biosensors, which enable nanoscale confinement and manipulation of light, offer the enhanced sensitivity and electromagnetic energy localization. The integration of LSPR with the fiber-optic technology has led to the development of compact and versatile sensors for miniaturization and remote sensing. This comprehensive review explores various sensor configurations, fiber types, and geometric shapes, highlighting their benefits in terms of sensitivity, integration, and performance improvement. Fabrication techniques such as focused non-chemical bonding strategies and self-assembly of nanoparticles are discussed, providing control over nanostructure morphology and enhancing sensor performance. Bio-applications of fiber-optic LSPR (FOLSPR) sensors are detailed, specifically in biomolecular interactions and analysis of proteins, pathogens and cells, nucleic acids (DNA and RNA), and other small molecules (organic compounds and heavy metal ions). Surface modification and detection schemes are emphasized for their potential for label-free and real-time biosensing. The challenges and prospects of FOLSPR sensors are addressed, including the developments in sensitivity, fabrication techniques, and measurement reliability. Integration with emerging technologies such as nanomaterials is highlighted as a promising direction for future research. Overall, this review provides insights into the advancements and potential applications of FOLSPR sensors, paving the way for sensitive and versatile optical biosensing platforms in various fields.
[1] | J. M. Pitarke, V. M. Silkin, E. V. Chulkov, and P. M. Echenique, “Theory of surface plasmons and surface-plasmon polaritons,” Reports on Progress in Physics, 2006, 70(1): 1–87.A. V. Zayats, I. I. Smolyaninov, and A. A. Maradudin, “Nano-optics of surface plasmon polaritons,” Physics Reports, 2005, 408(3–4): 131–314. |
[2] | J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sensors and Actuators B: Chemical, 1999, 54(1–2): 3–15. |
[3] | J. Homola, “Surface plasmon resonance sensors for detection of chemical and biological species,” Chemical Reviews, 2008, 108(2): 462–493. |
[4] | M. D. Lu, Y. Z. Liang, S. Y. Qian, L. X. Li, Z. G. Jing, J. F. Masson, et al., “Optimization of surface plasmon resonance biosensor with Ag/Au multilayer structure and fiber-optic miniaturization,” Plasmonics, 2017, 12(3): 663–673. |
[5] | E. Hutter and J. H. Fendler, “Exploitation of localized surface plasmon resonance,” Advanced Materials, 2004, 16(19): 1685–1706. |
[6] | J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nature Materials, 2008, 7(6): 442–453. |
[7] | J. Zhao, X. Zhang, C. R. Yonzon, A. J. Haes, and R. P. Van Duyne, “Localized surface plasmon resonance biosensors,” Nanomedicine, 2006, 1(2): 219–228. |
[8] | B. Sepúlveda, A. Calle, L. M. Lechuga, and G. Armelles, “Highly sensitive detection of biomolecules with the magneto-optic surface-plasmon-resonance sensor,” Optics Letters, 2006, 31(8): 1085–1087. |
[9] | L. K. Chau, Y. F. Lin, S. F. Cheng, and T. J. Lin, “Fiber-optic chemical and biochemical probes based on localized surface plasmon resonance,” Sensors and Actuators B: Chemical, 2006, 113(1): 100–105. |
[10] | G. Barbillon, J. L. Bijeon, J. Plain, M. L. de la Chapelle, P. M. Adam, and P. Royer, “Electron beam lithography designed chemical nanosensors based on localized surface plasmon resonance,” Surface Science, 2007, 601(21): 5057–5061. |
