Liquid Crystal Based Label-Free Optical Sensors for Biochemical Application

Jieyuan Tang3,4, Zhibin Li3,4, Mengyuan Xie3,4, Yunhan Luo3,4, Jianhui Yu3,4, Guojie Chen1,2(), Zhe Chen4,5()

PDF
Photonic Sensors ›› 2024, Vol. 14 ›› Issue (2) : 240203. DOI: 10.1007/s13320-024-0707-3
Review

Liquid Crystal Based Label-Free Optical Sensors for Biochemical Application

  • Jieyuan Tang3,4, Zhibin Li3,4, Mengyuan Xie3,4, Yunhan Luo3,4, Jianhui Yu3,4, Guojie Chen1,2(), Zhe Chen4,5()
Author information +
History +

Abstract

Biochemical sensors have important applications in biology, chemistry, and medicine. Nevertheless, many biochemical sensors are hampered by intricate techniques, cumbersome procedures, and the need for labeling. In the past two decades, it has been discovered that liquid crystals can be used to achieve the optical amplification of biological interactions. By modifying recognition molecules, a variety of label-free biochemical sensors can be created. Consequently, biochemical sensors based on the amplification of liquid crystals have become one of the most promising sensors. This paper describes in detail the optical sensing principle of liquid crystals, sensing devices, and optical detection technologies. Meanwhile, the latest research findings are elucidated. Finally, the challenges and future research directions are discussed.

Cite this article

Download citation ▾
Jieyuan Tang, Zhibin Li, Mengyuan Xie, Yunhan Luo, Jianhui Yu, Guojie Chen, Zhe Chen. Liquid Crystal Based Label-Free Optical Sensors for Biochemical Application. Photonic Sensors, 2024, 14(2): 240203 https://doi.org/10.1007/s13320-024-0707-3

