Review of Femtosecond-Laser-Inscribed Fiber Bragg Gratings: Fabrication Technologies and Sensing Applications

Jun He, Baijie Xu, Xizhen Xu, Changrui Liao, Yiping Wang

Photonic Sensors ›› 2020, Vol. 11 ›› Issue (2) : 203-226.

Photonic Sensors All Journals
Photonic Sensors ›› 2020, Vol. 11 ›› Issue (2) : 203-226. DOI: 10.1007/s13320-021-0629-2
Review

Review of Femtosecond-Laser-Inscribed Fiber Bragg Gratings: Fabrication Technologies and Sensing Applications

Author information +
History +

Abstract

Fiber Bragg grating (FBG) is the most widely used optical fiber sensor due to its compact size, high sensitivity, and easiness for multiplexing. Conventional FBGs fabricated by using an ultraviolet (UV) laser phase-mask method require the sensitization of the optical fiber and could not be used at high temperatures. Recently, the fabrication of FBGs by using a femtosecond laser has attracted extensive interests due to its excellent flexibility in creating FBGs array or special FBGs with complex spectra. The femtosecond laser could also be used for inscribing various FBGs on almost all fiber types, even fibers without any photosensitivity. Such femtosecond-laser-induced FBGs exhibit excellent thermal stability, which is suitable for sensing in harsh environment. In this review, we present the historical developments and recent advances in the fabrication technologies and sensing applications of femtosecond-laser-inscribed FBGs. Firstly, the mechanism of femtosecond-laser-induced material modification is introduced. And then, three different fabrication technologies, i.e., femtosecond laser phase mask technology, femtosecond laser holographic interferometry, and femtosecond laser direct writing technology, are discussed. Finally, the advances in high-temperature sensing applications and vector bending sensing applications of various femtosecond-laser-inscribed FBGs are summarized. Such femtosecond-laser-inscribed FBGs are promising in many industrial areas, such as aerospace vehicles, nuclear plants, oil and gas explorations, and advanced robotics in harsh environments.

Keywords

Fiber Bragg grating (FBG) / femtosecond laser / high temperature sensor / vector bending sensor

Cite this article

Download citation ▾
Jun He, Baijie Xu, Xizhen Xu, Changrui Liao, Yiping Wang. Review of Femtosecond-Laser-Inscribed Fiber Bragg Gratings: Fabrication Technologies and Sensing Applications. Photonic Sensors, 2020, 11(2): 203‒226 https://doi.org/10.1007/s13320-021-0629-2

