On-Chip Sub-Picometer Continuous Wavelength Fiber-Bragg-Grating Interrogator

Yuan Zhuang, Jun Zou, Jiqiang Zhang, Lu Zhang, Jiahe Zhang, Leixin Meng, Qing Yang

PDF
Photonic Sensors ›› 2024, Vol. 14 ›› Issue (1) : 240126. DOI: 10.1007/s13320-023-0694-9
Regular

On-Chip Sub-Picometer Continuous Wavelength Fiber-Bragg-Grating Interrogator

Author information +
History +

Abstract

Miniaturized fiber-Bragg-grating (FBG) interrogators are of interest for applications in the areas where weight and size controlling is important, e.g., airplanes and aerospace or in-situ monitoring. An ultra-compact high-precision on-chip interrogator is proposed based on a tailored arrayed waveguide grating (AWG) on a silicon-on-insulator (SOI) platform. The on-chip interrogator enables continuous wavelength interrogation from 1 544 nm to 1 568 nm with the wavelength accuracy of less than 1 pm [the root-mean-square error (RMSE) is 0.73 pm] over the whole wavelength range. The chip loss is less than 5 dB. The 1 × 16 AWG is optimized to achieve a large bandwidth and a low noise level at each channel, and the FBG reflection peaks can be detected by multiple output channels of the AWG. The fabricated AWG is utilized to interrogate FBG sensors through the center of gravity (CoG) algorithm. The validation of an on-chip FBG interrogator that works with sub-picometer wavelength accuracy in a broad wavelength range shows large potential for applications in miniaturized fiber optic sensing systems.

Keywords

Fiber optic sensing / on-chip interrogator / arrayed waveguide grating / center of gravity

Cite this article

Download citation ▾
Yuan Zhuang, Jun Zou, Jiqiang Zhang, Lu Zhang, Jiahe Zhang, Leixin Meng, Qing Yang. On-Chip Sub-Picometer Continuous Wavelength Fiber-Bragg-Grating Interrogator. Photonic Sensors, 2024, 14(1): 240126 https://doi.org/10.1007/s13320-023-0694-9