References

[1]
J. L. Fergason, “Liquid crystals,” Scientific American, 1964, 211(2): 76–85.
[2]
Y. Li, Z. Yin, and D. Luo, “Pre-compressed polymer cholesteric liquid crystal based optical fiber VOC sensor with high stability and a wide detection range,” Optics Express, 2022, 30(18): 32822–32832.
[3]
M. K. Sadigh, P. Naziri, M. S. Zakerhamidi, A. Ranjkesh, and T. H. Yoon, “Temperature dependent features of polymer stabilized cholesteric liquid crystals based on selected liquid crystal characteristics,” Optick, 2021, 230(3): 166354.
[4]
J. Hu, Y. Chen, Z. Ma, L. Zeng, D. Zhou, Z. Peng, et al., “Temperature-compensated optical fiber sensor for volatile organic compound gas detection based on cholesteric liquid crystal,” Optics Letters, 2021, 46(14): 3324–3327.
[5]
Y. Wang, Z. Ma, Z. Li, Y. Zhang, H. Zhang, G. Zheng, et al., “Research on a novel temperature indicating device based on Bragg reflection waveguide of planar texture cholesteric liquid crystal layer,” Molecular Crystals and Liquid Crystals, 2022, 739(1): 78–87.
[6]
V. K. Gupta, J. J. Skaife, T. B. Dubrovsky, and N. L. Abbott, “Optical amplification of ligand-receptor binding using liquid crystals,” Science, 1998, 279(3): 2077–2080.
[7]
X. Zhan, Y. Liu, K. L. Yang, and D. Luo, “State-of-the-art development in liquid crystal biochemical sensors,” Biosensors, 2022, 12(8): 577.
[8]
J. Prakash, A. Parveen, Y. K. Mishra, and A. Kaushik, “Nanotechnology-assisted liquid crystals-based biosensors: towards fundamental to advanced applications,” Biosensors and Bioelectronics, 2020, 168: 112562.
[9]
S. A. Oladepo, “Development and application of liquid crystals as stimuli-responsive sensors,” Molecules, 2022, 27(4): 1453.
[10]
M. Khan, S. Liu, L. Qi, C. Ma, S. Munir, L. Yu, et al., “Liquid crystal-based sensors for the detection of biomarkers at the aqueous/LC interface,” Trac-Trends in Analytical Chemistry, 2021, 144: 116434.
[11]
R. Xie, N. Li, Z. Li, J. Chen, K. Li, Q. He, et al., “Liquid crystal droplet-based biosensors: promising for point-of-care testing,” Biosensors, 2022, 12(9): 758.
[12]
H. Wang, T. Xu, Y. Fu, Z. Wang, M. S. Leeson, J. Jiang, et al., “Liquid crystal biosensors: principles, structure and applications,” Biosensors, 2022, 12(8): 639.
[13]
Z. An and C. Jang, “Simple and label-free liquid crystal-based optical sensor for highly sensitive and selective endotoxin detection by aptamer binding and separation,” Chemistryselect, 2019, 4(4): 1416–1422.
[14]
C. H. Chen, Y. C. Lin, H. H. Chang, and A. S. Y. Lee, “Ligand-doped liquid crystal sensor system for detecting mercuric ion in aqueous solutions,” Analytical Chemistry, 2015, 87(8): 4546–4551.
[15]
D. Das, S. Sidiq, and S. K. Pal, “Design of bio-molecular interfaces using liquid crystals demonstrating endotoxin interactions with bacterial cell wall components,” RSC Advances, 2015, 5(81): 66476–66486.
[16]
J. K. Gupta, J. S. Zimmerman, J. J. de Pablo, F. Caruso, and N. L. Abbott, “Characterization of adsorbate-induced ordering transitions of liquid crystals within monodisperse droplets,” Langmuir, 2009, 25(16): 9016–9024.
[17]
H. Zhang, Z. Miao, and W. Shen, “Development of polymer-dispersed liquid crystals: From mode innovation to applications,” Composites Part A, 2022, 163: 107234.
[18]
C. K. Chang, C. M. W. Bastiaansen, D. J. Broer, and H. L. Kuo, “Alcohol-responsive, hydrogen-bonded, cholesteric liquid-crystal networks,” Advanced Functional Materials, 2012, 22(13): 2855–2859.
[19]
C. K. Chang, C. W. M. Bastiaansen, D. J. Broer, and H. L. Kuo, “Discrimination of alcohol molecules using hydrogen-bridged cholesteric polymer networks,” Macromolecules, 2012, 45(11): 4550–4555.
[20]
X. Su, J. Xu, J. Zhang, C. Luan, and W. Huo, “Application progress of nano-signa amplification technology in liquid crystalbiosensor,” Chinese Journal of Analysis Laboratory, 2019, 38(11): 1359–1365.
[21]
C. K. Chang, H. L. Kuo, K. T. Tang, and S. W. Chiu, “Optical detection of organic vapors using cholesteric liquid crystals,” Applied Physics Letters, 2011, 99(7): 073504.
[22]
R. Duan, Y. Li, H. Li, and J. Yang, “Detection of heavy metal ions using whispering gallery mode lasing in functionalized liquid crystal microdroplets,” Biomedical Optics Express, 2019, 10(12): 6073–6083.
[23]
J. Tang, Z. Li, M. Xie, Y. Zhang, W. Long, S. Long, et al., “Optical fiber bio-sensor for phospholipase using liquid crystal,” Biosensors and Bioelectronics, 2020, 170: 112547.
[24]
Y. Li, Y. Chen, D. Yi, Y. Du, W. Luo, X. Hong, et al., “A self-assembled fiber Mach-Zehnder interferometer based on liquid crystals,” Journal of Materials Chemistry, 2020, 8(32): 11153–11159.
[25]
J. Hu, D. Fu, C. Xia, S. Long, C. Lu, W. Sun, et al., “Fiber Mach-Zehnder-interferometer-based liquid crystal biosensor for detecting enzymatic reactions of penicillinase,” Applied Optics, 2019, 58(17): 4806–4811.