References

[1]
Erdogan T. Fiber grating spectra. Journal of Lightwave Technology, 1997, 15(8): 1277-1294.
CrossRef Google scholar
[2]
Hill K O, Fujii Y, Johnson D C, Kawasaki B S. Photosensitivity in optical fiber waveguides: application to reflection filter fabrication. Applied Physics Letters, 1978, 32(10): 647-649.
CrossRef Google scholar
[3]
Meltz G, Morey,W. H. ^Glenn W W. Formation of Bragg gratings in optical fibers by a transverse holographic method. Optics Letters, 1989, 14(15): 823-825.
CrossRef Google scholar
[4]
Lemaire P J, Atkins R M, Mizrahi V, Reed W A. High pressure H2 loading as a technique for achieving ultrahigh UV photosensitivity, and thermal sensitivity in GeO2 doped optical fibres. Electronics Letters, 1993, 29(13): 1191-1193.
CrossRef Google scholar
[5]
Hill K O, Malo B, Bilodeau F, Johnson D C, Albert J. Bragg gratings fabricated in monomode photosensitive optical fiber by UV exposure through a phase mask. Applied Physics Letters, 1993, 62(10): 1035-1037.
CrossRef Google scholar
[6]
Ouellette F, Krug P A, Stephens T, Dhosi G, Eggleton B. Broadband and WDM dispersion compensation using chirped sampled fibre Bragg gratings. Electronics Letters, 1995, 31(11): 899-901.
CrossRef Google scholar
[7]
Kersey A D, Davis M A, Patrick H J, LeBlanc M, Koo K P, Askins C G. Fiber grating sensors. Journal of Lightwave Technology, 1997, 15(8): 1442-1463.
CrossRef Google scholar
[8]
Canning J. Fibre gratings and devices for sensors and lasers. Laser & Photonics Reviews, 2008, 2(4): 275-289.
CrossRef Google scholar
[9]
Yao J. Optoelectronic oscillators for high speed and high-resolution optical sensing. Journal of Lightwave Technology, 2017, 35(16): 3489-3497.
CrossRef Google scholar
[10]
Itoh K, Watanabe W, Nolte S, Schaffer C B. Ultrafast processes for bulk modification of transparent materials. MRS Bulletin, 2006, 31(8): 620-625.
CrossRef Google scholar
[11]
Beresna M, GeceviIus M, Kazansky P G. Ultrafast laser direct writing and nanostructuring in transparent materials. Advances in Optics & Photonics, 2014, 6(3): 293-339.
CrossRef Google scholar
[12]
Pallarés-Aldeiturriaga D, Roldán-Varona P, Rodríguez-Cobo L, López-Higuera J M. Optical fiber sensors by direct laser processing: a review. Sensors, 2020, 20(23): 6971.
CrossRef Google scholar
[13]
Zhang Y, Lin C, Liao C, Yang K, Li Z, Wang Y. Femtosecond laser-inscribed fiber interface Mach-Zehnder interferometer for temperature-insensitive refractive index measurement. Optics Letters, 2018, 43(18): 4421-4424.
CrossRef Google scholar
[14]
Shimotsuma Y, Kazansky P G, Qiu J, Hirao K. Self-organized nanogratings in glass irradiated by ultrashort light pulses. Physical Review Letters, 2003, 91(24): 247405.
CrossRef Google scholar
[15]
Zhang F, Xu X, He J, Du B, Wang Y. Highly sensitive temperature sensor based on a polymer-infiltrated Mach-Zehnder interferometer created in graded index fiber. Optics Letters, 2019, 44(10): 2466-2469.
CrossRef Google scholar
[16]
Oi K, Barnier F, Obara M. Fabrication of fiber Bragg grating by femtosecond laser interferometry. 14th Annual Meeting of the IEEE Lasers and Electro-Optics Society, USA, 2001 776-777.
[17]
Dragomir A, Nikogosyan D N, Zagorulko K A, Kryukov P G, Dianov E M. Inscription of fiber Bragg gratings by ultraviolet femtosecond radiation. Optics Letters, 2003, 28(22): 2171-2173.
CrossRef Google scholar
[18]
Mihailov S J, Smelser C W, Lu P, Walker R B, Grobnic D, Ding H, . Fiber Bragg gratings made with a phase mask and 800-nm femtosecond radiation. Optics Letters, 2003, 28(12): 995-997.
CrossRef Google scholar
[19]
Martinez A, Dubov M, Khrushchev I, Bennion I. Direct writing of fibre Bragg gratings by femtosecond laser. Electronics Letters, 2004, 40(19): 1170-1172.
