Microstructured Cantilever Probe on Optical Fiber Tip for Microforce Sensor

Famei Wang, Changrui Liao, Mengqiang Zou, Dejun Liu, Haoqiang Huang, Chao Liu, Yiping Wang

PDF
Photonic Sensors ›› 2024, Vol. 14 ›› Issue (2) : 240204. DOI: 10.1007/s13320-024-0704-6
Regular

Microstructured Cantilever Probe on Optical Fiber Tip for Microforce Sensor

Author information +
History +

Abstract

Benefiting from the great advances of the femtosecond laser two-photon polymerization (TPP) technology, customized microcantilever probes can be accurately 3-dimensional (3D) manufactured at the nanoscale size and thus have exhibited considerable potentials in the fields of microforce, micro-vibration, and microforce sensors. In this work, a controllable microstructured cantilever probe on an optical fiber tip for microforce detection is demonstrated both theoretically and experimentally. The static performances of the probe are firstly investigated based on the finite element method (FEM), which provides the basis for the structural design. The proposed cantilever probe is then 3D printed by means of the TPP technology. The experimental results show that the elastic constant k of the proposed cantilever probe can be actively tuned from 2.46 N/m to 62.35 N/m. The force sensitivity is 2.5 nm/µN, the Q-factor is 368.93, and the detection limit is 57.43 nN. Moreover, the mechanical properties of the cantilever probe can be flexibly adjusted by the geometric configuration of the cantilever. Thus, it has an enormous potential for matching the mechanical properties of biological samples in the direct contact mode.

Keywords

Optical fiber sensor / microforce sensing / microstructured cantilever / two-photon polymerization

Cite this article

Download citation ▾
Famei Wang, Changrui Liao, Mengqiang Zou, Dejun Liu, Haoqiang Huang, Chao Liu, Yiping Wang. Microstructured Cantilever Probe on Optical Fiber Tip for Microforce Sensor. Photonic Sensors, 2024, 14(2): 240204 https://doi.org/10.1007/s13320-024-0704-6