[11] | J. Y. Guang, M. D. Lu, Y. Liu, R. Z. Fan, C. Wang, R. Liu, et al., “Flexible and speedy preparation of large-scale polystyrene monolayer through hemispherical-depression-assisted self-assembling and vertical lifting,” ACS Applied Polymer Materials, 2023, 5(4): 2674–2683. |
[12] | H. H. Jeong, N. Erdene, S. K. Lee, D. H. Jeong, and J. H. Park, “Fabrication of fiber-optic localized surface plasmon resonance sensor and its application to detect antibody-antigen reaction of interferon-gamma,” Optical Engineering, 2011, 50(12): 124405. |
[13] | P. Vaiano, B. Carotenuto, M. Pisco, A. Ricciardi, G. Quero, M. Consales, et al., “Lab on fiber technology for biological sensing applications,” Laser & Photonics Reviews, 2016, 10(6): 922–961. |
[14] | D. Paul, S. Dutta, D. Saha, and R. Biswas, “LSPR based ultra-sensitive low cost U-bent optical fiber for volatile liquid sensing,” Sensors and Actuators B: Chemical, 2017, 250: 198–207. |
[15] | Y. C. Xu, M. Xiong, and H. Yan, “A portable optical fiber biosensor for the detection of zearalenone based on the localized surface plasmon resonance,” Sensors and Actuators B: Chemical, 2021, 336: 129752. |
[16] | R. C. Jorgenson and S. S. Yee, “A fiber-optic chemical sensor based on surface plasmon resonance,” Sensors and Actuators B: Chemical, 1993, 12(3): 213–220. |
[17] | S. M. Chen, Y. Liu, Q. X. Yu, and W. Peng, “Microcapillary-based integrated LSPR device for refractive index detection and biosensing,” Journal of Lightwave Technology, 2020, 38(8): 2485–2492. |
[18] | Y. Liu, N. Zhang, P. Li, L. Yu, S. M. Chen, Y. Zhang, et al., “Low-cost localized surface plasmon resonance biosensing platform with a response enhancement for protein detection,” Nanomaterials, 2019, 9(7): 1019. |
[19] | J. Zhang, J. Yuan, Y. Qu, S. Qiu, C. Mei, X. Zhou, et al., “Graphene coated micro-channel fiber sensor based on localized surface plasmon resonance,” Journal of the Optical Society of America B–Optical Physics, 2023, 40(4): 695–704. |
[20] | B. T. Wang and Q. Wang, “Sensitivity-enhanced optical fiber biosensor based on coupling effect between SPR and LSPR,” IEEE Sensors Journal, 2018, 18(20): 8303–8310. |
[21] | M. A. Mollah and M. S. Islam, “Novel single hole exposed-suspended core localized surface plasmon resonance sensor,” IEEE Sensors Journal, 2021, 21(3): 2813–2820. |
[22] | M. S. Islam, M. R. Islam, J. Sultana, A. Dinovitser, B. W. H. Ng, and D. Abbott, “Exposed-core localized surface plasmon resonance biosensor,” Journal of the Optical Society of America B–Optical Physics, 2019, 36(8): 2306–2311. |
[23] | R. Singh and S. Dewra, “Performance analysis of localized surface plasmon resonance sensor with and without Bragg grating,” Journal of Optical Communications, 2019, 41(1): 45–50. |
[24] | B. R. Heidemann, J. D. Pereira, I. Chiamenti, M. M. Oliveira, M. Muller, and J. L. Fabris, “Matching long-period grating modes and localized plasmon resonances: effect on the sensitivity of the grating to the surrounding refractive index,” Applied Optics, 2016, 55(32): 8979–8985. |
[25] | J. X. Zhang, T. M. Liang, H. Y. Wang, Z. L. Huang, Z. J. Hu, K. Xie, et al., “Ultrasensitive glucose biosensor using micro-nano interface of tilted fiber grating coupled with biofunctionalized Au nanoparticles,” IEEE Sensors Journal, 2022, 22(5): 4122–4134. |