CrossRef Google scholar
[20]
Grobnic D, Smelser C W, Mihailov S J, Walker R B, Lu P. Fiber Bragg gratings with suppressed cladding modes made in SMF-28 with a femtosecond IR laser and a phase mask. IEEE Photonics Technology Letters, 2004, 16(8): 1864-1866.
CrossRef Google scholar
[21]
Williams R J, Krämer R G, Nolte S, Withford M J. Femtosecond direct-writing of low-loss fiber Bragg gratings using a continuous core-scanning technique. Optics Letters, 2013, 38(11): 1918-1920.
CrossRef Google scholar
[22]
Wang Y, Li Z, Liu S, Fu C, Li Z, Zhang Z, . Parallel-integrated fiber Bragg gratings inscribed by femtosecond laser point-by-point technology. Journal of Lightwave Technology, 2019, 37(10): 2185-2193.
CrossRef Google scholar
[23]
Liu X, Wang Y, Li Z, Liu S, Wang Yi, Fu C, . Low short-wavelength loss fiber Bragg gratings inscribed in a small-core fiber by femtosecond laser point-by-point technology. Optics Letters, 2019, 44(21): 5121-5124.
CrossRef Google scholar
[24]
Marshall G D, Williams R J, Jovanovic N, Steel M J, Withford M J. Point-by-point written fiber-Bragg gratings and their application in complex grating designs. Optics Express, 2010, 18(19): 19844-19859.
CrossRef Google scholar
[25]
Williams R J, Voigtländer C, Marshall G D, Tünnermann A, Nolte S, Steel M J, . Point-by-point inscription of apodized fiber Bragg gratings. Optics Letters, 2011, 36(15): 2988-2990.
CrossRef Google scholar
[26]
Zhang C, Yang Y, Wang C, Liao C, Wang Y. Femtosecond-laser-inscribed sampled fiber Bragg grating with ultrahigh thermal stability. Optics Express, 2016, 24(4): 3981-3988.
CrossRef Google scholar
[27]
Yang K, Liao C, Liu S, He J, Wang J, Wang Y. Optical fiber tag based on an encoded fiber Bragg grating fabricated by femtosecond laser. Journal of Lightwave Technology, 2019, 38(6): 1474-1479.
CrossRef Google scholar
[28]
Huang B, Shu X. Ultra-compact strain- and temperature-insensitive torsion sensor based on a line-by-line inscribed phase-shifted FBG. Optics Express, 2016, 24(16): 17670-17679.
CrossRef Google scholar
[29]
Burgmeier J, Waltermann C, Flachenecker G, Schade W. Point-by-point inscription of phase-shifted fiber Bragg gratings with electro-optic amplitude modulated femtosecond laser pulses. Optics Letters, 2014, 39(3): 540-543.
CrossRef Google scholar
[30]
Mihailov S J, Smelser C W, Grobnic D, Walker R B, Lu P, Ding H, . Bragg gratings written in all-SiO2 and Ge-doped core fibers with 800-nm femtosecond radiation and a phase mask. Journal of Lightwave Technology, 2004, 22(1): 94-100.
CrossRef Google scholar
[31]
Jewart C M, Wang Q, Canning J, Grobnic D, Mihailov S J, Chen K P. Ultrafast femtosecond-laser-induced fiber Bragg gratings in air-hole microstructured fibers for high-temperature pressure sensing. Optics Letters, 2010, 35(9): 1443-1445.
CrossRef Google scholar
[32]
Yang K, He J, Liao C, Wang Y, Liu S, Guo K, . Femtosecond laser inscription of fiber Bragg grating in twin-core few-mode fiber for directional bend sensing. Journal of Lightwave Technology, 2017, 35(21): 4670-4676.
CrossRef Google scholar
[33]
Wolf A, Dostovalov A, Bronnikov K, Babin S. Arrays of fiber Bragg gratings selectively inscribed in different cores of 7-core spun optical fiber by IR femtosecond laser pulses. Optics Express, 2019, 27(10): 13978-13990.
CrossRef Google scholar
[34]
Fu L B, Marshall G D, Bolger J A, Steinvurzel P, Magi E C, Withford M J, . Femtosecond laser writing Bragg gratings in pure silica photonic crystal fibres. Electronics Letters, 2005, 41(11): 638-640.
CrossRef Google scholar
[35]
Mihailov S J, Grobnic D, Ding H, Smelser C W, Broeng J. Femtosecond IR laser fabrication of Bragg gratings in photonic crystal fibers and tapers. IEEE Photonics Technology Letters, 2006, 18(17): 1837-1839.
