Design of a porous cored hexagonal photonic crystal fiber based optical sensor with high relative sensitivity for lower operating wavelength

Shuvo Sen, Sawrab Chowdhury, Kawsar Ahmed, Sayed Asaduzzaman

Photonic Sensors ›› 2016, Vol. 7 ›› Issue (1) : 55-65.

Photonic Sensors All Journals
Photonic Sensors ›› 2016, Vol. 7 ›› Issue (1) : 55-65. DOI: 10.1007/s13320-016-0384-y
Regular

Design of a porous cored hexagonal photonic crystal fiber based optical sensor with high relative sensitivity for lower operating wavelength

Author information +
History +

Abstract

In this article, highly sensitive and low confinement loss enriching micro structured photonic crystal fiber (PCF) has been suggested as an optical sensor. The proposed PCF is porous cored hexagonal (P-HPCF) where cladding contains five layers with circular air holes and core vicinity is formed by two layered elliptical air holes. Two fundamental propagation characteristics such as the relative sensitivity and confinement loss of the proposed P-HPCF have been numerically scrutinized by the full vectorial finite element method (FEM) simulation procedure. The optimized values are modified with different geometrical parameters like diameters of circular or elliptical air holes, pitches of the core, and cladding region over a spacious assortment of wavelength from 0.8 µm to 1.8 µm. All pretending results exhibit that the relative sensitivity is enlarged according to decrement of wavelength of the transmission band (O+E+S+C+L+U). In addition, all useable liquids reveal the maximum sensitivity of 57.00%, 57.18%, and 57.27% for n=1.33, 1.354, and 1.366 respectively by lower band. Moreover, effective area, nonlinear coefficient, frequency, propagation constant, total electric energy, total magnetic energy, and wave number in free space of the proposed P-HPCF have been reported recently.

Keywords

Optical sensor / relative sensitivity / porous core PCF / confinement loss / transmission band / effective area

Cite this article

Download citation ▾
Shuvo Sen, Sawrab Chowdhury, Kawsar Ahmed, Sayed Asaduzzaman. Design of a porous cored hexagonal photonic crystal fiber based optical sensor with high relative sensitivity for lower operating wavelength. Photonic Sensors, 2016, 7(1): 55‒65 https://doi.org/10.1007/s13320-016-0384-y