[26]
J. M. Brake, M. K. Daschner, Y. Y. Luk, and N. L. Abbott, “Biomolecular interactions at phospholipid-decorated surfaces ofliquidcrystals,” Science, 2003, 302(5653): 2094–2097.
[27]
D. K. Nguyen and C. H. Jang, “A cationic surfactant-decorated liquid crystal-based aptasensor for label-free detection of malathion pesticides in environmental samples,” Biosensors, 2021, 11(3): 92.
[28]
X. Niu, D. Luo, R. Chen, F. Wang, X. Sun, and H. Dai, “Optical biosensor based on liquid crystal droplets for detection of cholic acid,” Optics Communications, 2016, 381: 286–291.
[29]
P. Bao, D. A. Paterson, P. L. Harrison, K. Miller, S. Peyman, J. C. Jones, et al., “Lipid coated liquid crystal droplets for the on-chip detection of antimicrobial peptides,” Lab on a Chip, 2019, 19(6): 1082–1089.I. H. Lin, D. S. Miller, P. J. Bertics, C. J. Murphy, J. J. de Pablo, and N. L. Abbott, “Endotoxin-induced structural transformations in liquid crystalline droplets,” Science, 2011, 332(6035): 1297–1300.
[30]
C. G. Reyes, A. Sharma, and J. P. F. Lagerwall, “Non-electronic gas sensors from electrospun mats of liquid crystal core fibers for detecting volatile organic compounds at room temperature,” Liquid Crystals, 2016, 43(13–15): 1986–2001.
[31]
K. Schelski, C. G. Reyes, L. Pschyklenk, P. M. Kaul, and J. P. F. Lagerwall, “Quantitative volatile organic compound sensing with liquid crystal core fibers,” Cell Reports Physical Science, 2021, 2(12): 100661.
[32]
P. C. Wu, C. P. Pai, M. J. Lee, and W. Lee, “A single-substrate biosensor with spin-coated liquid crystal film for simple, sensitive and label-free protein detection,” Biosensors, 2021, 11(10): 374.
[33]
D. S. Millera and N. L. Abbott, “Influence of droplet size, pH and ionic strength on endotoxin-triggered ordering transitions in liquid crystalline droplets,” Soft Matter, 2013, 9(2): 374–382.
[34]
J. Y. Kwon, M. Khan, and S. Y. Park, “pH-responsive liquid crystal double emulsion droplets prepared using microfluidics,” RSC Advances, 2016, 6(61): 55976–55983.
[35]
G. Durey, Y. Ishii, and T. Lopez-Leon, “Temperature-driven anchoring transitions at liquid crystal/water interfaces,” Langmuir, 2020, 36(32): 9368–9376.
[36]
M. A. B. Pantoja and N. L. Abbott, “Surface-controlled orientational transitions in elastically strained films of liquid crystal that are triggered by vapors of toluene,” ACS Applied Materials & Interfaces, 2016, 8(20): 13114–13122.
[37]
H. J. Kim and C. H. Jang, “Liquid crystal-based capillary sensory platform for the detection of bile acids,” Chemistry and Physics of Lipids, 2017, 204: 10–14.
[38]
H. J. Kim and C. H. Jang, “Micro-capillary sensor for imaging trypsin activity using confined nematic liquid crystals,” Journal of Molecular Liquids, 2016, 222: 596–600.
[39]
T. K. H. Pham and C. H. Jang, “Simple, sensitive technique for α-amylase detection facilitated by liquid crystal-based microcapillary sensors,” Microchemical Journal, 2021, 162: 105864.
[40]
J. W. Huang, H. Hisamoto, and C. H. Chen, “Quantitative analysis of liquid crystal-based immunoassay using rectangular capillaries as sensing platform,” Optics Express, 2019, 27(12): 17080–17090.
[41]
X. Wang, E. Bukusoglu, and N. L. Abbott, “A practical guide to the preparation of liquid crystal-templated microparticles,” Chemistry of Materials, 2017, 29(1): 53–61.
[42]
V. Tomar, S. I. Hernandez, N. L. Abbott, J. P. Hernandez-Ortiz, and J. J. de Pablo, “Morphological transitions in liquid crystal nanodroplets,” Soft Matter, 2012, 8(33): 8679–8689.
[43]
D. K. Nguyen and C. H. Jang, “Simple and label-free detection of carboxylesterase and its inhibitors using a liquid crystal droplet sensing platform,” Micromachines, 2022, 13(3): 490.
[44]
J. Liu, T. Wang, J. Xiao, and L. Yu, “Portable liquid crystal droplet array in the capillary for rapid and sensitive detection of organophosphate nerve agents,” Microchemical Journal, 2022, 178: 107334.
[45]
F. Yin, S. Cheng, S. Liu, C. Ma, L. Wang, R. Zhao, et al., “A portable digital optical kanamycin sensor developed by surface-anchored liquid crystal droplets,” Journal of Hazardous Materials, 2021, 420: 126601.
[46]
S. Cheng, M. Khan, F. Yin, C. Ma, J. Yuan, T. Jiang, et al., “Surface-anchored liquid crystal droplets for the semi-quantitative detection of aflatoxin B1 in food samples,” Food Chemistry, 2022, 390: 133202.
[47]
S. Xie, R. He, Q. Zhu, M. Jin, R. Yang, S. Shen, et al., “Label-free optical sensor based on liquid crystal sessile droplet array for penicillin G determination,” Colloids and Surface A: Physicochemical and Engineering Aspects, 2022, 644: 128728.
[48]
J. K. Gupta, J. S. Zimmerman, J. J. de Pablo, F. Caruso, and N. L. Abbott, “Characterization of adsorbate-induced ordering transitions of liquid crystals within monodisperse droplets,” Langmuir, 2009, 25(16): 9016–9024.