CrossRef Google scholar
[36]
Geernaert T, Kalli K, Koutsides C, Komodromos M, Nasilowski T, Urbanczyk W, . Point-by-point fiber Bragg grating inscription in free-standing step-index and photonic crystal fibers using near-IR femtosecond laser. Optics Letters, 2010, 35(10): 1647-1649.
CrossRef Google scholar
[37]
Wang C, He J, Zhang J, Liao C, Wang Y, Jin W, . Bragg gratings inscribed in selectively inflated photonic crystal fibers. Optics Express, 2017, 25(23): 28442-28450.
CrossRef Google scholar
[38]
Mihailov S J, Grobnic D, Smelser C W, Lu P, Walker R B, Ding H. Bragg grating inscription in various optical fibers with femtosecond infrared lasers and a phase mask. Optical Materials Express, 2011, 1(4): 754-765.
CrossRef Google scholar
[39]
Jovanovic N, Fuerbach A, Marshall G D, Withford M J, Jackson S D. Stable high-power continuous-wave Yb3+-doped silica fiber laser utilizing a point-by-point inscribed fiber Bragg grating. Optics Letters, 2007, 32(11): 1486-1488.
CrossRef Google scholar
[40]
Williams R J, Jovanovic N, Marshall G D, Withford M J. All-optical, actively Q-switched fiber laser. Optics Express, 2010, 18(8): 7714-7723.
CrossRef Google scholar
[41]
Fuerbach A, Bharathan G, Ams M. Grating inscription into fluoride fibers: a review. IEEE Photonics Journal, 2019, 11(5): 1-11.
CrossRef Google scholar
[42]
Grobnic D, Mihailov S J, Smelser C W. Femtosecond IR laser inscription of Bragg gratings in single-and multimode fluoride fibers. IEEE Photonics Technology Letters, 2006, 18(24): 2686-2688.
CrossRef Google scholar
[43]
D. Grobnic, S. J. Mihailov, C. W. Smelser, and R. Walker, “Bragg gratings made with ultrafast radiation in non-silica glasses; fluoride, phosphate, borosilicate and chalcogenide Bragg gratings,” SPIE, Photonics North 2007, 6796: 67961K.
[44]
Bharathan G, Fernandez T T, Ams M, Woodward R I, Hudson D D, Fuerbach A. Optimized laser-written ZBLAN fiber Bragg gratings with high reflectivity and low loss. Optics Letters, 2019, 44(2): 423-426.
CrossRef Google scholar
[45]
Bharathan G, Fernandez T T, Ams M, Carree J, Poulain S, Poulain M, . Femtosecond laser direct-written fiber Bragg gratings with high reflectivity and low loss at wavelengths beyond 4 μm. Optics Letters, 2020, 45(15): 4316-4319.
CrossRef Google scholar
[46]
Grobnic D, Mihailov S J, Smelser C W, Ding H. Sapphire fiber Bragg grating sensor made using femtosecond laser radiation for ultrahigh temperature applications. IEEE Photonics Technology Letters, 2004, 16(11): 2505-2507.
CrossRef Google scholar
[47]
Elsmann T, Habisreuther T, Graf A, Rothhardt M, Bartelt H. Inscription of first-order sapphire Bragg gratings using 400 nm femtosecond laser radiation. Optics Express, 2013, 21(4): 4591-4597.
CrossRef Google scholar
[48]
Yang S, Hu D, Wang A B. Point-by-point fabrication and characterization of sapphire fiber Bragg gratings. Optics Letters, 2017, 42(20): 4219-4222.
CrossRef Google scholar
[49]
Xu X, He J, Liao C, Yang K, Guo K, Li C, . Sapphire fiber Bragg gratings inscribed with a femtosecond laser line-by-line scanning technique. Optics Letters, 2018, 43(19): 4562-4565.
CrossRef Google scholar
[50]
Thomas J, Voigtlander C, Becker R G, Richter D, Tunnermann A, Nolte S. Femtosecond pulse written fiber gratings: a new avenue to integrated fiber technology. Laser & Photonics Reviews, 2012, 6(6): 709-723.
CrossRef Google scholar
[51]
Bernier M, Vallee R, Morasse B, Desrosiers C, Saliminia A, Sheng Y. Ytterbium fiber laser based on first-order fiber Bragg gratings written with 400nm femtosecond pulses and a phase-mask. Optics Express, 2009, 17(21): 18887-18893.
CrossRef Google scholar
[52]
Wikszak E, Thomas J, Burghoff J, Ortac B, Limpert J, Nolte S, . Erbium fiber laser based on intracore femtosecond-written fiber Bragg grating. Optics Letters, 2006, 31(16): 2390-2392.
