PDF
Abstract
Surface plasmon resonance (SPR) sensor based on the blue phosphorene/MoS2 hetero-structure is presented to enhance the performance parameters, i.e., sensitivity, detection accuracy, and quality factor. The blue phosphorene/MoS2 hetero-structure works as an interacting layer with the analyte for the enhancement of the sensitivity of the sensor. It is observed that the sensitivity of blue phosphorene/MoS2 based sensor (i.e., structure-II) is improved by 5.75%, from the conventional sensor (i.e., structure-III). Further, an additional silicon nanolayer is introduced between the metal layer and blue phosphorene/MoS2 hetero-structure. The sensitivity of the proposed blue phosphorene/MoS2 hetero-structure with a silicon layer SPR sensor, i.e., structure-I, is enhanced by 44.76% from structure-II and 55.75% from structure-III due to an enhancement in the evanescent field near the metal-analyte interface. Finally, it is observed that at the optimum thickness of silicon between the gold layer and blue phosphorene/MoS2, performance parameters of the sensor are enhanced.
Keywords
Surface plasmon
/
blue phosphorene
/
MoS2
/
sensitivity
Cite this article
Download citation ▾
Akash Srivastava, Y. K. Prajapati.
Performance Analysis of Silicon and Blue Phosphorene/MoS2 Hetero-Structure Based SPR Sensor.
Photonic Sensors, 2018, 9(3): 284-292 DOI:10.1007/s13320-019-0533-1
| [1] |
Li C. T., Chen H. F., Un I. W., Lee H. C., Yen T. J.. Study of optical phase transduction on localized surface plasmon resonance for ultrasensitive detection. Optics Express, 2012, 20(3): 3250-3260.
|
| [2] |
Hamola J., Yee S. S., Gauglitzand G.. Surface plasmon resonance sensor: review. Analytical Sensors Actuators B, 1999, 54(1–2): 3-15.
|
| [3] |
Pal S., Prajapati Y. K., Saini J. P., Singh V.. Resolution enhancement of optical SPR sensor using metamaterial. Photonic Sensors, 2015, 5(4): 330-338.
|
| [4] |
Ligler F. S., Taitt C. R., Lake L. C. S., Sapsford K. E., Shubin Y., Golden J. P.. Array bio-sensors for detection of toxins. Analytical and Bioanalytical Chemistry, 2003, 377(3): 469-477.
|
| [5] |
Wu L. M., Jia Y., Jiang L. Y., Guo J., Dai X. Y., Xiang Y. J., . Sensitivity improved SPR biosensor based on the MoS2/Graphene–Aluminum hybrid structure. Journal of Lightwave Technology, 2017, 35(1): 82-87.
|
| [6] |
Maurya J. B., Prajapati Y. K.. A comparative study of different metal and prism in the surface plasmon resonance biosensor having MoS2-Graphene. Optical and Quantum Electronics, 2016, 48(5): 280-1–280–12.
|
| [7] |
Maurya J. B., François A., Prajapati Y. K.. Two-dimensional layered nanomaterial based one-dimensional photonic crystal refractive index sensor. Sensors, 2018, 18(3): 857-1–857–7.
|
| [8] |
Pal S., Verma A., Prajapati Y. K., Saini J. P.. Influence of black phosphorous on performance of surface plasmon resonance biosensor. Optical and Quantum Electronics, 2017, 49, 403-1–403–13.
|
| [9] |
Pal S., Verma A., Raikwar S., Prajapati Y. K., Saini J. P.. Detection of DNA hybridization using black phosphorus-graphene coated surface plasmon resonance sensor. Applied Physics A, 2018, 124(5): 394-1–394–11.
|
| [10] |
Maurya J. B., Raikawar S., Prajapati Y. K., Saini J. P.. A silicon-black phosphorous based surface plasmon resonance sensor for the detection of NO2 gas. Optik, 2018, 160, 428-433.
|
| [11] |
Maurya J. B., Prajapati Y. K., Singh V., Saini J. P.. Sensitivity enhancement of surface plasmon resonance sensor based on graphene-MoS2 hybrid structure with TiO2-SiO2 composite layer. Applied Physics A, 2015, 121(2): 525-533.
|
| [12] |
Ouyang Q. L., Zeng S. W., Li J., Hong L. Y., Xu G. X., Dinh X. Q., . Sensitivity enhancement of transition metal dichalcogenides/silicon nanostructure-based surface plasmon resonance biosensor. Scientific Reports, 2016, 6, 28190-1–28190–13.
|
| [13] |
Wu L. M., Guo J., Wang Q. K., Lu S. B., Dai X. Y., Xiang Y. J., . Sensitivity enhancement by using few-layer black phosphorus-graphene/TMDCs heterostructure in surface plasmon resonance biochemical sensor. Sensors and Actuators B: Chemical, 2017, 249, 542-548.
|
| [14] |
Cui S. M., Pu H. H., Wells S. A., Wen Z. H., Mao S., Chang J. B., . Ultrahigh sensitivity and layer-dependent sensing performance of phosphorene-based gas sensors. Nature Communications, 2015, 6, 8632-1–8632–9.
|
| [15] |
Liu N. S., Zhou S.. Gas adsorption on monolayer blue phosphorus: implications for environmental stability and gas sensors. Nanotechnology, 2017, 28(17): 175708-1–175708–9.
|
| [16] |
Peng Q., Wang Z. Y., Sa B. S., Wu B., Sun Z. M.. Electronic structures and enhanced optical properties of blue phosphorene/transition metal dichalcogenides van der Waals heterostructures. Scientific Reports, 2016, 6, 31994-1–31994–10.
|
| [17] |
Lahav A., Auslender M., Abdulhalim I.. Sensitivity enhancement of the guided wave surface-plasmon resonance sensors. Optics Letters, 2008, 33(21): 2539-2541.
|
| [18] |
Maurya J. B., Prajapati Y. K., Singh V., Saini J. P., Tripathi R.. Performance of graphene-MoS2 based surface plasmon resonance sensor using silicon layer. Optical and Quantum Electronics, 2015, 47(11): 3599-3611.
|
| [19] |
Pockrand I., Swalen J. D., Gordon J. G., Phllpott M. R.. Surface plasmon spectroscopy of organic monolayer assemblies. Surface Science, 1977, 74, 237-244.
|