Refractive Index Sensor Based on Fano Resonances in Plasmonic Waveguide With Dual Side-Coupled Ring Resonators

Xuewei Zhang, Yunping Qi, Peiyang Zhou, Hanhan Gong, Bingbing Hu, Chunman Yan

Photonic Sensors ›› 2017, Vol. 8 ›› Issue (4) : 367-374.

Photonic Sensors All Journals
Photonic Sensors ›› 2017, Vol. 8 ›› Issue (4) : 367-374. DOI: 10.1007/s13320-018-0509-6
Regular

Refractive Index Sensor Based on Fano Resonances in Plasmonic Waveguide With Dual Side-Coupled Ring Resonators

Author information +
History +

Abstract

A refractive index sensor based on Fano resonances in metal-insulator-metal (MIM) waveguides coupled with rectangular and dual side rings resonators is proposed. The sensing properties are numerically simulated by the finite element method (FEM). For the interaction of the narrow-band spectral response and the broadband spectral response caused by the side-coupled resonators and the rectangular resonator, respectively, the transmission spectra exhibit a sharp and asymmetric profile. Results are analyzed using the coupled-mode theory based on the transmission line theory. The coupled mode theory is employed to explain the Fano resonance effect. The results show that with an increase in the refractive index of the fill dielectric material in the slot of the system, the Fano resonance peak exhibits a remarkable red shift. Through the optimization of structural parameters, we achieve a theoretical value of the refractive index sensitivity (S) as high as 1160 nm/RIU, and the corresponding sensing resolution is 8.62 × 10–5 RIU. In addition, the coupled MIM waveguide structure can be easily extended to other similar compact structures to realize the sensing task and integrated with other photonic devices at the chip scale. This work paves the way toward the sensitive nanometer scale refractive index sensor for design and application.

Keywords

Refractive index sensor / Fano resonances / surface plasmon polaritons / MIM waveguides

Cite this article

Download citation ▾
Xuewei Zhang, Yunping Qi, Peiyang Zhou, Hanhan Gong, Bingbing Hu, Chunman Yan. Refractive Index Sensor Based on Fano Resonances in Plasmonic Waveguide With Dual Side-Coupled Ring Resonators. Photonic Sensors, 2017, 8(4): 367‒374 https://doi.org/10.1007/s13320-018-0509-6