CrossRef Google scholar
[53]
Bernier M, Michaud-Belleau V, Levasseur S, Fortin V, Genest J, Vallee R. All-fiber DFB laser operating at 2.8 μm. Optics Letters, 2015, 40(1): 81-84.
CrossRef Google scholar
[54]
Bharathan G, Woodward R I, Ams M, Hudson D D, Jackson S D, Fuerbach A. Direct inscription of Bragg gratings into coated fluoride fibers for widely tunable and robust mid-infrared lasers. Optics Express, 2017, 25(24): 30013-30019.
CrossRef Google scholar
[55]
Grobnic D, Smelser C W, Mihailov S J, Walker R B. Long-term thermal stability tests at 1 000°C of silica fibre Bragg gratings made with ultrafast laser radiation. Measurement Science and Technology, 2006, 17, 1009-1013.
CrossRef Google scholar
[56]
Warren-Smith S C, Nguyen L V, Lang C, Ebendorff-Heidepriem H, Monro T M. Temperature sensing up to 1300°C using suspended-core microstructured optical fibers. Optics Express, 2016, 24(4): 3714-3719.
CrossRef Google scholar
[57]
Habisreuther T, Elsmann T, Pan Z W, Graf A, Willsch R, Schmidt M A. Sapphire fiber Bragg gratings for high temperature and dynamic temperature diagnostics. Applied Thermal Engineering, 2015, 91, 860-865.
CrossRef Google scholar
[58]
Bronnikov K, Wolf A, Yakushin S, Dostovalov A, Egorova O, Zhuravlev S, . Durable shape sensor based on FBG array inscribed in polyimide-coated multicore optical fiber. Optics Express, 2019, 27(26): 38421-38434.
CrossRef Google scholar
[59]
Mihailov S J, Smelser C W, Grobnic D. Hydrogen loading for fiber grating writing with a femtosecond laser and a phase mask. Optics Letters, 2004, 29(18): 2127-2129.
CrossRef Google scholar
[60]
Smelser C W, Mihailov S J, Grobnic D. Formation of Type I-IR and Type II-IR gratings with an ultrafast IR laser and a phase mask. Optics Express, 2005, 13(14): 5377-5386.
CrossRef Google scholar
[61]
Bricchi E, G. Klappauf B, Kazansky P G. Form birefringence and negative index change created by femtosecond direct writing in transparent materials. Optics Letters, 2004, 29(1): 119-121.
CrossRef Google scholar
[62]
He J, Wang Y, Liao C, Wang Q, Yang K, Sun B, . Highly birefringent phase-shifted fiber Bragg gratings inscribed with femtosecond laser. Optics Letters, 2015, 40(9): 2008-2011.
CrossRef Google scholar
[63]
Yang F, Jin W, Lin Y, Wang C, Lut H, Tan Y. Hollow-core microstructured optical fiber gas sensors. Journal of Lightwave Technology, 2017, 35(16): 3413-3424.
CrossRef Google scholar
[64]
Li Y, Liao C R, Wang D N, Sun T, Grattan K T V. Study of spectral and annealing properties of fiber Bragg gratings written in H2-free and H2-loaded fibers by use of femtosecond laser pulses. Optics Express, 2008, 16(26): 21239-21247.
CrossRef Google scholar
[65]
Smelser C W, Mihailov S J, Grobnic D, Lu P, Walker R B, Ding H, . Multiple-beam interference patterns in optical fiber generated with ultrafast pulses and a phase mask. Optics Letters, 2004, 29(13): 1458-1460.
CrossRef Google scholar
[66]
Smelser C W, Grobnic D, Mihailov S J. Generation of pure two-beam interference grating structures in an optical fiber with a femtosecond infrared source and a phase mask. Optics Letters, 2004, 29(15): 1730-1732.
CrossRef Google scholar
[67]
Mihailov S J, Grobnic D, Smelser C W. Efficient grating writing through fibre coating with femtosecond IR radiation and phase mask. Electronics Letters, 2007, 43(8): 442-443.
CrossRef Google scholar
[68]
Bernier M, Trepanier F, Carrier J, Vallee R. High mechanical strength fiber Bragg gratings made with infrared femtosecond pulses and a phase mask. Optics Letters, 2014, 39(12): 3646-3649.
CrossRef Google scholar
[69]