[49]
J. Deng, D. Han, and J. Yang, “Applications of microfluidics in liquid crystal-based biosensors,” Biosensors, 2021, 11(10): 385.. H. Pi?eres-Qui?ones, D. M. Lynn, and C. Acevedo-Vélez, “Environmentally responsive emulsions of thermotropic liquid crystals with exceptional long-term stability and enhanced sensitivity to aqueous amphiphiles,” Langmuir, 2022, 38(3): 957–967.
[50]
J. Deng, X. Wang, W. Liang, D. Richardsonb, Q. Luc, and J. Fang, “Surface modified liquid crystal droplets as an optical probe for the detection of bile acids in microfluidic channels,” Colloids and Surfaces A-Physicochemical and Engineering Aspects, 2018, 542: 52–58.
[51]
G. Zhang, A. Zhu, S. Wang, Q. Chen, B. Liu, J. Zhou, et al., “Stabilizing liquid crystal droplets with hydrogel films and its application in monitoring adenosine triphosphate,” Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 654: 130122.
[52]
Z. Ma, J. Sun, S. Zhou, W. Shan, Y. Yan, and Y. Liu, “Compact fiber sensor for pH measurement based on the composite effect of hydrogel deformation and LC refractive index variation,” Optics Letters, 2023, 48(1): 139–142.
[53]
L. Liu, W. Li, X. Wang, Y. Xie, Y. Li, and Z. Wu, “Functional liquid crystal core/hydrogel shell microcapsules for monitoring live cells in a 3D microenvironment,” Analytical Chemistry, 2023, 95(5): 2750–2756.
[54]
L. L. Teresa and F. N. Alberto, “Drops and shells of liquid crystal,” Colloid Polymer Science, 2011, 289(4): 345–359.I. S. Heo and S. Y. Park, “Smart shell membrane prepared by microfluidics with reactive nematic liquid crystal mixture,” Sensors and Actuators B-Chemical, 2017, 251: 658–666.
[55]
J. Wang, A. Jákli, and J. L. West, “Liquid crystal/polymer fiber mats as sensitive chemical sensors,” Journal of Molecular Liquids, 2018, 267: 490–495.
[56]
S. R. Kim, R. R. Shah, and N. L. Abbott, “Orientations of liquid crystals on mechanically rubbed films of bovine serum albumin: a possible substrate for biomolecular assays based on liquid crystals,” Analytical Chemistry, 2000, 72(19): 4646–4653.
[57]
R. R. Shah and N. L. Abbott, “Principles for measurement of chemical exposure based on recognition-driven anchoring transitions in liquid crystals,” Science, 2001, 293(5533): 1296–1299.
[58]
M. ?karabot, E. Osmanagi?, and I. Mu?evi?, “Surface anchoring of nematic liquid crystal 80 CB on a DMOAP-silanated glass surface,” Liquid Crystals, 2006, 33(5): 581–585.
[59]
H. Lin, L. Ke, H. C. Liang, and W. Kuo, “Tunable pretilt angle based on gelator-doped planar liquid crystal cells,” Liquid Crystals, 2021, 48: 1448–1456.
[60]
T. K. Chang, M. J. Lee, and W. Lee, “Quantitative biosensing based on a liquid crystal marginally aligned by the PVA/DMOAP composite for optical signal amplification,” Biosensors, 2022, 12(4): 218.
[61]
M. J. Lee, F. F. Duan, P. C. Wu, and L. Wei, “Liquid crystal-photopolymer composite films for label-free single-substrate protein quantitation and immunoassay,” Biomedical Optics Express, 2020, 11(9): 4915–4927.
[62]
T. K. Chang, P. C. Tung, M. J. Lee, and W. Lee, “A liquid-crystal aptasensing platform for label-free detection of a single circulating tumor cell,” Biosensors and Bioelectronics, 2022, 216: 114607.
[63]
X. Niu, Y. Liu, F. Wang, and D. Luo, “Highly sensitive and selective optical sensor for lead ion detection based on liquid crystal decorated with DNAzyme,” Optics Express, 2019, 27(21): 30421–30428.
[64]
Z. Khoshbin, H. Zahraee, J. Zamanian, A. Verdian, M. Ramezani, M. Alibolandi, et al., “A label-free liquid crystal-assisted aptasensor for trace level detection of tobramycin in milk and chicken egg samples,” Analytica Chimica Acta, 2022, 1236(15): 340588.
[65]
M. L. Bungabong, P. B. Ong, and K. L. Yang, “Using copper perchlorate doped liquid crystals for the detection of organophosphonate vapor,” Sensors and Actuators B–Chemical, 2010, 148(2): 420–426.
[66]
G. Li, B. Gao, M. Yang, L. C. Chen, and X. L. Xiong, “Homeotropic orientation behavior of nematic liquid crystals induced by copper ions,” Colloids and Surfaces B–Biointerfaces, 2015, 130: 287–291.
[67]
K. L. Yang, K. Cadwell, and N. L. Abbott, “Use of self-assembled monolayers, metal ions and smectic liquid crystals to detect organophosphonates,” Sensors and Actuators B–Chemical, 2005, 104(1): 50–56.
[68]
J. M. Brake, A. D. Mezera, and N. L. Abbott, “Effect of surfactant structure on the orientation of liquid crystals at aqueous-liquid crystal interfaces,” Langmuir, 2003, 19(16): 6436–6442.
[69]
S. Lu, Y. Guo, L. Qi, Q. Hu, and L. Yu, “Highly sensitive and label-free detection of catalase by a H2O2-responsive liquid crystal sensing platform,” Sensors and Actuators B–Chemical, 2021, 344: 130279.
[70]