References

[1]
Russell P.. Photonic crystal fibers. Science, 2003, 23(299): 358-362.
CrossRef Google scholar
[2]
Ademgil H.. Highly sensitive octagonal photonic crystal fiber based sensor. Optik–International Journal for Light and Electron Optics, 2014, 125(20): 6274-6278.
CrossRef Google scholar
[3]
Knight J. C., Birks T. A., Russell P. S. J., Atkin D. M.. All-silica single-mode optical fiber with photonic crystal cladding. Optics Letters, 1996, 21(19): 1547-1549.
CrossRef Google scholar
[4]
Hoo Y. L., Jin W., Ho H. L., Wang D. N.. Measurement of gas diffusion coefficient using photonic crystal fiber. IEEE Photonics Technology Letters, 2003, 15(10): 1434-1436.
CrossRef Google scholar
[5]
Deng M., Huang C., Liu D., Jin W., Zhu T.. All fiber magnetic field sensor with ferrofluid-filled tapered microstructured optical fiber interferometer. Optics Express, 2015, 23(16): 20668-20674.
CrossRef Google scholar
[6]
Fini J. M.. Microstructure fibres for optical sensing in gases and liquids. Measurement Science and Technology, 2004, 15(6): 1120-1128.
CrossRef Google scholar
[7]
Knight J. C., Birks T. A., Russell P. S. J., Atkin D. M.. All-silica single-mode optical fiber with photonic crystal cladding. Optics Letters, 1996, 21(19): 1547-1549.
CrossRef Google scholar
[8]
Razzak S. M. A., Namihira Y., Begum F., Kaijage S., Hai N. H., Zou N.. Design of a decagonal photonic crystal fiber for ultra-flattened chromatic dispersion. IEICE Transactions on Electronics, 2007, 90(11): 2141-2145.
CrossRef Google scholar
[9]
Hou Y., Fan F., Jiang Z. W., Wang X. H., Chang S. J.. Highly birefringent polymer terahertz fiber with honeycomb cladding. Optik–International Journal for Light and Electron Optics, 2013, 124(7): 3095-3098.
CrossRef Google scholar
[10]
Asaduzzaman S., Ahmed K., Bhuiyan T., Farah T.. Hybrid photonic crystal fiber in chemical sensing. SpringerPlus, 2016, 5(1): 1-11.
CrossRef Google scholar
[11]
Morshed M., Hasan M. I., Razzak S. M. A.. Enhancement of the sensitivity of gas sensor based on microstructure optical fiber. Photonic Sensors, 2015, 5(4): 312-320.
CrossRef Google scholar
[12]
Habib M. S., Habib M. S., Razzak S. M. A., Hossain M. A.. Proposal for highly birefringent broadband dispersion compensating octagonal photonic crystal fiber. Optical Fiber Technology, 2013, 19(5): 461-467.
CrossRef Google scholar
[13]
Habib M. S., Habib M. S., Hasan M. A., Razzak S. M. A.. Single mode ultra-flat high negative residual dispersion compensating photonic crystal fiber. Optical Fiber Technology, 2014, 20(4): 328-332.
CrossRef Google scholar
[14]
Begum F., Namihira Y., Razzak S. M. A., Kaijage S., Hai N. H., Kinjo T., . Design and analysis of novel highly nonlinear photonic crystal fibers with ultra-flattened chromatic dispersion. Optics Communications, 2009, 282(7): 1416-1421.
CrossRef Google scholar
[15]
Arif M. F. H., Ahmed K., Asaduzzaman S., Azad M. A. K.. Design and optimization of photonic crystal fiber for liquid sensing applications. Photonic Sensors, 2016, 6(3): 279-288.
CrossRef Google scholar
[16]
Nozaki K., Tanabe T., Shinya A., Matsuo S., Sato T., Taniyama H., . Sub-femtojoule all-optical switching using a photonic-crystal nanocavity. Nature Photonics, 2010, 4(7): 477-483.
CrossRef Google scholar
[17]
Brosi J. M., Koos C., Andreani L. C., Waldow M., Leuthold J., Freude W.. High-speed low-voltage electro-optic modulator with a polymer-infiltrated silicon photonic crystal waveguide. Optics Express, 2008, 16(6): 4177-4191.
CrossRef Google scholar
[18]
Gao Y., Shiue R. J., Gan X., Li L., Peng C., Meric I., . High-speed electro-optic modulator integrated with graphene-boron nitride heterostructure and photonic crystal nanocavity. Nano Letters, 2015, 15(3): 2001-2005.