Hnatovsky C, Grobnic D, Mihailov S J. Through-the-coating femtosecond laser inscription of very short fiber Bragg gratings for acoustic and high temperature sensing applications. Optics Express, 2017, 25(21): 25435-25446.
CrossRef Google scholar
[70]
Mihailov S J, Hnatovsky C, Grobnic D. Novel type II Bragg grating structures in silica fibers using femtosecond lasers and phase Masks. Journal of Lightwave Technology, 2019, 37(11): 2549-2556.
CrossRef Google scholar
[71]
Thomas J, Voigtländer C, Schimpf D, Stutzki F, Wikszak E, Limpert J, . Continuously chirped fiber Bragg gratings by femtosecond laser structuring. Optics Letters, 2008, 33(14): 1560-1562.
CrossRef Google scholar
[72]
Voigtländer C, Thomas J, Wikszak E, Dannberg P, Nolte S, Tünnermann A. Chirped fiber Bragg gratings written with ultrashort pulses and a tunable phase mask. Optics Letters, 2009, 34(12): 1888-1890.
CrossRef Google scholar
[73]
Bernier M, Sheng Y, Vallée R. Ultrabroadband fiber Bragg gratings written with a highly chirped phase mask and Infrared femtosecond pulses. Optics Express, 2009, 17(5): 3285-3290.
CrossRef Google scholar
[74]
Grobnic D, Mihailov S J, Smelser C W. Localized high birefringence induced in SMF-28 fiber by femtosecond IR laser exposure of the cladding. Journal of Lightwave Technology, 2007, 25(8): 1996-2001.
CrossRef Google scholar
[75]
Rong Q, Qiao X, Guo T, Bao W, Su D, Yang H. Orientation-dependent fiber-optic accelerometer based on grating inscription over fiber cladding. Optics Letter, 2014, 39(23): 6616-6619.
CrossRef Google scholar
[76]
Talbot L, Paradis P, Bernier M. All-fiber laser pump reflector based on a femtosecond-written inner cladding Bragg grating. Optics Letter, 2019, 44(20): 5033-5036.
CrossRef Google scholar
[77]
Abdukerim N, Hnatovsky D C, Mihailov S J. High-temperature stable fiber Bragg gratings with ultra-strong cladding modes written using the phase mask technique and an infrared femtosecond laser. Optics Letter, 2020, 45(2): 443-446.
CrossRef Google scholar
[78]
Becker M, Bergmann J, Brückner S, Franke M, Lindner E, Rothhardt M W, . Fiber Bragg grating inscription combining DUV sub-picosecond laser pulses and two-beam interferometry. Optics Express, 2008, 16(23): 19169-19178.
CrossRef Google scholar
[79]
Becker M, Brückner S, Leich M, Lindner E, Rothhardt M, Unger S, . Towards a monolithic fiber laser with deep UV femtosecond-induced fiber Bragg gratings. Optics Communications, 2011, 284(24): 5770-5773.
CrossRef Google scholar
[80]
Fiebrandt J, Lindner E, Brückner S, Becker M, Schwuchow A, Rothhardt M, . Growth characterization of fiber Bragg gratings inscribed in different rare-earth-doped fibers by UV and VIS femtosecond laser pulses. Optics Communications, 2012, 285(24): 5157-5162.
CrossRef Google scholar
[81]
Leich M, Fiebrandt J, Jetschke S, Rothhardt M, Jäger M. In situ FBG inscription during fiber laser operation. Optics Letters, 2013, 38(5): 676-678.
CrossRef Google scholar
[82]
Wang Y, Bartelt H, Becker M, Brueckner S, Bergmann J, Kobelke J, . Fiber Bragg grating inscription in pure-silica and Ge-doped photonic crystal fibers. Applied Optics, 2009, 48(11): 1963-1968.
CrossRef Google scholar
[83]
Becker M, Fernandes L, Rothhardt M, Brückner S, Schuster K, Kobelke J, . Inscription of fiber Bragg grating arrays in pure silica suspended core fibers. IEEE Photonics Technology Letters, 2009, 21(19): 1453-1455.
CrossRef Google scholar
[84]
Saliminia A, Vallée R. Fiber Bragg grating inscription based on optical filamentation of UV femtosecond laser pulses. Optics Communications, 2014, 324(15): 245-251.
CrossRef Google scholar
[85]
Zhang Z, Xu B, He J, Hou M, Bao W, Wang Y. High-efficiency inscription of fiber Bragg grating array with high-energy nanosecond-pulsed laser Talbot interferometer. Sensors, 2020, 20(15): 4307.
CrossRef Google scholar