[26] | S. Lepinay, A. Staff, A. Ianoul, and J. Albert, “Improved detection limits of protein optical fiber biosensors coated with gold nanoparticles,” Biosensors & Bioelectronics, 2014, 52: 337–344. |
[27] | B. B. Luo, Y. J. Wang, H. F. Lu, S. X. Wu, Y. M. Lu, S. H. Shi, et al., “Label-free and specific detection of soluble programmed death ligand-1 using a localized surface plasmon resonance biosensor based on excessively tilted fiber gratings,” Biomedical Optics Express, 2019, 10(10): 5136–5148. |
[28] | L. Zhang, J. Lou, and L. Tong, “Micro/nanofiber optical sensors,” Photonic Sensors, 2011, 1(1): 31–42. |
[29] | K. Li, W. Zhou, and S. Zeng, “Optical micro/nanofiber-based localized surface plasmon resonance biosensors: fiber diameter dependence,” Sensors, 2018, 18(10): 3295. |
[30] | P. Uebel, S. T. Bauerschmidt, M. A. Schmidt, and P. S. Russell, “A gold-nanotip optical fiber for plasmon-enhanced near-field detection,” Applied Physics Letters, 2013, 103(2): 021101. |
[31] | L. Singh, R. Singh, B. Y. Zhang, B. K. Kaushik, and S. Kumar, “Localized surface plasmon resonance based hetero-core optical fiber sensor structure for the detection of L-cysteine,” IEEE Transactions on Nanotechnology, 2020, 19: 201–208. |
[32] | Z. Q. Tou, C. C. Chan, W. C. Wong, and L. H. Chen, “Fiber optic refractometer based on cladding excitation of localized surface plasmon resonance,” IEEE Photonics Technology Letters, 2013, 25(6): 556–559.A. Candiani, A. Bertucci, S. Giannetti, M. Konstantaki, A. Manicardi, S. Pissadakis, et al., “Label-free DNA biosensor based on a peptide nucleic acid-functionalized microstructured optical fiber-Bragg grating,” Journal of Biomedical Optics, 2013, 18(5): 057004. |
[33] | M. Y. Li, R. Singh, M. S. Soares, C. Marques, B. Y. Zhang, and S. Kumar, “Convex fiber-tapered seven core fiber-convex fiber (CTC) structure-based biosensor for creatinine detection in aquaculture,” Optics Express, 2022, 30(8): 13898–13914. |
[34] | B. T. Wang and Q. Wang, “Sensitivity-enhanced optical fiber biosensor based on coupling effect between SPR and LSPR,” IEEE Sensors Journal, 2018, 18(20): 8303–8310. |
[35] | Y. Wang, R. Singh, S. Chaudhary, B. Y. Zhang, and S. Kumar, “2-D nanomaterials assisted LSPR MPM optical fiber sensor probe for cardiac troponin I detection,” IEEE Transactions on Instrumentation and Measurement, 2022, 71: 9504609. |
[36] | R. Singh, S. Kumar, F. Z. Liu, C. Shuang, B. Y. Zhang, R. Jha, et al., “Etched multicore fiber sensor using copper oxide and gold nanoparticles decorated graphene oxide structure for cancer cells detection,” Biosensors & Bioelectronics, 2020, 168: 112557. |
[37] | V. Semwal and B. D. Gupta, “Experimental studies on the sensitivity of the propagating and localized surface plasmon resonance-based tapered fiber optic refractive index sensors,” Applied Optics, 2019, 58(15): 4149–4156. |
[38] | J. Z. Wang, Z. Q. Luo, M. Zhou, C. C. Ye, H. Y. Fu, Z. P. Cai, et al., “Evanescent-light deposition of graphene onto tapered fibers for passive Q-switch and mode-locker,” IEEE Photonics Journal, 2012, 4(5): 1295–1305. |
[39] | S. Musolino, E. P. Schartner, G. Tsiminis, A. Salem, T. M. Monro, and M. R. Hutchinson, “A portable optical fiber probe for in vivo brain temperature measurements,” SPIE Biophotonics Australasia, 2016, 10013: UNSP 100130Q. |
