Refractive Index Sensor Based on Fano Resonances in Plasmonic Waveguide With Dual Side-Coupled Ring Resonators

Xuewei Zhang , Yunping Qi , Peiyang Zhou , Hanhan Gong , Bingbing Hu , Chunman Yan

Photonic Sensors ›› 2017, Vol. 8 ›› Issue (4) : 367 -374.

PDF
Photonic Sensors ›› 2017, Vol. 8 ›› Issue (4) : 367 -374. DOI: 10.1007/s13320-018-0509-6
Regular

Refractive Index Sensor Based on Fano Resonances in Plasmonic Waveguide With Dual Side-Coupled Ring Resonators

Author information +
History +
PDF

Abstract

A refractive index sensor based on Fano resonances in metal-insulator-metal (MIM) waveguides coupled with rectangular and dual side rings resonators is proposed. The sensing properties are numerically simulated by the finite element method (FEM). For the interaction of the narrow-band spectral response and the broadband spectral response caused by the side-coupled resonators and the rectangular resonator, respectively, the transmission spectra exhibit a sharp and asymmetric profile. Results are analyzed using the coupled-mode theory based on the transmission line theory. The coupled mode theory is employed to explain the Fano resonance effect. The results show that with an increase in the refractive index of the fill dielectric material in the slot of the system, the Fano resonance peak exhibits a remarkable red shift. Through the optimization of structural parameters, we achieve a theoretical value of the refractive index sensitivity (S) as high as 1160 nm/RIU, and the corresponding sensing resolution is 8.62 × 10–5 RIU. In addition, the coupled MIM waveguide structure can be easily extended to other similar compact structures to realize the sensing task and integrated with other photonic devices at the chip scale. This work paves the way toward the sensitive nanometer scale refractive index sensor for design and application.

Keywords

Refractive index sensor / Fano resonances / surface plasmon polaritons / MIM waveguides

Cite this article

Download citation ▾
Xuewei Zhang, Yunping Qi, Peiyang Zhou, Hanhan Gong, Bingbing Hu, Chunman Yan. Refractive Index Sensor Based on Fano Resonances in Plasmonic Waveguide With Dual Side-Coupled Ring Resonators. Photonic Sensors, 2017, 8(4): 367-374 DOI:10.1007/s13320-018-0509-6

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Temnov V. V., Armelles G., Woggon U., Guzatov D., Cebollada A., Martin A. G., . Active magneto-plasmonics in hybrid metal-ferromagnet structures. Nature Photonics, 2010, 4(2): 107-111.

[2]

Bozhevolnyi S. I., Volkov V. S., Devaux E., Laluet J. Y., Ebbesen T. W.. Channel plasmon subwavelength waveguide components including interferometers and ring resonators. Nature, 2006, 440(7083): 508-511.

[3]

Lu H., Liu X. M., Mao D., Wang G. X.. Plasmonic nanosensor based on Fano resonance in waveguide-coupled resonators. Optics Letters, 2012, 37(18): 3780-3782.

[4]

IEEE Photonics Journal, 2014, 6(6

[5]

Park N., Yu S., Piao X.. Control of Fano asymmetry in plasmon induced transparency and its application to plasmonic waveguide modulator. Optics Express, 2012, 20(17): 18994-18999.

[6]

Applied Physics Letter, 2010, 97(18

[7]

Wen K. H., Hu Y. H., Chen L., Zhou J. Y., Lei L., Meng Z. M.. Single/dual Fano resonance based on plasmonic metal-dielectric-metal waveguide. Plasmonics, 2016, 11(1): 315-321.

[8]

Daghestani H. N., Day B. W.. Theory and applications of surface plasmon resonance, resonant mirror, resonant waveguide grating, and dual polarization interferometry biosensors. Sensors, 2010, 10(11): 9630-9646.

[9]

Journal of Micro-Mechanics & Microengineering, 2012, 22(12

[10]

Ni B., Chen X. Y., Xiong D. Y., Liu H., Hua G. H., Chang J. H., . Infrared plasmonic refractive index-sensitive nanosensor based on electromagnetically induced transparency of waveguide resonator systems. Optical & Quantum Electronics, 2015, 47(6): 1339-1346.

[11]

Kirchain R., Kimerling L.. A roadmap for nanophotonics. Nature Photonics, 2007, 1(6): 303-305.

[12]

Liu L. J., He S. L., Han Z. H.. Novel surface plasmon waveguide for high integration. Optics Express, 2005, 13(17): 6645-6650.

[13]

Zhang Q., Huang X. G., Lin X. S., Tao J., Jin X. P.. A subwavelength coupler-type MIM optical filter. Optics Express, 2009, 17(9): 7533-7539.

[14]

Wang G. X., Lu H., Liu X. M.. Dispersionless slow light in MIM waveguide based on a plasmonic analogue of electromagnetically induced transparency. Optics Express, 2012, 20(19): 20902-20907.

[15]

Chen J. J., Li Z., Yue S., Xiao J. H., Gong Q. H.. Plasmon-induced transparency in asymmetric T-shape single slit. Nano Letters, 2012, 12(5): 2494-2498.

[16]

Park J., Kim H., Lee B.. High order plasmonic Bragg reflection in the metal-insulator-metal waveguide Bragg grating. Optics Express, 2008, 16(1): 413-425.

[17]

Zhao H. W.. Surface plasmon polaritons based optical directional coupler. Science in China, 2008, 40(10): 3025-3029.

[18]

Fan P., Yu Z., Fan S., Brongersma M. L.. Optical Fano resonance of an individual semiconductor nanostructure. Nature Materials, 2014, 13(5): 471-475.

[19]

Optical Engineering, 2010, 49(49

[20]

Nature Communications, 2013, 4(4

[21]

Sensors, 2017, 17(4

[22]

Wei W., Zhang X., Ren X. M.. Plasmonic circular resonators for refractive index sensors and filters. Nanoscale Research Letters, 2015, 10(1): 1-6.

[23]

Gai H. F., Wang J., Tian Q.. Modified Debye model parameters of metals applicable for broadband calculations. Applied Optics, 2007, 46(12): 2229-2233.

[24]

Sensors, 2016, 16(5

[25]

Kekatpure R. D., Hryciw A. C., Barnard E. S., Brongersma M. L.. Solving dielectric and plasmonic waveguide dispersion relations on a pocket calculator. Optics Express, 2009, 17(26): 24112-24129.

[26]

Zhu J. H., Wang Q. J., Shum P., Huang X. G.. A simple nanometeric plasmonic narrow-band filter structure based on metal-insulator-metal waveguide. IEEE Transactions on Nanotechnology, 2011, 10(6): 1371-1376.

[27]

Hu F. F., Yi H. X., Zhou Z. P.. Wavelength demultiplexing structure based on arrayed plasmonic slot cavities. Optics Letters, 2011, 36(8): 1500-1502.

[28]

Li Q., Wang T., Su Y. K., Yan M., Qiu M.. Coupled mode theory analysis of mode-splitting in coupled cavity system. Optics Express, 2010, 18(8): 8367-8382.

[29]

Piao X. J., Yu S., Koo S., Lee K., Park N.. Fano-type spectral asymmetry and its control for plasmonic metal-insulator-metal stub structures. Optics Express, 2011, 19(11): 10907-10912.

[30]

Applied Physics Letters, 2010, 97(25

AI Summary AI Mindmap
PDF

123

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/