L. Zhou, Q. Kang, and M. Fang, “Label-free, rapid, and sensitive detection of carboxylesterase using surfactant-doped liquid crystal sensor,” Journal of Molecular Liquids, 2019, 296: 111921.
[71]
M. Devi, I. Verma, and S. K. Pal, “Distinct interfacial ordering of liquid crystals observed by protein-lipid interactions that enabled the label-free sensing of cytoplasmic protein at the liquid crystal-aqueous interface,” Analyst, 2021, 146(23): 7152–7159.I. Verma, S. Sidiq, and S. K. Pal, “Protein triggered ordering transitions in poly (L-lysine)-coated liquid crystal emulsion droplets,” Liquid Crystals, 2019, 46(9): 1318–1326.
[72]
X. Yang and Z. Yang, “Simple and rapid detection of ibuprofen-a typical pharmaceuticals and personal care products - by a liquid crystal aptasensor,” Langmuir, 2022, 38(1): 282–288.A. D. Price and D. K. Schwartz. “DNA hybridization-induced reorientation of liquid crystal anchoring at the nematic liquid crystal/aqueous interface,” Journal of the American Chemical Society, 2008, 130(26): 8188–8194.
[73]
M. Khan, A. R. Khan, J. H. Shin, and S. Y. Park, “A liquid-crystal based DNA biosensor for pathogen detection ion,” Scientific Reports, 2016, 6: 22676.
[74]
Y. Wang, Q. Hu, Y. Guo, and L. Yu, “A cationic surfactant-decorated liquid crystal sensing platform for simple and sensitive detection of acetylcholinesterase and its inhibitor,” Biosensors & Bioelectronics, 2015, 72: 25–30.
[75]
H. Ma, S. Lu, Q. Xie, T. Wang, H. Lu, and L. Yu, “A stable liquid crystals sensing platform decorated with cationic surfactant for detecting thrombin,” Microchemical Journal, 2021, 170: 106698.
[76]
J. Ping, L. Qi, Q. Wang, S. Liu, Y. Jiang, L. Yu, et al., “An integrated liquid crystal sensing device assisted by the surfactant-embedded smart hydrogel,” Biosensors & Bioelectronics, 2021, 187: 113313.
[77]
H. Ma, Q. Kang, T. Wang, and L. Yu, “A liquid crystals-based sensing platform for detection of α-amylase coupled with destruction of host-guest interaction,” Colloids and Surfaces B–Biointerfaces, 2019, 173: 616–622.
[78]
K. N. Duy and C. H. Jang, “A label-free liquid crystal biosensor based on specific DNA aptamer probes for sensitive detection of amoxicillin antibiotic,” Micromachines, 2021, 12(4): 370.
[79]
Y. Wang, B. Wang, X. Xiong, and S. Deng, “A self-oriented beacon liquid crystal assay for kanamycin detection with AuNPs signal enhancement,” Analytical Methods, 2022, 14(4): 410–416.
[80]
Q. Z. Hu and C. H. Jang, “Using liquid crystals for the real-time detection of urease at aqueous/liquid crystal interfaces,” Journal of Materials Science, 2012, 47(2): 969–975.
[81]
Y. Wang, L. Zhao, A. Xu, L. Wang, L. Zhang, S. Liu, et al., “Detecting enzymatic reactions in penicillinase via liquid crystal microdroplet-based pH sensor,” Sensors and Actuators B–Chemical, 2018, 258: 1090–1098.
[82]
X. Bi, D. Hartono, and K. L. Yang, “Real-time liquid crystal pH sensor for monitoring enzymatic activities of penicillinase,” Advanced Functional Materials, 2009, 19(23): 3760–3765.
[83]
M. Sundas, I. K. Kang, and S. Y. Park, “Polyelectrolytes functionalized nematic liquid crystal-based biosensors: an overview,” Trends in Analytical Chemistry, 2016, 83: 80–94.
[84]
T. Bera and J. Fang, “Polyelectrolyte-coated liquid crystal droplets for detecting charged macromolecules,” Journal Materials Chemistry, 2012, 22(14): 6807–6812.
[85]
D. H. Yeo and S. Y. Park, “Liquid-crystal-based biosensor for detecting Ca2+ in human saliva,” Journal of Industrial and Engineering Chemistry, 2019, 74: 193–198.
[86]
M. Khan and S. Y. Park, “Specific detection of avidin-biotin binding using liquid crystal droplets,” Colloids and Surfaces B–Biointerfaces, 2015, 127: 241–246.
[87]
C. S. Park, K. Iwabata, U. Sridhar, M. Tsuei, K. Singh, Y. K. Kim, et al., “A new strategy for reporting specific protein binding events at aqueous-liquid crystal interfaces in the presence of non-specific proteins,” ACS Applied Materials Interfaces, 2020, 12(7): 7869–7878.
[88]
Y. S. Choi, Y. J. Lee, H. J. Kwon, and S. D. Lee, “Optical detection of the ligand-receptor binding by anchoring transitions of liquid crystals,” Materials Science and Engineering: C, 2004, 24(1–2): 237–240.
[89]
N. A. Lockwood, J. K. Gupta, and N. L. Abbott, “Self-assembly of amphiphiles, polymers and proteins at interfaces between thermotropic liquid crystals and aqueous phases,” Surface Science Reports, 2008, 63(6): 255–293.
[90]
N. A. Lockwood and N. L. Abbott, “Self-assembly of surfactants and phospholipids at interfaces between aqueous phases and thermotropic liquid crystals,” Current Opinion in Colloid & Interface Science, 2005, 10(2–3): 111–120.
[91]
X. Wang, Crystal Optics. Nanjing: Nanjing University Press, 2014.
[92]