[86]
Hou M, Yang K, He J, Xu X, Ju S, Guo K, . Two-dimensional vector bending sensor based on seven-core fiber Bragg gratings. Optics Express, 2018, 26(18): 23770-23781.
CrossRef Google scholar
[87]
Martinez A, Khrushchev I, Bennion I. Direct inscription of Bragg gratings in coated fibers by an infrared femtosecond laser. Optics Letters, 2006, 31(11): 1603-1605.
CrossRef Google scholar
[88]
Thomas J, Jovanovic N, Becker R G, Marshall G D, Withford M J, Tünnermann A, . Cladding mode coupling in highly localized fiber Bragg gratings: modal properties and transmission spectra. Optics Express, 2011, 19(1): 325-341.
CrossRef Google scholar
[89]
Thomas J, Jovanovic N, Becker R G, Marshall G D, Withford M J, Tünnermann A, . Cladding mode coupling in highly localized fiber Bragg gratings II: complete vectorial analysis. Optics Express, 2012, 20(19): 21434-21449.
CrossRef Google scholar
[90]
Caucheteur C, Guo T, Albert J. Polarization-assisted fiber Bragg grating sensors: tutorial and review. Journal of Lightwave Technology, 2017, 35(16): 3311-3322.
CrossRef Google scholar
[91]
Salter P S, Woolley M J, Morris S M, Booth M J, Fells J A J. Femtosecond fiber Bragg grating fabrication with adaptive optics aberration compensation. Optics Letters, 2018, 43(24): 5993-5996.
CrossRef Google scholar
[92]
Lu P, Mihailov S J, Ding H, Grobnic D, Walker R B, Coulas D. Plane-by-plane inscription of grating structures in optical fibers. Journal of Lightwave Technology, 2017, 36(4): 926-931.
CrossRef Google scholar
[93]
Roldán-Varona P, Pallarés-Aldeiturriaga D, Rodríguez-Cobo L, López-Higuera J M. Slit beam shaping technique for femtosecond laser inscription of enhanced plane-by-plane FBGs. Journal of Lightwave Technology, 2020, 38(16): 4526-4532.
CrossRef Google scholar
[94]
Dostovalov A V, Wolf A A, Parygin A V, Zyubin V E, Babin S A. Femtosecond point-by-point inscription of Bragg gratings by drawing a coated fiber through ferrule. Optics Express, 2016, 24(15): 16232-16237.
CrossRef Google scholar
[95]
Yu Y, Shi J, Han F, Sun W, Feng X. High-precision fiber Bragg gratings inscription by infrared femtosecond laser direct-writing method assisted with image recognition. Optics Express, 2020, 28(6): 8937-8948.
CrossRef Google scholar
[96]
Zhou K, Dubov M, Mou C, Zhang L, Mezentsev V K, Bennion I. Line-by-Line fiber Bragg grating made by femtosecond laser. IEEE Photonics Technology Letters, 2010, 22(16): 1190-1192.
CrossRef Google scholar
[97]
Chah K, Kinet D, Wuilpart M, Mégret P, Caucheteur C. Femtosecond-laser-induced highly birefringent Bragg gratings in standard optical fiber. Optics Letters, 2013, 38(4): 594-596.
CrossRef Google scholar
[98]
Luo J, Liu S, Zhao Y, Chen Y, Yang K, Guo K, . Phase-shifted fiber Bragg grating modulated by a hollow cavity for measuring gas pressure. Optics Letters, 2020, 45(2): 507-510.
CrossRef Google scholar
[99]
Martinez A, Khrushchev I Y, Bennion I. Thermal properties of fibre Bragg gratings inscribed point-by-point by infrared femtosecond laser. Eletronics Letters, 2005, 41(4): 6-7.
[100]
Liao C, Li Y, Wang D N, Sun T, Grattan K T V. Morphology and thermal stability of fiber Bragg gratings for sensor applications written in H2-free and H2-loaded fibers by femtosecond laser. IEEE Sensors Journal, 2010, 10(11): 1675-1681.
CrossRef Google scholar
[101]
Cook K, Shao L, Canning J. Regeneration and helium: regenerating Bragg gratings in helium-loaded germanosilicate optical fibre. Optical Materials Express, 2012, 2(12): 1733-1742.
CrossRef Google scholar
[102]
He J, Wang Y, Liao C, Wang C, Liu S, Yang K, . Negative-index gratings formed by femtosecond laser overexposure and thermal regeneration. Scientific Report, 2016, 6, 23379.
CrossRef Google scholar
[103]