CrossRef Google scholar
[19]
Chen D.. Stable multi-wavelength erbium-doped fiber laser based on a photonic crystal fiber Sagnac loop filter. Laser Physics Letters, 2007, 4(6): 437-439.
CrossRef Google scholar
[20]
Xuan H., Ma J., Jin W.. Polarization converters in highly birefringent microfibers. Optics Express, 2014, 22(3): 3648-3660.
CrossRef Google scholar
[21]
Benabid F., Couny F., Knight J. C., Birks T. A., Russell P. S. J.. Compact, stable and efficient all-fiber gas cells using hollow-core photonic crystal fibers. Nature, 2005, 434(7032): 488-491.
CrossRef Google scholar
[22]
Dudley J. M., Genty G., Coen S.. Supercontinuum generation in photonic crystal fiber. Reviews of Modern Physics, 2006, 78(4): 1135-1184.
CrossRef Google scholar
[23]
Milenko K., Hu D. J. J., Shum P. P., Zhang T., Lim J. L., Wang Y., . Photonic crystal fiber tip interferometer for refractive index sensing. Optics Letters, 2012, 37(8): 1373-1375.
CrossRef Google scholar
[24]
Larsen T., Bjarklev A., Hermann D., Broeng J.. Optical devices based on liquid crystal photonic bandgap fibers. Optics Express, 2003, 11(20): 2589-2596.
CrossRef Google scholar
[25]
Fu H. Y., Tam H. Y., Shao L. Y., Dong X., Wai P. K. A., Lu C., . Pressure sensor realized with polarization-maintaining photonic crystal fiber-based Sagnac interferometer. Applied Optics, 2008, 47(15): 2835-2839.
CrossRef Google scholar
[26]
Zhao C., Yang X., Lu C., Jin W., Demokan M. S.. Temperature-insensitive interferometer using a highly birefringent photonic crystal fiber loop mirror. IEEE Photonics Technology Letters, 2004, 16(11): 2535-2537.
CrossRef Google scholar
[27]
Eichenfield M., Chan J., Camacho R. M., Vahala K. J., Painter O.. Optomechanical crystals. Nature, 2009, 462(7269): 78-82.
CrossRef Google scholar
[28]
Lee K., Asher S. A.. Photonic crystal chemical sensors: PH and ionic strength. Journal of the American Chemical Society, 2000, 122(39): 9534-9537.
CrossRef Google scholar
[29]
Skivesen N., Têtu A., Kristensen M., Kjems J., Frandsen L. H., Borel P. I.. Photonic-crystal waveguide biosensor. Optics Express, 2007, 15(6): 3169-3176.
CrossRef Google scholar
[30]
Bonifacio L. D., Puzzo D. P., Breslav S., Willey B. M., McGeer A., Ozin G. A.. Towards the photonic nose: a novel platform for molecule and bacteria identification. Advanced Materials, 2009, 22(12): 1351-1354.
CrossRef Google scholar
[31]
Pinto A. M. R., Lopez-Amo M.. Photonic crystal fibers for sensing applications. Journal of Sensors, 2012, 2012, 1-21.
CrossRef Google scholar
[32]
Hansen T. P., Broeng J., Libori S. E., Knudsen E., Bjarklev A., Jensen J. R., . Highly birefringent index-guiding photonic crystal fibers. IEEE Photonics Technology Letters, 2001, 13(6): 588-590.
CrossRef Google scholar
[33]
Olyaee S., Seifouri M., Nikoosohbat A., Abadi M. S. E.. Low nonlinear effects index-guiding nanostructured photonic crystal fiber. International Journal of Chemical, Nuclear, Materials and Metallurgical Engineering, 2015, 9(2): 253-257.
[34]
Ademgil H., Haxha S.. PCF based sensor with high sensitivity, high birefringence and low confinement losses for liquid analyte sensing applications. Sensors, 2015, 15(12): 31833-31842.
CrossRef Google scholar
[35]
Ahmed K., Morshed M.. Design and numerical analysis of microstructured-core octagonal photonic crystal fiber for sensing applications. Sensing and Bio-Sensing Research, 2016, 7, 1-6.
CrossRef Google scholar
[36]
Rashed A. N. Z., E E. N. A., Mohamed G., R S. A. E., Hanafy S., Aly M. H.. A comparative study of the performance of graded index perfluorinated plastic and alumino silicate optical fibers in internal optical interconnections. Optik–International Journal for Light and Electron Optics, 2016, 127(20): 9259-9263.