J. M. Brake, M. K. Daschner, and N. L. Abbott, “Formation and characterization of phospholipid monolayers spontaneously assembled at interfaces between aqueous phases and thermotropic liquid crystals,” Langmuir, 2005, 21(6): 2218–2228.
[93]
X. Su, J. Xu, J. Zhang, D. Yang, W. Huo, and C. He, “Detection of Cecropin B by liquid-crystal biosensor based on AuNPs signal amplification,” Liquid Crystals, 2020, 47(12): 1794–1802.
[94]
H. Liu, X. Su, J. Zhang, J. Xu, D. Yang, and Q. Chen, “Highly sensitive and rapid detection of protein kinase C based on liquid crystal biosensor,” Colloids and Surfaces A–Physicochemical and Engineering Aspects, 2021, 628: 127346.
[95]
L. Qi, S. Liu, Y. Jiang, J. Lin, L. Yu, and Q. Hu, “Simultaneous detection of multiple tumor markers in blood by functional liquid crystal sensors assisted with target-induced dissociation of aptamer,” Analytical Chemistry, 2020, 92(5): 3867–3873.
[96]
S. Cheng, M. Khan, F. Yin, W. Wu, T. Sun, Q. Hu, et al., “Liquid crystal-based sensitive and selective detection of uric acid and uricase in body fluids,” Talanta, 2022, 244: 123455.
[97]
N. Majeed, A. Noor, and H. M. Siddiqi, “Non-enzymatic liquid crystal-based detection of copper ions in water,” Chemistry Select, 2023, 8(3): e202204433.
[98]
M. G. Shemirani, F. Habibimoghaddam, M. Mohammadimasoudi, M. Esmailpour, and A. Goudarzi, “Rapid and label-free methanol identification in alcoholic beverages utilizing a textile grid impregnated with chiral nematic liquid crystals,” ACS Omega, 2022, 7(42): 37546–37554.
[99]
Y. Zhou, E. Bukusoglu, J. A. Martínez-Gonzalez, M. Rahimi, T. F. Roberts, R. Zhang, et al., “Structural transitions in cholesteric liquid crystal droplets,” ACS Nano, 2016, 10(7): 6484–6490.
[100]
H. G. Lee, S. Munir, and S. Y. Park, “Cholesteric liquid crystal droplets for biosensors,” ACS Applied Materials Interfaces, 2016, 8(39): 26407–26417.
[101]
B. Gollapelli, A. K. Tatipamula, S. Dewanjee, R. S. Pathintia, and J. Vallamkondu, “Detection of bile acids using optical biosensors based on cholesteric liquid crystal droplets,” Journal of Materials Chemistry C, 2021, 9(39): 13991–14002.
[102]
S. Jiang, J. Noh, C. Park, A. D. Smith, N. L. Abbott, and V. M. Zavala, “Using machine learning and liquid crystal droplets to identify and quantify endotoxins from different bacterial species,” Analyst, 2021, 146(4): 1224–1233.
[103]
Y. Zhang, S. Xu, R. Zhang, Z. Deng, Y. Liu, J. Tian, et al., “Automated calculation of liquid crystal sensing images based on deep learning,” Analytical Chemistry, 2022, 94(37): 127810–12787.
[104]
N. Bao, S. Jiang, A. Smith, J. J. Schauer, M. Mavrikakis, R. C. Van Lehn, et al., “Sensing gas mixtures by analyzing the spatiotemporal optical responses of liquid crystals using 3D convolutional neural networks,” ACS Sensors, 2022, 7(9): 2545–2555.
[105]
M. Esmailpour, M. Mohammadimasoudi, M. G. Shemirani, A. Goudarzi, M. H. Heidari Beni, H. Shahsavarani, et al., “Rapid, label-free and low-cost diagnostic kit for COVID-19 based on liquid crystals and machine learning,” Biosensors and Bioelectronics:X, 2022, 12: 100233.
[106]
J. Fraz?o, S. Palma, H. M. A. Costa, C. Alves, A. C. A. Roque, and M. Silveira, “Optical gas sensing with liquid crystal droplets and convolutional neural networks,” Sensors, 2021, 21(8): 2854.
[107]
Y. Cao, H. Yu, N. L. Abbott, and V. M. Zavala, “Machine learning algorithms for liquid crystal-based sensors,” ACS Sensors, 2018, 3(11): 2237–2245.A. D. Smith, N. Abbott, and V. M. Zavala, “Convolutional network analysis of optical micrographs for liquid crystal sensors,” Journal of Physical Chemistry C, 2020, 124(28): 15152–15161.
[108]
L. Qi, Q. Hu, Q. Kang, Y. Bi, Y. Jiang, and L. Yu, “Detection of biomarkers in blood using liquid crystals assisted with aptamer-target recognition triggered in situ rolling circle amplification on magnetic beads,” Analytical Chemistry, 2019, 91(18): 11653–11660.
[109]
J. Liu, Q. Hu, L. Qi, J. M. Lin, and L. Yu, “Liquid crystal-based sensing platform for detection of Pb2+ assisted by DNAzyme and rolling circle amplification,” Journal of Hazardous Materials, 2020, 400: 123218.
[110]
L. Zhao, Y. Wang, Y. Yuan, Y. Liu, S. Liu, W. Sun, et al., “Whispering gallery mode laser based on cholesteric liquid crystal microdroplets as temperature sensor,” Optics Communications, 2017, 402: 181–185.
[111]
D. Zhou, Z. Lan, W. Cao, Y. Chen, S. Zhang, J. Hu, et al., “Liquid crystal optical fiber sensor based on misaligned core configuration for temperature and mixed volatile organic compound detection,” Optics and Laser Technology, 2022, 156: 108545.
[112]
D. I. Avsar and E. Bukusoglu, “Chameleon skin-inspired polymeric particles for the detection of toluene vapor,” Soft Matter, 2020, 16(37): 8683–8691.
[113]
K. J. Kek, J. J. Z. Lee, Y. Otono, and S. Ishihara, “Chemical gas sensors using chiral nematic liquid crystals and its applications,” Journal of the Society for Information Display, 2017, 25(6): 366–373.