[40] | S. Ko, J. Lee, J. Koo, B. S. Joo, M. Gu, and J. H. Lee, “Chemical wet etching of an optical fiber using a hydrogen fluoride-free solution for a saturable absorber based on the evanescent field interaction,” Journal of Lightwave Technology, 2016, 34(16): 3776–3784. |
[41] | Z. Wang, R. Singh, C. Marques, R. Jha, B. Y. Zhang, and S. Kumar, “Taper-in-taper fiber structure-based LSPR sensor for alanine aminotransferase detection,” Optics Express, 2021, 29(26): 43793–43810. |
[42] | J. M. Ward, A. Maimaiti, V. H. Le, and S. N. Chormaic, “Contributed review: optical micro- and nanofiber pulling rig,” Review of Scientific Instruments, 2014, 85(11): 111501. |
[43] | G. Zhu, N. Agrawal, R. Singh, S. Kumar, B. Zhang, C. Saha, et al., “A novel periodically tapered structure-based gold nanoparticles and graphene oxide - immobilized optical fiber sensor to detect ascorbic acid,” Optics & Laser Technology, 2020, 127: 106156. |
[44] | W. Zhang, R. Singh, Z. Wang, G. R. Li, Y. Y. Xie, R. Jha, et al., “Humanoid shaped optical fiber plasmon biosensor functionalized with graphene oxide/multi-walled carbon nanotubes for histamine detection,” Optics Express, 2023, 31(7): 11788–11803. |
[45] | G. R. Li, Q. Xu, R. Singh, W. Zhang, C. Marques, Y. Y. Xie, et al., “Graphene oxide/multiwalled carbon nanotubes assisted serial quadruple tapered structure-based LSPR sensor for glucose detection,” IEEE Sensors Journal, 2022, 22(17): 16904–16911. |
[46] | V. V. R. Sai, T. Kundu, and S. Mukherji, “Novel U-bent fiber optic probe for localized surface plasmon resonance based biosensor,” Biosensors & Bioelectronics, 2009, 24(9): 2804–2809. |
[47] | S. Chauhan, N. Punjabi, D. Sharma, and S. Mukherji, “Evanescent wave absorption based S-shaped fiber-optic biosensor for immunosensing applications,” Procedia Engineering, 2016, 168: 117–120. |
[48] | S. K. Chauhan, J. Tharion, N. Punjabi, D. K. Sharma, and S. Mukherji, “A comparison of S-shaped and U-shaped optical fiber sensors,” Optical Sensors, 2014: SeTh3B.5. |
[49] | Z. W. Luo, Y. Xu, L. He, F. He, J. Wu, Z. J. Huang, et al., “Development of a rapid and ultra-sensitive cytosensor: Ω-shaped fiber optic LSPR integrated with suitable AuNPs coverage,” Sensors and Actuators B: Chemical, 2021, 336: 129706. |
[50] | Y. Li, X. Wang, W. Ning, E. L. Yang, Y. X. Li, Z. W. Luo, et al., “Sandwich method-based sensitivity enhancement of Ω-shaped fiber optic LSPR for time-flexible bacterial detection,” Biosensors & Bioelectronics, 2022, 201: 113911. |
[51] | L. He, F. He, Y. T. Feng, X. Wang, Y. X. Li, Y. H. Tian, et al., “Hybridized nanolayer modified Ω-shaped fiber-optic synergistically enhances localized surface plasma resonance for ultrasensitive cytosensor and efficient photothermal therapy,” Biosensors & Bioelectronics, 2021, 194: 113599. |
[52] | P. Dimpi and R. Biswas, “Clad modified varying geometries of fiber optic LSPR sensors towards detection of hazardous volatile liquids and their comparative analysis,” Environmental Technology & Innovation, 2022, 25: 102112. |
[53] | J. K. Virk, S. Das, R. S. Kaler, H. Singh, and T. Kundu, “D-shape optical fiber probe dimension optimization for LSPR based bio-sensor,” Optical Fiber Technology, 2022, 71: 102903.A. K. Pathak, B. M. A. Rahman, V. K. Singh, and S. Kumari, “Sensitivity enhancement of a concave shaped optical fiber refractive index sensor covered with multiple Au nanowires,” Sensors, 2019, 19(19): 4021. |