References

[[1]]
Fan Z C, Diao X Z, Hu K J, Zhang Y, Huang Z Y, Kang Y B, et al.. Structural health monitoring of metal-to-glass-ceramics penetration during thermal cycling aging using femto-laser inscribed FBG sensors. Scientific Reports, 2020, 10(1): 12330,
CrossRef Google scholar
[[2]]
Albero Blanquer L, Marchini F, Seitz J R, Daher N, Bé termier F, Huang J, et al.. Optical sensors for operando stress monitoring in lithium-based batteries containing solid-state or liquid electrolytes. Nature Communications, 2022, 13(1): 1153,
CrossRef Google scholar
[[3]]
Huang J, Boles S T, Tarascon J M. Sensing as the key to battery lifetime and sustainability. Nature Sustainability, 2022, 5(3): 194-204,
CrossRef Google scholar
[[4]]
Keller D, Eagan D R, Fochesatto G J, Peterson R, Chan H M, Parker A. Advantages of fiber Bragg gratings for measuring electric motor loadings in aerospace application. Review of Scientific Instruments, 2019, 90(7): 075005,
CrossRef Google scholar
[[5]]
Massaroni C, Zaltieri M, Lo Presti D, Nicolo A, Tosi D, Schena E. Fiber Bragg grating sensors for cardiorespiratory monitoring: a review. IEEE Sensors Journal, 2021, 21(13): 14069-14080,
CrossRef Google scholar
[[6]]
Lo Presti D, Massaroni C, Leitao C S J, Domingues M D, Sypabekova M, Barrera D, et al.. Fiber Bragg gratings for medical applications and future challenges: A review. IEEE Access, 2020, 8: 156863-156888,
CrossRef Google scholar
[[7]]
Massari L, Fransvea G, D’ Abbraccio J, Filosa M, Terruso G, Aliperta A, et al.. Functional mimicry of Ruffini receptors with fibre Bragg gratings and deep neural networks enables a bio-inspired large-area tactile-sensitive skin. Nature Machine Intelligence, 2022, 4(5): 425-435,
CrossRef Google scholar
[[8]]
Li C, Wang Y, Li F. Highly stable FBG wavelength demodulation system based on F-P etalon with temperature control module. Infrared and Laser Engineering, 2017, 46(1): 122002-0122002,
CrossRef Google scholar
[[9]]
Ma Y C, Wang C J, Yang Y H, Yan S B, Li J M. High resolution and wide scale fiber Bragg grating sensor interrogation system. Optics & Laser Technology, 2013, 50: 107-111,
CrossRef Google scholar
[[10]]
Roy A, Chakraborty A L, Jha C K. Fiber Bragg grating interrogation using wavelength modulated tunable distributed feedback lasers and a fiber-optic Mach-Zehnder interferometer. Applied Optics, 2017, 56(12): 3562-3569,
CrossRef Google scholar
[[11]]
S. K. Ibrahim, R. Mccue, J. A. O’ Dowd, M. Farnan, and D. M. Karabacak, “Demonstration of strain independent temperature measurements using optical PM-FBG sensors for ground testing of satellite panels,” in International Conference on Space Optics, Chania, 2018, pp. 2625–2639.
[[12]]
Kim H, Song M. Linear FBG interrogation with a wavelength-swept fiber laser and a volume phase grating spectrometer. International Society for Optics and Photonics, 2011, 7753: 1175-1178
[[13]]
Cai Z, Hao J, Bo D, Phua J, Chiam T M. Design of a fiber Bragg grating sensor interrogation system using volume phase grating and CCD detection. Proceedings of SPIE: OFS International Conference on Optical Fiber Sensors, 2012, 8421: 620-623
[[14]]
Meyer J, Nedjalkov A, Pichler E, Kelb C, Schade W. Development of a polymeric arrayed waveguide grating interrogator for fast and precise lithium-ion battery status monitoring. Batteries-Basel, 2019, 5(4): 66,
CrossRef Google scholar
[[15]]
Lai T T, Cheng P, Yan C L, Li C, Hu W B, Yang M H. 2D and 3D shape sensing based on 7-core fiber Bragg gratings. Photonic Sensors, 2020, 10(1): 306-315,
CrossRef Google scholar
[[16]]
Sefati S, Gao C, Iordachita I, Taylor R H, Armand M. Data-driven shape sensing of a surgical continuum manipulator using an uncalibrated fiber Bragg grating sensor. IEEE Sensors Journal, 2021, 21(3): 3066-3076,
CrossRef Google scholar
[[17]]
Liu Y, Zhou A, Yuan L B. Multifunctional fiber-optic sensor, based on helix structure and fiber Bragg gratings, for shape sensing. Optics & Laser Technology, 2021, 143: 107327,
CrossRef Google scholar
[[18]]
Xiao X Z, Xu B J, Xu X Z, Du B, Chen Z Y, Fu C L, et al.. Femtosecond laser auto-positioning direct writing of a multicore fiber Bragg grating array for shape sensing. Optics Letters, 2022, 47(4): 758-761,
CrossRef Google scholar
[[19]]