Liao C R, Wang D N. Review of femtosecond laser fabricated fiber Bragg gratings for high temperature sensing. Photonic Sensors, 2013, 3, 97-101.
CrossRef Google scholar
[104]
Wang C, Zhang J, Zhang C, He J, Lin Y, Jin W, . Bragg gratings in suspended-core photonic microcells for high-temperature applications. Journal of Lightwave Technology, 2019, 36(14): 2920-2924.
CrossRef Google scholar
[105]
Chen C, Zhang X, Yu Y, Wei W, Guo Q, Qin L, . Femtosecond laser-inscribed high-order Bragg gratings in large-diameter sapphire fibers for high-temperature and strain sensing. Journal of Lightwave Technology, 2018, 36(16): 3302-3308.
CrossRef Google scholar
[106]
Busch M, Ecke W, Latka I, Fischer D, Willsch R, Bartelt H. Inscription and characterization of Bragg gratings in single-crystal sapphire optical fibers for high-temperature sensor applications. Measurement Science and Technology, 2009, 20, 115301.
CrossRef Google scholar
[107]
Guo Q, Yu Y, Zheng Z, Chen C, Wang P, Tian Z, . Femtosecond laser inscribed sapphire fiber Bragg grating for high temperature and strain sensing. IEEE Transactions on Nanotechnology, 2019, 18, 208-211.
CrossRef Google scholar
[108]
Xu X, He J, Liao C, Wang Y. Multi-layer, offset-coupled sapphire fiber Bragg gratings for high-temperature measurements. Optics Letters, 2019, 44(17): 4211-4214.
CrossRef Google scholar
[109]
Grobnic D, Mihailov S J, Ding H, Bilodeau F, Smelser C W. Single and low order mode interrogation of a multimode sapphire fiber Bragg grating sensor with tapered fibers. Measurement Science and Technology, 2006, 17, 980-984.
CrossRef Google scholar
[110]
Yang S, Daniel H, Gary P, Wang A. Fiber Bragg grating fabricated in micro-single-crystal sapphire fiber. Optics Letters, 2018, 43(1): 62-65.
CrossRef Google scholar
[111]
Elsmann T, Lorenz A, Yazd N S, Habisreuther T, Dellith J, Schwuchow A. High temperature sensing with fiber Bragg gratings in sapphire-derived all-glass optical fibers. Optics Express, 2014, 22(22): 26825-26833.
CrossRef Google scholar
[112]
Mihailov S J, Grobnic D, Smelser C W. High-temperature multiparameter sensor based on sapphire fiber Bragg gratings. Optics Letters, 2010, 35(16): 2810-2812.
CrossRef Google scholar
[113]
Habisreuther T, Elsmann T, Graf A, Schmidt M A. High-temperature strain sensing using sapphire fibers with inscribed first-order Bragg gratings. IEEE Photonics Journal, 2016, 8(3): 6802608.
CrossRef Google scholar
[114]
Jin L, Jin W, Ju J. Directional bend sensing with a CO2-laser-inscribed long period grating in a photonic crystal fiber. Journal of Lightwave Technology, 2009, 27(21): 4884-4891.
CrossRef Google scholar
[115]
Feng D, Qiao X, Albert J. Off-axis ultraviolet-written fiber Bragg gratings for directional bending measurements. Optics Letters, 2016, 41(6): 1201-1204.
CrossRef Google scholar
[116]
Shao L, Xiong L, Chen C, Laronche A, Albert J. Directional bend sensor based on re-grown tilted fiber Bragg grating. Journal of Lightwave Technology, 2010, 28(18): 2681-2687.
CrossRef Google scholar
[117]
Bao W, Rong Q, Chen F, Qiao X. All-fiber 3D vector displacement^(bending) sensor based on an eccentric FBG. Optics Express, 2018, 26(7): 8619-8627.
CrossRef Google scholar
[118]
Zheng D, Madrigal J, Chen H, Barrera D, Sales S. Multicore fiber-Bragg-grating-based directional curvature sensor interrogated by a broadband source with a sinusoidal spectrum. Optics Letters, 2017, 42(18): 3710-3713.
CrossRef Google scholar
[119]
Bao W, Sahoo N, Sun Z, Wang C, Liu S, Wang Y, . Selective fiber Bragg grating inscription in four-core fiber for two-dimension vector bending sensing. Optics Express, 2020, 28(18): 26461-26469.
CrossRef Google scholar

8

Accesses

125

Citations

Detail

Sections
Recommended

/