[54] | J. B. Maurya, Nikki, J. P. Saini, A. K. Sharma, and Y. K. Prajapati, “A localized SPR D-shaped fiber optic sensor utilizing silver grating coated with graphene: Field analysis,” Optical Fiber Technology, 2023, 75: 103204. |
[55] | J. Feng, J. Gao, W. Yang, R. Liu, M. Shafi, Z. Zha, et al., “LSPR optical fiber sensor based on 3D gold nanoparticles with monolayer graphene as a spacer,” Optics Express, 2022, 30(6): 10187–10198. |
[56] | Q. Yang, X. Zhang, S. Kumar, R. Singh, B. Zhang, C. Bai, et al., “Development of glucose sensor using gold nanoparticles and glucose-oxidase functionalized tapered fiber structure,” Plasmonics, 2020, 15(3): 841–848. |
[57] | J. Cao, M. H. Tu, T. Sun, and K. T. V. Grattan, “Wavelength-based localized surface plasmon resonance optical fiber biosensor,” Sensors and Actuators B: Chemical, 2013, 181: 611–619. |
[58] | J. G. Ortega-Mendoza, A. Padilla-Vivanco, C. Toxqui-Quitl, P. Zaca-Morán, D. Villegas-Hernández, and F. Chávez, “Optical fiber sensor based on localized surface plasmon resonance using silver nanoparticles photodeposited on the optical fiber end,” Sensors, 2014, 14(10): 18701–18710. |
[59] | V. T. Huong, N. T. T. Phuong, N. T. Tai, N. T. An, V. D. Lam, D. H. Manh, et al., “Gold nanoparticles modified a multimode clad-free fiber for ultrasensitive detection of bovine serum albumin,” Journal of Nanomaterials, 2021, 2021: 1–6. |
[60] | U. M. Uh, J. S. Kim, J. H. Park, J. D. H. Leong, H. Y. Lee, S. M. Lee, et al., “Fabrication of localized surface plasmon resonance sensor based on optical fiber and micro fluidic channel,” Journal of Nanoscience and Nanotechnology, 2017, 17(2): 1083–1091. |
[61] | Y. Shao, S. Xu, X. Zheng, Y. Wang, and W. Xu, “Optical fiber LSPR biosensor prepared by gold nanoparticle assembly on polyelectrolyte multilayer,” Sensors, 2010, 10(4): 3585–3596. |
[62] | H. M. Kim, D. H. Jeong, H. Y. Lee, J. H. Park, and S. K. Lee, “Improved stability of gold nanoparticles on the optical fiber and their application to refractive index sensor based on localized surface plasmon resonance,” Optics and Laser Technology, 2019, 114: 171–178. |
[63] | M. D. Lu, H. Zhu, C. G. Bazuin, W. Peng, and J. F. Masson, “Polymer-templated gold nanoparticles on optical fibers for enhanced-sensitivity localized surface plasmon resonance biosensors,” ACS Sensors, 2019, 4(3): 613–622. |
[64] | M. D. Lu, H. Zhu, M. Lin, F. Wang, L. Hong, J. F. Masson, et al., “Comparative study of block copolymer-templated localized surface plasmon resonance optical fiber biosensors: CTAB or citrate-stabilized gold nanorods,” Sensors and Actuators B: Chemical, 2021, 329: 129094. |
[65] | M. D. Lu, H. Zhu, L. Hong, J. J. Zhao, J. F. Masson, and W. Peng, “Wavelength-tunable optical fiber localized surface plasmon resonance biosensor via a diblock copolymer-templated nanorod monolayer,” ACS Applied Materials & Interfaces, 2020, 12(45): 50929–50940. |
[66] | H. Nguyen, F. Sidiroglou, S. F. Collins, T. J. Davis, A. Roberts, and G. W. Baxter, “A localized surface plasmon resonance-based optical fiber sensor with sub-wavelength apertures,” Applied Physics Letters, 2013, 103(19): 607. |
[67] | H. M. Kim, M. Uh, D. H. Jeong, H. Y. Lee, J. H. Park, and S. K. Lee, “Localized surface plasmon resonance biosensor using nanopatterned gold particles on the surface of an optical fiber,” Sensors and Actuators B: Chemical, 2019, 280: 183–191. |