References

[[1]]
Guix M, Wang J, An Z, Adam G, Cappelleri D J. Real-time force-feedback micromanipulation using mobile microrobots with colored fiducials. IEEE Robotics and Automation Letters, 2018, 3(4): 3591-3597,
CrossRef Google scholar
[[2]]
Zhang H, Wang K, Li J, Li J, Zhang R, Zheng Y. Liquid-based nanogenerator fabricated by a self-assembled fluoroalkyl monolayer with high charge density for energy harvesting. Matter, 2022, 5(5): 1466-1480,
CrossRef Google scholar
[[3]]
Xie Z, Yong L, Li J. Development and testing of an integrated smart tool holder for four-component cutting force measurement. Mechanical Systems & Signal Processing, 2017, 93: 225-240,
CrossRef Google scholar
[[4]]
Khatibzade N, Stilgoe A B, Bui A A, Rocha Y, Cruz G M, Loke V, et al.. Determination of motility forces on isolated chromosomes with laser tweezers. Scientific Reports, 2014, 4(1): 1-9
[[5]]
Kim M S, Pratt J R, Brand U, Jones C W. Report on the first international comparison of small force facilities: a pilot study at the micronewton level. Metrologia, 2011, 49(1): 70,
CrossRef Google scholar
[[6]]
Ota Y, Ueki M, Kuramoto N. Evaluation of an automated mass comparator performance for mass calibration of sub-milligram weights. Measurement, 2021, 172: 108841,
CrossRef Google scholar
[[7]]
Yoon K T, Park S R, Choi Y M. Electromagnetic force compensation weighing cell with magnetic springs and air bearings. Measurement Science and Technology, 2020, 32(1): 015905,
CrossRef Google scholar
[[8]]
Iadicicco A, Pietra M D, Alviggi M, Campopiano S. Deflection monitoring method using fiber Bragg gratings applied to tracking particle detectors. IEEE Photonics Journal, 2014, 6(6): 1-10,
CrossRef Google scholar
[[9]]
Zhang L, Liu Y, Gao X, Xia Z. High temperature strain sensor based on a fiber Bragg grating and rhombus metal structure. Applied Optics, 2015, 54(28): E109-E112,
CrossRef Google scholar
[[10]]
Li R, Chen Y, Tan Y, Zhou Z, Li T, Mao J. Sensitivity enhancement of FBG-based strain sensor. Sensors, 2018, 18(5): 1607,
CrossRef Google scholar
[[11]]
Chen Y, Yan S C, Zheng X, Xu F, Lu Y. A miniature reflective micro-force sensor based on a microfiber coupler. Optics Express, 2014, 22(3): 2443-2450,
CrossRef Google scholar
[[12]]
Huang Q, Lee J, Arce F T, Yoon I, Angsantikul P, Liu J. Nanofibre optic force transducers with sub-piconewton resolution via near-field plasmon-dielectric interactions. Nature Photonics, 2017, 11(6): 352-355,
CrossRef Google scholar
[[13]]
P. Youplao, M. Tasakorn, and T. Phattaraworamet, “The simulation of a force in micro-scale sensing employing an optical double ring resonator system,” Pertanika Journal of Science & Technology, 2018, 26(1).
[[14]]
Liu Y, Qu S, Qu W, Que R. A Fabry-Pérot cuboid cavity across the fibre for high-sensitivity strain force sensing. Journal of Optics, 2014, 16(10): 105401,
CrossRef Google scholar
[[15]]
Wu Y, Xiao S, Xu Y, Shen Y, Jiang Y, Jin W, et al.. Highly sensitive force sensor based on balloon-like interferometer. Optics & Laser Technology, 2018, 103: 17-21,
CrossRef Google scholar
[[16]]
Pevec S, Donlagic D. Miniature all-fiber force sensor. Optics Letters, 2020, 45(18): 5093-5096,
CrossRef Google scholar
[[17]]
Bao W, Li X, Chen F, Wang R, Qiao X. Hyperelastic polymer fiber Fabry-Pérot interferometer for nanoforce measurement. Journal of Lightwave Technology, 2022, 40(12): 4020-4026,
CrossRef Google scholar
[[18]]
Liao C, Wang D, Wang Y. Microfiber in-line Mach-Zehnder interferometer for strain sensing. Optics Letters, 2013, 38(5): 757-759,
CrossRef Google scholar
[[19]]
Sierakowski A, Kopiec D, Majstrzyk W, Kunicki P, Janus P, Dobrowolski R, et al.. Magnetoelectric versus thermal actuation characteristics of shear force AFM probes with piezoresistive detection. Measurement Science and Technology, 2017, 28(3): 034011,
CrossRef Google scholar
[[20]]
Sun Q S, Xue Z X, Chen Y, Xia R, Wang J, Xu S, et al.. Modulation of the thermal transport of micro-structured materials from 3D printing. International Journal of Extreme Manufacturing, 2022, 4: 015001,
CrossRef Google scholar
[[21]]
Zou M Q, Liao C R, Liu S, Xiong C, Zhao C, Zhao J, et al.. Fiber-tip polymer clamped-beam probe for high-sensitivity nanoforce measurements. Light: Science & Applications, 2021, 10(171): 2047-7538
[[22]]
Liao C R, Xiong C, Zhao J L, Zou M, Zhao Y, Li B, et al.. Design and realization of 3D printed fiber-tip microcantilever probes applied to hydrogen sensing. Light: Advanced Manufacturing, 2022, 3(1): 3-13
[[23]]
Sakellari I, Droulias S, Lemonis A, Stratakis E I. Femtosecond-laser-induced all-silicon dielectric metasurfaces assisted by wet chemical etching. Ultrafast Science, 2023, 3: 0019,
CrossRef Google scholar
[[24]]
Chen X, Gu M. Two-beam ultrafast laser scribing of graphene patterns with 90-nm subdiffraction feature size. Ultrafast Science, 2022, 2022: 0001,
CrossRef Google scholar
[[25]]
Strickler J H, Webb W W. Three-dimensional optical data storage in refractive media by two-photon point excitation. Optics Letters, 1991, 16(22): 1780,
CrossRef Google scholar
[[26]]
Wang M H, Zhao K H, Wu J Y, Li Y, Yang Y, Huang S, et al.. Femtosecond laser fabrication of nanograting-based distributed fiber sensors for extreme environmental applications. International Journal of Extreme Manufacturing, 2021, 3(2): 025401,
CrossRef Google scholar
[[27]]
Malinauskas M, Žukauskas A, Purlys V, Belazaras K, Momot A, Paipulas D, et al.. Femtosecond laser polymerization of hybrid/integrated micro-optical elements and their characterization. Journal of Optics, 2010, 12(12): 124010,
CrossRef Google scholar
[[28]]
Zou M Q, Liao C R, Chen Y P, Xu L, Tang S, Xu G, et al.. 3D printed fiber-optic nanomechanical bioprobe. International Journal of Extreme Manufacturing, 2023, 5(1): 015005,
CrossRef Google scholar
[[29]]
Xiong C, Liao C R, Li Z Y, Zhu M, Zhao Y, Wang Y. Optical fiber integrated functional micro-/nanostructure induced by two-photon polymerization. Frontiers in Materials, 2020, 7: 586496,
CrossRef Google scholar
[[30]]
Zou M Q, Liao C R, Chen Y P, Gan Z, Liu S, Liu D, et al.. Measurement of interfacial adhesion force with a 3D-printed fiber-tip microforce sensor. Biosensors, 2022, 12(8): 629,
CrossRef Google scholar
[[31]]
Lang C P, Zhu J D, Liu Y, Li Y, Qu S. Ultra compact full-angle-range direction-distinguishable tilt sensor based on fiber in-line polymer microcavity. Journal of Lightwave Technology, 2022, 40(9): 3084-3089,
CrossRef Google scholar
[[32]]
Li M, Liu Y, Zhao X L, Qu S, Li Y. Miniature Pi-shaped polymer fiber tip for simultaneous measurement of the liquid refractive index and temperature with high sensitivities. Journal of Optics, 2015, 17(10): 105701,
CrossRef Google scholar
[[33]]
Ji P, Zhu M, Liao C R, Zhao C, Yang K, Xiong C, et al.. In-fiber polymer microdisk resonator and its sensing applications of temperature and humidity. ACS Applied Materials & Interfaces, 2021, 13(40): 48119-48126,
CrossRef Google scholar
[[34]]
Li C X, Liu Y, Lang C, Zhang Y, Qu S. Femtosecond laser direct writing of a 3D microcantilever on the tip of an optical fiber sensor for on-chip optofluidic sensing. Lab on a Chip, 2022, 22(19): 3734-3743,
CrossRef Google scholar
[[35]]
White I M, Fan X D. On the performance quantification of resonant refractive index sensors. Optics Express, 2008, 16(2): 1020-1028,
CrossRef Google scholar
PDF

Accesses

Citations

Detail

Sections
Recommended

/