[114]
L. Sutarlie, J. Y. Lim, and K. L. Yang, “Cholesteric liquid crystals doped with dodecylamine for detecting aldehyde vapors,” Analytical Chemistry, 2011, 83(13): 5253–5258.
[115]
L. Sutarlie, H. Qin, and K. L. Yang, “Polymer stabilized cholesteric liquid crystal arrays for detecting vaporous amines,” Analyst, 2010, 135(7): 1691–1696.
[116]
T. Y. Yeh, M. F. Liu, R. D. Lin, and S. J. Hwang, “Alcohol selective optical sensor based on porous cholesteric liquid crystal polymer networks,” Molecules, 2022, 27(3): 773.
[117]
M. Moirangthem, R. Arts, M. Merkx, and A. P. H. J. Schenning, “An optical sensor based on a photonic polymer film to detect calcium in serum,” Advanced Functional Materials, 2016, 26(8): 1154–1160.
[118]
J. E. Stumpel, E. R. Gil, A. B. Spoelstra, C. W. M. Bastiaansen, B. D. J. Schenning, and A. P. H. J. Schenning, “Stimuli-responsive materials based on interpenetrating polymer liquid crystal hydrogels,” Advanced Functional Materials, 2015, 25(22): 3314–3320.
[119]
K. G. Noh and S. Y. Park, “Biosensor array of interpenetrating polymer network with photonic film templated from reactive cholesteric liquid crystal and enzyme-immobilized hydrogel polymer,” Advanced Functional Materials, 2018, 28(22): 1707562.
[120]
J. S. Lim, Y. J. Kim, and S. Y. Park, “Functional solid-state photonic droplets with interpenetrating polymer network and their applications to biosensors,” Sensors and Actuators B–Chemical, 2021, 329: 129165.
[121]
Y. Yang, D. Zhou, X. Liu, Y. Liu, S. Liu, P. Miao, et al., “Optical fiber sensor based on a cholesteric liquid crystal film for mixed VOC sensing,” Optics Express, 2020, 28,(21): 31872–31881.
[122]
Y. Su, Z. Lan, J. Wang, L. Zeng, D. Zhou, Z. Peng, et al., “Optical fiber sensor for determination of methanol ratio in methanol-doped ethanol based on two cholesteric liquid crystal droplets embedded in chitosan,” Journal of Lightwave Technology, 2021, 39(15): 5170–5176.
[123]
K. D. Cadwell, M. E. Alf, and N. L. Abbott, “Infrared spectroscopy of competitive interactions between liquid crystals, metal salts, and dimethyl methylphosphonate at surfaces,” Journal of Physical Chemistry B, 2006, 110(51): 26081–26088.
[124]
Y. Zhang, Q. Song, D. Zhao, X. Tang, Y. Zhang, Z. Liu, et al., “Review of different coupling methods with whispering gallery mode resonator cavities for sensing,” Optics and Laser Technology, 2023, 159: 108955.
[125]
Z. Wang, Y. Zhang, X. Gong, Z. Yuan, S. Feng, T. Xu, et al., “Bio-electrostatic sensitive droplet lasers for molecular detection,” Nanoscale Advances, 2020, 2(7): 2713–2719.
[126]
M. Humar and I. Mu?evi?, “Surfactant sensing based on whispering-gallery-mode lasing in liquid-crystal microdroplets,” Optics Express, 2011, 19(21): 19836–19844.
[127]
R. Duan, Y. Li, H. Li, and J. Yang, “Real-time monitoring of the enzymatic reaction of urease by using whispering gallery mode lasing,” Optics Express, 2019, 27(24): 35427–35436.
[128]
R. Duan, Y. Li, B. Shi, H. Li, and J. Yang, “Real-time, quantitative and sensitive detection of urea by whispering gallery mode lasing in liquid crystal microdroplet,” Talanta, 2020, 209: 120513.
[129]
R. Duan, X. Hao, Y. Li, and H. Li, “Detection of acetylcholinesterase and its inhibitors by liquid crystal biosensor based on whispering gallery mode,” Sensors and Actuators B–Chemical, 2020, 308: 127672.
[130]
Z. Ma, M. Xu, S. Zhou, W. Shan, D. Zhou, Y. Yan, et al., “Ultra-low sample consumption consecutive-detection method for biochemical molecules based on a whispering gallery mode with a liquid crystal microdroplet,” Optics Letters, 2022, 47(2): 381–384.
[131]
R. Duan, Y. Li, Y. He, Y. Yuan, and H. Li, “Quantitative and sensitive detection of lipase using a liquid crystal microfiber biosensor based on the whispering-gallery mode,” Analyst, 2020, 45(23): 7595–7602.
[132]
R. Duan, Y. Li, Y. Yuan, L. Liu, and H. Li, “Functionalised liquid crystal microfibers for hydrogen peroxide and catalase detection using whispering gallery mode,” Liquid Crystals, 2020, 47(11): 1708–1717.
[133]
Z. Wang, Y. Liu, C. Gong, Z. Yuan, L. Shen, P. Chang, et al., “Liquid crystal-amplified optofluidic biosensor for ultra-highly sensitive and stable protein assay”, PhotoniX, 2021, 2(1): 1–16.
[134]
R. W. Wood, “On a remarkable case of uneven distribution of light in a diffraction grating,” Philosophical Magazine, 1902, 4(19–24): 396–402.A. Otto, “Excitation of nonradiative surface plasma waves in silver by the method of frustrated total reflection,” Zeitschrift für Physik, 1968, 216(4): 398–410.
[135]
E. Kretschmann, “Die bestimmung optischer konstanten von metallen durch anregung von oberfl?chenplasmaschwingungen,” Zeitschrift für Physik a Hadrons and nuclei, 1971, 241(4): 313–324.