[68] | Y. Hong, D. Zhao, J. Wang, J. Lu, G. Yao, D. Liu, et al., “Solvent-free nanofabrication based on ice-assisted electron-beam lithography,” Nano Letters, 2020, 20(12): 8841–8846. |
[69] | H. M. Kim, K. T. Nam, S. K. Lee, and J. H. Park, “Fabrication and measurement of microtip-array-based LSPR sensor using bundle fiber,” Sensors and Actuators A: Physical, 2018, 271: 146–152. |
[70] | H. H. Jeong, N. Erdene, J. H. Park, D. H. Jeong, H. Y. Lee, and S. K. Lee, “Real-time label-free immunoassay of interferon-gamma and prostate-specific antigen using a fiber-optic localized surface plasmon resonance sensor,” Biosensors & Bioelectronics, 2013, 39(1): 346–351. |
[71] | H. M. Kim, H. J. Kim, J. H. Park, and S. K. Lee, “High-performance biosensor using a sandwich assay via antibody-conjugated gold nanoparticles and fiber-optic localized surface plasmon resonance,” Analytica Chimica Acta, 2022, 1213: 339960. |
[72] | S. Das, B. Mandal, V. R. Rao, and T. Kundu, “Detection of tomato leaf curl New Delhi virus DNA using U-bent optical fiber-based LSPR probes,” Optical Fiber Technology, 2022, 74: 103108. |
[73] | T. Endo, K. Kerman, N. Nagatani, Y. Takamura, and E. Tamiya, “Label-free detection of peptide nucleic acid-DNA hybridization using localized surface plasmon resonance based optical biosensor,” Analytical Chemistry, 2005, 77(21): 6976–6984. |
[74] | D. Zhang, Y. Yan, Q. Li, T. Yu, W. Cheng, L. Wang, et al., “Label-free and high-sensitive detection of Salmonella using a surface plasmon resonance DNA-based biosensor,” Journal of Biotechnology, 2012, 160(3–4): 123–128. |
[75] | F. Tukur, B. Bagra, A. Jayapalan, M. Liu, P. Tukur, and J. Wei, “Plasmon-exciton coupling effect in nanostructured arrays for optical signal amplification and SARS-CoV-2 DNA sensing,” ACS Applied Nano Materials, 2023, 6(3): 2071–2082. |
[76] | W. Ning, C. Y. Zhang, Z. Y. Tian, M. F. Wu, Z. W. Luo, S. M. Hu, et al., “Ω-shaped fiber optic LSPR biosensor based on mismatched hybridization chain reaction and gold nanoparticles for detection of circulating cell-free DNA,” Biosensors & Bioelectronics, 2023, 228: 115175. |
[77] | M. D. Lu, W. Peng, M. Lin, F. Wang, and Y. Zhang, “Gold nanoparticle-enhanced detection of DNA hybridization by a block copolymer-templating fiber-optic localized surface plasmon resonance biosensor,” Nanomaterials, 2021, 11(3): 616. |
[78] | L. Hong, M. D. Lu, M. P. Dinel, P. Blain, W. Peng, H. Y. Gu, et al., “Hybridization conditions of oligonucleotide-capped gold nanoparticles for SPR sensing of microRNA,” Biosensors & Bioelectronics, 2018, 109: 230–236. |
[79] | S. Y. Qian, M. Lin, W. Ji, H. Z. Yuan, Y. Zhang, Z. G. Jing, et al., “Boronic acid functionalized Au nanoparticles for selective microRNA signal amplification in fiber-optic surface plasmon resonance sensing system,” ACS Sensors, 2018, 3(5): 7b00871. |
[80] | Z. Luo, Y. Wang, Y. Xu, X. Wang, Z. Huang, J. Chen, et al., “Ultrasensitive U-shaped fiber optic LSPR cytosensing for label-free and in situ evaluation of cell surface N-glycan expression,” Sensors and Actuators B: Chemical, 2019, 284: 582–588. |
[81] | Y. Xu, Z. Luo, J. Chen, Z. Huang, X. Wang, H. An, et al., “Ω-shaped fiber-optic probe-based localized surface plasmon resonance biosensor for real-time detection of salmonella typhimurium,” Analytical Chemistry, 2018, 90(22): 13640–13646. |