CrossRef Google scholar
[37]
Kim S. E., Kim B. H., Lee C. G., Lee S., Oh K., Kee C. S.. Elliptical defected core photonic crystal fiber with high birefringence and negative flattened dispersion. Optics Express, 2012, 20(2): 1385-1391.
CrossRef Google scholar
[38]
Luan N., Yao J.. Surface plasmon resonance sensor based on exposed-core microstructured optical fiber placed with a silver wire. IEEE Photonics Journal, 2016, 8(1): 1-8.
[39]
Haxha S., Teyeb A., Malek F. A., Akowuah E. K., Dayoub I.. Design of environmental biosensor based on photonic crystal fiber with bends using finite element method. Optics and Photonics Journal, 2015, 05(3): 69-78.
CrossRef Google scholar
[40]
Kuhlmey B. T., Eggleton B. J., Wu D. K. C.. Fluid-filled solid-core photonic bandgap fibers. Journal of Lightwave Technology, 2009, 27(11): 1617-1630.
CrossRef Google scholar
[41]
Vieweg M., Gissibl T., Pricking S., Kuhlmey B. T., Wu D. C., Eggleton B. J., . Ultrafast nonlinear optofluidics in selectively liquid-filled photonic crystal fibers. Optics Express, 2010, 18(24): 25232-25240.
CrossRef Google scholar
[42]
Asaduzzaman S., Ahmed K.. Proposal of a gas sensor with high sensitivity, birefringence and nonlinearity for air pollution monitoring. Sensing and Bio-Sensing Research, 2016, 10, 20-26.
CrossRef Google scholar
[43]
Shi F., Zhou G., Li D., Peng L., Hou Z., Xia C.. Surface plasmon mode coupling in photonic crystal fiber symmetrically filled with Ag/Au alloy wires. Plasmonics, 2014, 10(2): 335-340.
CrossRef Google scholar
[44]
Kaneshima K.. Numerical investigation of octagonal Photonic crystal fibers with strong confinement field. IEICE Transactions on Electronics, 2006, 89(6): 830-837.
CrossRef Google scholar
[45]
Matsui T., Zhou J., Nakajima K., Sankawa I.. Dispersion-flattened photonic crystal fiber with large effective area and low confinement loss. Journal of Lightwave Technology, 2005, 23(12): 4178-4183.
CrossRef Google scholar
[46]
Sato T., Makino S., Ishizaka Y., Fujisawa T., Saitoh K.. A rigorous definition of nonlinear parameter ¦G and effective area Aeff for photonic crystal optical waveguides. Journal of the Optical Society of America B, 2015, 32(6): 653-657.
CrossRef Google scholar
[47]
Huang Y., Xu Y., Yariv A.. Fabrication of functional microstructured optical fibers through a selective-filling technique. Applied Physics Letters, 2004, 85(22): 5182-5184.
CrossRef Google scholar
[48]
Zhang Y., Shi C., Gu C., Seballos L., Zhang J. Z.. Liquid core photonic crystal fiber sensor based on surface enhanced Raman scattering. Applied Physics Letters, 2007, 90(19): 193504.
CrossRef Google scholar
[49]
Ebendorff-Heidepriem H., Petropoulos P., Asimakis S., Finazzi V., Moore R., Frampton K., . Bismuth glass holey fibers with high nonlinearity. Optics Express, 2004, 12(21): 5082-5087.
CrossRef Google scholar
[50]
Broeng J., Mogilevstev D., Barkou S. E., Bjarklev A.. Photonic crystal fibers: a new class of optical waveguides. Optical Fiber Technology, 1999, 5(3): 305-330.
CrossRef Google scholar
[51]
Petrovich M. N., Brakel A. V., Poletti F., Mukasa K., Austin E., Finazzi V., . Micro structured fibers for sensing applications. Proc. SPIE, 2005, 6005, 1-15.
[52]
El H. H., Ouerdane Y., Bigot L., Bouwmans G., Capoen B., Boukenter A., . Sol-gel derived ionic copper-doped micro structured optical fiber: a potential selective ultraviolet radiation dosimeter. Optics Express, 2012, 20(28): 29751-29760.
CrossRef Google scholar

6

Accesses

54

Citations

Detail

Sections
Recommended

/