Performance Analysis of Silicon and Blue Phosphorene/MoS2 Hetero-Structure Based SPR Sensor

Akash Srivastava , Y. K. Prajapati

Photonic Sensors ›› 2018, Vol. 9 ›› Issue (3) : 284 -292.

PDF
Photonic Sensors ›› 2018, Vol. 9 ›› Issue (3) : 284 -292. DOI: 10.1007/s13320-019-0533-1
Regular

Performance Analysis of Silicon and Blue Phosphorene/MoS2 Hetero-Structure Based SPR Sensor

Author information +
History +
PDF

Abstract

Surface plasmon resonance (SPR) sensor based on the blue phosphorene/MoS2 hetero-structure is presented to enhance the performance parameters, i.e., sensitivity, detection accuracy, and quality factor. The blue phosphorene/MoS2 hetero-structure works as an interacting layer with the analyte for the enhancement of the sensitivity of the sensor. It is observed that the sensitivity of blue phosphorene/MoS2 based sensor (i.e., structure-II) is improved by 5.75%, from the conventional sensor (i.e., structure-III). Further, an additional silicon nanolayer is introduced between the metal layer and blue phosphorene/MoS2 hetero-structure. The sensitivity of the proposed blue phosphorene/MoS2 hetero-structure with a silicon layer SPR sensor, i.e., structure-I, is enhanced by 44.76% from structure-II and 55.75% from structure-III due to an enhancement in the evanescent field near the metal-analyte interface. Finally, it is observed that at the optimum thickness of silicon between the gold layer and blue phosphorene/MoS2, performance parameters of the sensor are enhanced.

Keywords

Surface plasmon / blue phosphorene / MoS2 / sensitivity

Cite this article

Download citation ▾
Akash Srivastava, Y. K. Prajapati. Performance Analysis of Silicon and Blue Phosphorene/MoS2 Hetero-Structure Based SPR Sensor. Photonic Sensors, 2018, 9(3): 284-292 DOI:10.1007/s13320-019-0533-1

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Li C. T., Chen H. F., Un I. W., Lee H. C., Yen T. J.. Study of optical phase transduction on localized surface plasmon resonance for ultrasensitive detection. Optics Express, 2012, 20(3): 3250-3260.

[2]

Hamola J., Yee S. S., Gauglitzand G.. Surface plasmon resonance sensor: review. Analytical Sensors Actuators B, 1999, 54(1–2): 3-15.

[3]

Pal S., Prajapati Y. K., Saini J. P., Singh V.. Resolution enhancement of optical SPR sensor using metamaterial. Photonic Sensors, 2015, 5(4): 330-338.

[4]

Ligler F. S., Taitt C. R., Lake L. C. S., Sapsford K. E., Shubin Y., Golden J. P.. Array bio-sensors for detection of toxins. Analytical and Bioanalytical Chemistry, 2003, 377(3): 469-477.

[5]

Wu L. M., Jia Y., Jiang L. Y., Guo J., Dai X. Y., Xiang Y. J., . Sensitivity improved SPR biosensor based on the MoS2/Graphene–Aluminum hybrid structure. Journal of Lightwave Technology, 2017, 35(1): 82-87.

[6]

Maurya J. B., Prajapati Y. K.. A comparative study of different metal and prism in the surface plasmon resonance biosensor having MoS2-Graphene. Optical and Quantum Electronics, 2016, 48(5): 280-1–280–12.

[7]

Maurya J. B., François A., Prajapati Y. K.. Two-dimensional layered nanomaterial based one-dimensional photonic crystal refractive index sensor. Sensors, 2018, 18(3): 857-1–857–7.

[8]

Pal S., Verma A., Prajapati Y. K., Saini J. P.. Influence of black phosphorous on performance of surface plasmon resonance biosensor. Optical and Quantum Electronics, 2017, 49, 403-1–403–13.

[9]

Pal S., Verma A., Raikwar S., Prajapati Y. K., Saini J. P.. Detection of DNA hybridization using black phosphorus-graphene coated surface plasmon resonance sensor. Applied Physics A, 2018, 124(5): 394-1–394–11.

[10]

Maurya J. B., Raikawar S., Prajapati Y. K., Saini J. P.. A silicon-black phosphorous based surface plasmon resonance sensor for the detection of NO2 gas. Optik, 2018, 160, 428-433.

[11]

Maurya J. B., Prajapati Y. K., Singh V., Saini J. P.. Sensitivity enhancement of surface plasmon resonance sensor based on graphene-MoS2 hybrid structure with TiO2-SiO2 composite layer. Applied Physics A, 2015, 121(2): 525-533.

[12]

Ouyang Q. L., Zeng S. W., Li J., Hong L. Y., Xu G. X., Dinh X. Q., . Sensitivity enhancement of transition metal dichalcogenides/silicon nanostructure-based surface plasmon resonance biosensor. Scientific Reports, 2016, 6, 28190-1–28190–13.

[13]

Wu L. M., Guo J., Wang Q. K., Lu S. B., Dai X. Y., Xiang Y. J., . Sensitivity enhancement by using few-layer black phosphorus-graphene/TMDCs heterostructure in surface plasmon resonance biochemical sensor. Sensors and Actuators B: Chemical, 2017, 249, 542-548.

[14]

Cui S. M., Pu H. H., Wells S. A., Wen Z. H., Mao S., Chang J. B., . Ultrahigh sensitivity and layer-dependent sensing performance of phosphorene-based gas sensors. Nature Communications, 2015, 6, 8632-1–8632–9.

[15]

Liu N. S., Zhou S.. Gas adsorption on monolayer blue phosphorus: implications for environmental stability and gas sensors. Nanotechnology, 2017, 28(17): 175708-1–175708–9.

[16]

Peng Q., Wang Z. Y., Sa B. S., Wu B., Sun Z. M.. Electronic structures and enhanced optical properties of blue phosphorene/transition metal dichalcogenides van der Waals heterostructures. Scientific Reports, 2016, 6, 31994-1–31994–10.

[17]

Lahav A., Auslender M., Abdulhalim I.. Sensitivity enhancement of the guided wave surface-plasmon resonance sensors. Optics Letters, 2008, 33(21): 2539-2541.

[18]

Maurya J. B., Prajapati Y. K., Singh V., Saini J. P., Tripathi R.. Performance of graphene-MoS2 based surface plasmon resonance sensor using silicon layer. Optical and Quantum Electronics, 2015, 47(11): 3599-3611.

[19]

Pockrand I., Swalen J. D., Gordon J. G., Phllpott M. R.. Surface plasmon spectroscopy of organic monolayer assemblies. Surface Science, 1977, 74, 237-244.

AI Summary AI Mindmap
PDF

107

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/