Marin Y E, Nannipieri T, Oton C J, Di Pasquale F. Integrated FBG sensors interrogation using active phase demodulation on a silicon photonic platform. Journal of Lightwave Technology, 2017, 35(16): 3374-3379,
CrossRef Google scholar
[[20]]
Marin Y E, Celik A, Faralli S, Adelmini L, Kopp C, Di Pasquale F, et al.. Integrated dynamic wavelength division multiplexed FBG sensor interrogator on a silicon photonic chip. Journal of Lightwave Technology, 2019, 37(18): 4770-4775,
CrossRef Google scholar
[[21]]
Y. Marin, T. Nannipieri, C. J. Oton, and F. D. Pasquale, “Fiber Bragg grating sensor interrogators on chip: challenges and opportunities,” in Optical Fiber Sensors Conference, Jeju, 2017, pp. 1–4.
[[22]]
Ouyang B, Haverdings M, Horsten R, Kruidhof M, Kat P, Caro J. Integrated photonics interferometric interrogator for a ring-resonator ultrasound sensor. Optics Express, 2019, 27(16): 23408-23421,
CrossRef Google scholar
[[23]]
Shen A, Qiu C, Yang L Z, Dai T G, Li Y B, Yu H, et al.. Tunable microring based on-chip interrogator for wavelength-modulated optical sensors. Optics Communications, 2015, 340: 116-120,
CrossRef Google scholar
[[24]]
Yang F, Zhang W J, Zhao S X, Liu Q W, Ta J F, He Z Y. Miniature interrogator for multiplexed FBG strain sensors based on a thermally tunable microring resonator array. Optics Express, 2019, 27(5): 6037-6046,
CrossRef Google scholar
[[25]]
Yang F, Zhang W J, Liu Q W, He Z Y. Silicon-microring-based interrogator for TDM-FBG sensors enabled by pulse compression. Optics Letters, 2020, 45(23): 6402-6405,
CrossRef Google scholar
[[26]]
F. Yang, W. Zhang, S. Zhao, Q. Liu, and Z. He, “Real-time interrogation of multiplexed FBG strain sensors based on a thermally tunable microring resonator array,” in Optical Fiber Communication Conference, San Diego, 2019, pp. 1–3.
[[27]]
Moon H M, Kwak S C, Im K, Kim J B, Kim S. Wavelength interrogation system for quasi-distributed fiber Bragg grating temperature sensors based on a 50-GHz array waveguide grating. IEEE Sensors Journal, 2019, 19(7): 2598-2604,
CrossRef Google scholar
[[28]]
Trita A, Voet E, Vermeiren J, Delbeke D, Dumon P, Pathak S, et al.. Simultaneous interrogation of multiple fiber Bragg grating sensors using an arrayed waveguide grating filter fabricated in SOI platform. IEEE Photonics Journal, 2015, 7(6): 1-11,
CrossRef Google scholar
[[29]]
Edgar A, Yan M, Cornelia E, Zongjian K SUN. Multi-channel monolithic integrated optic fiber Bragg grating sensor interrogator. Photonic Sensors, 2011, 1(3): 281-288,
CrossRef Google scholar
[[30]]
Kazmierczak A, Jusza A, Slowikowski M, Stopifiski S, Piramidowicz R. Integrated interrogator circuits for fiber optic sensor network in generic InP photonic integrated circuit technology. Optical Sensing and Detection, 2018, 10680: 120-129
[[31]]
L. Caleta, R. S. Evenblij, and J. A. P. Leijtens, “Space gator: a giant leap for fiber optic sensing,” in International Conference on Space Optics, Tenerife, 2018, pp. 373–380.
[[32]]
Weng S M, Yuan P, Zhuang W, Zhang D L, Luo F, Zhu L Q. SOI-based multi-channel AWG with fiber Bragg grating sensing interrogation system. Photonics-Basel, 2021, 8(6): 214,
CrossRef Google scholar
[[33]]
Li H Q, Ma X D, Cui B B, Wang Y X, Zhang C, Zhao J F, et al.. Chip-scale demonstration of hybrid III-V/silicon photonic integration for an FBG interrogator. Optica, 2017, 4(7): 692-700,
CrossRef Google scholar
[[34]]
Pustakhod D, Kleijn E, Williams K, Leijtens X. High-resolution AWG-based fiber Bragg grating interrogator. Photonics Technology Letters, 2016, 28(20): 2203-2206,
CrossRef Google scholar
[[35]]
Yuan P, Weng S M, Ji S K, Zhang D L, Zhu L Q. Performance analysis of fiber Bragg grating sensor interrogators based on arrayed waveguide gratings. Optical Engineering, 2021, 60(6): 066101,
CrossRef Google scholar
[[36]]
Ibrahim S K, Farnan M, Karabacak D M, Singer J M. Enabling technologies for fiber optic sensing. Optical Sensing & Detection IV, 2016, 9899: 229v243
[[37]]
Smit M K, Dam C V. PHASAR-based WDM-devices: Principles, design and applications. Selected Topics in Quantum Electronics, 1996, 2(2): 236-250,
CrossRef Google scholar
[[38]]
Zou J, Sun F Y, Wang C H, Zhang M, Wang J N, Lang T T, et al.. Silicon-based arrayed waveguide gratings for WDM and spectroscopic analysis applications. Optics & Laser Technology, 2022, 147: 107656,
CrossRef Google scholar
PDF

Accesses

Citations

Detail

Sections
Recommended

/