References

[1]
Temnov V. V., Armelles G., Woggon U., Guzatov D., Cebollada A., Martin A. G., . Active magneto-plasmonics in hybrid metal-ferromagnet structures. Nature Photonics, 2010, 4(2): 107-111.
CrossRef Google scholar
[2]
Bozhevolnyi S. I., Volkov V. S., Devaux E., Laluet J. Y., Ebbesen T. W.. Channel plasmon subwavelength waveguide components including interferometers and ring resonators. Nature, 2006, 440(7083): 508-511.
CrossRef Google scholar
[3]
Lu H., Liu X. M., Mao D., Wang G. X.. Plasmonic nanosensor based on Fano resonance in waveguide-coupled resonators. Optics Letters, 2012, 37(18): 3780-3782.
CrossRef Google scholar
[4]
IEEE Photonics Journal, 2014, 6(6
[5]
Park N., Yu S., Piao X.. Control of Fano asymmetry in plasmon induced transparency and its application to plasmonic waveguide modulator. Optics Express, 2012, 20(17): 18994-18999.
CrossRef Google scholar
[6]
Applied Physics Letter, 2010, 97(18
[7]
Wen K. H., Hu Y. H., Chen L., Zhou J. Y., Lei L., Meng Z. M.. Single/dual Fano resonance based on plasmonic metal-dielectric-metal waveguide. Plasmonics, 2016, 11(1): 315-321.
CrossRef Google scholar
[8]
Daghestani H. N., Day B. W.. Theory and applications of surface plasmon resonance, resonant mirror, resonant waveguide grating, and dual polarization interferometry biosensors. Sensors, 2010, 10(11): 9630-9646.
CrossRef Google scholar
[9]
Journal of Micro-Mechanics & Microengineering, 2012, 22(12
[10]
Ni B., Chen X. Y., Xiong D. Y., Liu H., Hua G. H., Chang J. H., . Infrared plasmonic refractive index-sensitive nanosensor based on electromagnetically induced transparency of waveguide resonator systems. Optical & Quantum Electronics, 2015, 47(6): 1339-1346.
CrossRef Google scholar
[11]
Kirchain R., Kimerling L.. A roadmap for nanophotonics. Nature Photonics, 2007, 1(6): 303-305.
CrossRef Google scholar
[12]
Liu L. J., He S. L., Han Z. H.. Novel surface plasmon waveguide for high integration. Optics Express, 2005, 13(17): 6645-6650.
CrossRef Google scholar
[13]
Zhang Q., Huang X. G., Lin X. S., Tao J., Jin X. P.. A subwavelength coupler-type MIM optical filter. Optics Express, 2009, 17(9): 7533-7539.
CrossRef Google scholar
[14]
Wang G. X., Lu H., Liu X. M.. Dispersionless slow light in MIM waveguide based on a plasmonic analogue of electromagnetically induced transparency. Optics Express, 2012, 20(19): 20902-20907.
CrossRef Google scholar
[15]
Chen J. J., Li Z., Yue S., Xiao J. H., Gong Q. H.. Plasmon-induced transparency in asymmetric T-shape single slit. Nano Letters, 2012, 12(5): 2494-2498.
CrossRef Google scholar
[16]
Park J., Kim H., Lee B.. High order plasmonic Bragg reflection in the metal-insulator-metal waveguide Bragg grating. Optics Express, 2008, 16(1): 413-425.
CrossRef Google scholar
[17]
Zhao H. W.. Surface plasmon polaritons based optical directional coupler. Science in China, 2008, 40(10): 3025-3029.
[18]
Fan P., Yu Z., Fan S., Brongersma M. L.. Optical Fano resonance of an individual semiconductor nanostructure. Nature Materials, 2014, 13(5): 471-475.
CrossRef Google scholar
[19]
Optical Engineering, 2010, 49(49
[20]
Nature Communications, 2013, 4(4
[21]
Sensors, 2017, 17(4
[22]
Wei W., Zhang X., Ren X. M.. Plasmonic circular resonators for refractive index sensors and filters. Nanoscale Research Letters, 2015, 10(1): 1-6.
CrossRef Google scholar
[23]
Gai H. F., Wang J., Tian Q.. Modified Debye model parameters of metals applicable for broadband calculations. Applied Optics, 2007, 46(12): 2229-2233.
CrossRef Google scholar
[24]
Sensors, 2016, 16(5
[25]
Kekatpure R. D., Hryciw A. C., Barnard E. S., Brongersma M. L.. Solving dielectric and plasmonic waveguide dispersion relations on a pocket calculator. Optics Express, 2009, 17(26): 24112-24129.
CrossRef Google scholar
[26]
Zhu J. H., Wang Q. J., Shum P., Huang X. G.. A simple nanometeric plasmonic narrow-band filter structure based on metal-insulator-metal waveguide. IEEE Transactions on Nanotechnology, 2011, 10(6): 1371-1376.
CrossRef Google scholar
[27]
Hu F. F., Yi H. X., Zhou Z. P.. Wavelength demultiplexing structure based on arrayed plasmonic slot cavities. Optics Letters, 2011, 36(8): 1500-1502.
CrossRef Google scholar
[28]
Li Q., Wang T., Su Y. K., Yan M., Qiu M.. Coupled mode theory analysis of mode-splitting in coupled cavity system. Optics Express, 2010, 18(8): 8367-8382.
CrossRef Google scholar
[29]
Piao X. J., Yu S., Koo S., Lee K., Park N.. Fano-type spectral asymmetry and its control for plasmonic metal-insulator-metal stub structures. Optics Express, 2011, 19(11): 10907-10912.
CrossRef Google scholar
[30]
Applied Physics Letters, 2010, 97(25

9

Accesses

96

Citations

Detail

Sections
Recommended

/