[82] | S. Kumar, Z. Guo, R. Singh, Q. L. Wang, B. Y. Zhang, S. Cheng, et al., “MoS2 functionalized multicore fiber probes for selective detection of shigella bacteria based on localized plasmon,” Journal of Lightwave Technology, 2021, 39(12): 4069–4081. |
[83] | W. Ning, S. Hu, C. Zhou, J. Luo, Y. Li, C. Zhang, et al., “An ultrasensitive J-shaped optical fiber LSPR aptasensor for the detection of Helicobacter pylori,” Analytica Chimica Acta, 2023, 1278: 341733. |
[84] | S. K. Srivastava, V. Arora, S. Sapra, and B. D. Gupta, “Localized surface plasmon resonance-based fiber optic U-shaped biosensor for the detection of blood glucose,” Plasmonics, 2012, 7(2): 261–268. |
[85] | S. Jia, C. Bian, J. Z. Sun, J. H. Tong, and S. H. Xia, “A wavelength-modulated localized surface plasmon resonance (LSPR) optical fiber sensor for sensitive detection of mercury(II) ion by gold nanoparticles-DNA conjugates,” Biosensors & Bioelectronics, 2018, 114: 15–21. |
[86] | Y. C. Xu, M. Xiong, and H. Yan, “A portable optical fiber biosensor for the detection of zearalenone based on the localized surface plasmon resonance,” Sensors and Actuators B: Chemical, 2021, 336: 129752. |
[87] | B. B. Luo, Y. J. Wang, H. F. Lu, S. X. Wu, Y. M. Lu, S. H. Shi, et al., “Label-free and specific detection of soluble programmed death ligand-1 using a localized surface plasmon resonance biosensor based on excessively tilted fiber gratings,” Biomedical Optics Express, 2019, 10(10): 5136–5148. |
[88] | G. Liang, Z. Zhao, Y. Wei, K. Liu, W. Hou, and Y. Duan, “Plasma enhanced label-free immunoassay for alpha-fetoprotein based on a U-bend fiber-optic LSPR biosensor,” RSC Advances, 2015, 5(31): 23990–23998. |
[89] | H. M. Kim, D. H. Jeong, H. Y. Lee, J. H. Park, and S. K. Lee, “Improved stability of gold nanoparticles on the optical fiber and their application to refractive index sensor based on localized surface plasmon resonance,” Optics and Laser Technology, 2019, 114: 171–178. |
[90] | M. Sanders, Y. B. Lin, J. J. Wei, T. Bono, and R. G. Lindquist, “An enhanced LSPR fiber-optic nanoprobe for ultrasensitive detection of protein biomarkers,” Biosensors & Bioelectronics, 2014, 61: 95–101. |
[91] | P. Halkare, N. Punjabi, J. Wangchuk, S. Madugula, K. Kondabagil, and S. Mukherji, “Label-free detection of Escherichia coli from mixed bacterial cultures using bacteriophage T4 on plasmonic fiber-optic sensor,” ACS Sensors, 2021, 6(7): 2720–2727. |
[92] | S. Kumar, R. Singh, B. K. Kaushik, N. K. Chen, Q. S. Yang, and X. Zhang, “LSPR-based cholesterol biosensor using hollow core fiber structure,” IEEE Sensors Journal, 2019, 19(17): 7399–7406. |
[93] | S. Kumar, R. Singh, Q. S. Yang, S. Cheng, B. Y. Zhang, and B. K. Kaushik, “Highly sensitive, selective and portable sensor probe using germanium-doped photosensitive optical fiber for ascorbic acid detection,” IEEE Sensors Journal, 2021, 21(1): 62–70. |
[94] | M. Y. Li, R. Singh, C. Marques, B. Y. Zhang, and S. Kumar, “2D material assisted SMF-MCF-MMF-SMF based LSPR sensor for creatinine detection,” Optics Express, 2021, 29(23): 38150–38167. |
[95] | Q. S. Yang, G. Zhu, L. Singh, Y. Wang, R. Singh, B. Y. Zhang, et al., “Highly sensitive and selective sensor probe using glucose oxidase/gold nanoparticles/graphene oxide functionalized tapered optical fiber structure for detection of glucose,” Optik, 2020, 208: 164536. |
/
〈 | 〉 |