[136]
Y. Zhao, R. Tong, F. Xia, and Y. Peng, “Current status of optical fiber biosensor based on surface plasmon resonance”, Biosensors and Bioelectronics, 2019, 142: 111505.A. K. Singh, M. Anwar, R. Pradhan, M. S. Ashar, N. Rai, and S. Dey, “Surface plasmon resonance based-optical biosensor: emerging diagnostic tool for early detection of diseases,” Journal of Biophotonics, 2023, 16(7): 202200380.
[137]
S. Das, R. Devireddy, and M. R. Gartia, “Surface plasmon resonance (SPR) sensor for cancer biomarker detection,” Biosensors, 2023, 13(3): 396.A. Vahedi and M. Kouhi, “Liquid crystal-based surface plasmon resonance biosensor,” Plasmonics, 2020, 15(1): 61–71.
[138]
S. A. Abuabed, “Study of the effect of nematic order degradation in liquid crystal-based surface plasmon resonance sensors,” Photonics, 2017, 4(2): 24.
[139]
Vahedi and M. Kouhi, “Temperature effects on liquid crystal-based tunable biosensors,” Optik, 2021, 242: 167383.
[140]
N. Mehan, “Effects of optic axis rotation on the sensing properties of nematic liquid crystal based surface plasmon resonance (SPR) sensor,” Optical Materials, 2023, 136: 113472.
[141]
Kieser, D. Pauluth, and G. Gauglitz, “Nematic liquid crystals as sensitive layers for surface plasmon resonance sensors,” Analytica Chimica Acta, 2001, 434(2): 231–237.
[142]
G. M. KoenigJr, B. T. Gettelfinger, J. J. de Pablo, and N. L. Abbott, “Using localized surface plasmon resonances to probe the nanoscopic origins of adsorbate-driven ordering transitions of liquid crystals in contact with chemically functionalized gold nanodots,” Nano Letters, 2008, 8(8): 2362–2368.
[143]
F. Esposito, A. Srivastava, L. Sansone, M. Giordano, S. Campopiano, and A. Iadicicco, “Label-free biosensors based on long period fiber gratings: a review,” IEEE Sensors Journal, 2021, 21(11): 12692–12705.
[144]
J. Zhou, Q. Qi, C. Wang, Y. Qian, G. Liu, Y. Wang, et al., “Surface plasmon resonance (SPR) biosensors for food allergen detection in food matrices,” Biosensors and Bioelectronics, 2019, 142: 111449.
[145]
Liu, H. Chen, Q. Chen, Z. Gao, B. Wu, X. Fan, et al., “Sagnac interferometer-based optical fiber strain sensor with exceeding free spectral measurement range and high sensitivity,” Optics and Laser Technology, 2023, 159: 108935.
[146]
P. Nag, K. Sadani, S. Mohapatra, S. Mukherji, and S. Mukherji, “Evanescent wave optical fiber sensors using enzymatic hydrolysis on nanostructured polyaniline for detection of β-lactam antibiotics in food and environment,” Analytical Chemistry, 2021, 93(4): 2299–2308.
[147]
H. Deng, X. Chen, Z. Huang, S. Kang, W. Zhang, H. Li, et al., “Optical fiber based Mach-Zehnder interferometer for APES detection,” Sensors, 2021, 21(17): 5870.
[148]
S. Tang, M. Zou, C. Zhao, Y. Jiang, R. Chen, Z. Xu, et al., “Fabry-Perot interferometer based on a fiber-tip fixed supported bridge for fast glucose concentration measurement,” Biosensors, 2022, 12(6): 391.
[149]
R. Wang, M. Yan, M. Jiang, Y. Li, X. Kang, M. Hu, et al., “Label-free and selective cholesterol detection based on multilayer functional structure coated fiber Fabry-Perot interferometer probe,” Analytica Chimica Acta, 2023, 1252: 341051.
[150]
V. Vikas and P. Saccomandi, “Design considerations of an ITO-coated U-shaped fiber optic LMR biosensor for the detection of antibiotic ciprofloxacin,” Biosensors, 2023, 13(3): 362.
[151]
N. L. N. Tran, B. T. Phan, H. K. T. Ta, T. T. K. Chi, B. T. T. Hien, N. T. T. Phuong, et al., “Gold nanoparticles are capped under the IRMOF-3 platform for in-situ surface-enhanced Raman scattering technique and optic fiber sensor,” Sensors and Actuators A–Physical, 2022, 347: 113932.
[152]
T. Y. Ho, J. W. Huang, B. C. Peng, W. C. Tsao, and C. H. Chen, “Liquid crystal-based sensor system for detecting formaldehyde in aqueous solutions,” Microchemical Journal, 2020, 158: 105235.
[153]
J. Tang, J. Fang, Y. Liang, B. Zhang, Y. Luo, X. Liu, et al., “All-fiber-optic VOC gas sensor based on side-polished fiber wavelength selectively coupled with cholesteric liquid crystal film,” Sensors and Actuators B–Chemical, 2018, 273: 1816–1826.
[154]
S. Miller, X. Wang, J. Buchen, O. D. Lavrentovich, and N. L. Abbott, “Analysis of the internal configurations of droplets of liquid crystal using flow cytometry,” Analytical Chemistry, 2013, 85(21): 10296–10303.
[155]
M. Khan and S. Y. Park, “Liquid crystal-based biosensor with backscattering interferometry: a quantitative approach,” Biosensors and Bioelectronics, 2017, 87: 976–983.
[156]
Y. Yan, N. Bu, X. Bai, M. Wang, Y. Ma, S. Jia, et al., “A liquid crystal optical sensor for simple and quantitative determination of dimethylmethylphosphonate using laser speckle,” Optics and Laser in Engineering, 2023, 170: 107763.
PDF

Accesses

Citations

Detail

Sections
Recommended

/