PDF
Abstract
In this article, highly sensitive and low confinement loss enriching micro structured photonic crystal fiber (PCF) has been suggested as an optical sensor. The proposed PCF is porous cored hexagonal (P-HPCF) where cladding contains five layers with circular air holes and core vicinity is formed by two layered elliptical air holes. Two fundamental propagation characteristics such as the relative sensitivity and confinement loss of the proposed P-HPCF have been numerically scrutinized by the full vectorial finite element method (FEM) simulation procedure. The optimized values are modified with different geometrical parameters like diameters of circular or elliptical air holes, pitches of the core, and cladding region over a spacious assortment of wavelength from 0.8 µm to 1.8 µm. All pretending results exhibit that the relative sensitivity is enlarged according to decrement of wavelength of the transmission band (O+E+S+C+L+U). In addition, all useable liquids reveal the maximum sensitivity of 57.00%, 57.18%, and 57.27% for n=1.33, 1.354, and 1.366 respectively by lower band. Moreover, effective area, nonlinear coefficient, frequency, propagation constant, total electric energy, total magnetic energy, and wave number in free space of the proposed P-HPCF have been reported recently.
Keywords
Optical sensor
/
relative sensitivity
/
porous core PCF
/
confinement loss
/
transmission band
/
effective area
Cite this article
Download citation ▾
Shuvo Sen, Sawrab Chowdhury, Kawsar Ahmed, Sayed Asaduzzaman.
Design of a porous cored hexagonal photonic crystal fiber based optical sensor with high relative sensitivity for lower operating wavelength.
Photonic Sensors, 2016, 7(1): 55-65 DOI:10.1007/s13320-016-0384-y
| [1] |
Russell P.. Photonic crystal fibers. Science, 2003, 23(299): 358-362.
|
| [2] |
Ademgil H.. Highly sensitive octagonal photonic crystal fiber based sensor. Optik–International Journal for Light and Electron Optics, 2014, 125(20): 6274-6278.
|
| [3] |
Knight J. C., Birks T. A., Russell P. S. J., Atkin D. M.. All-silica single-mode optical fiber with photonic crystal cladding. Optics Letters, 1996, 21(19): 1547-1549.
|
| [4] |
Hoo Y. L., Jin W., Ho H. L., Wang D. N.. Measurement of gas diffusion coefficient using photonic crystal fiber. IEEE Photonics Technology Letters, 2003, 15(10): 1434-1436.
|
| [5] |
Deng M., Huang C., Liu D., Jin W., Zhu T.. All fiber magnetic field sensor with ferrofluid-filled tapered microstructured optical fiber interferometer. Optics Express, 2015, 23(16): 20668-20674.
|
| [6] |
Fini J. M.. Microstructure fibres for optical sensing in gases and liquids. Measurement Science and Technology, 2004, 15(6): 1120-1128.
|
| [7] |
Knight J. C., Birks T. A., Russell P. S. J., Atkin D. M.. All-silica single-mode optical fiber with photonic crystal cladding. Optics Letters, 1996, 21(19): 1547-1549.
|
| [8] |
Razzak S. M. A., Namihira Y., Begum F., Kaijage S., Hai N. H., Zou N.. Design of a decagonal photonic crystal fiber for ultra-flattened chromatic dispersion. IEICE Transactions on Electronics, 2007, 90(11): 2141-2145.
|
| [9] |
Hou Y., Fan F., Jiang Z. W., Wang X. H., Chang S. J.. Highly birefringent polymer terahertz fiber with honeycomb cladding. Optik–International Journal for Light and Electron Optics, 2013, 124(7): 3095-3098.
|
| [10] |
Asaduzzaman S., Ahmed K., Bhuiyan T., Farah T.. Hybrid photonic crystal fiber in chemical sensing. SpringerPlus, 2016, 5(1): 1-11.
|
| [11] |
Morshed M., Hasan M. I., Razzak S. M. A.. Enhancement of the sensitivity of gas sensor based on microstructure optical fiber. Photonic Sensors, 2015, 5(4): 312-320.
|
| [12] |
Habib M. S., Habib M. S., Razzak S. M. A., Hossain M. A.. Proposal for highly birefringent broadband dispersion compensating octagonal photonic crystal fiber. Optical Fiber Technology, 2013, 19(5): 461-467.
|
| [13] |
Habib M. S., Habib M. S., Hasan M. A., Razzak S. M. A.. Single mode ultra-flat high negative residual dispersion compensating photonic crystal fiber. Optical Fiber Technology, 2014, 20(4): 328-332.
|
| [14] |
Begum F., Namihira Y., Razzak S. M. A., Kaijage S., Hai N. H., Kinjo T., . Design and analysis of novel highly nonlinear photonic crystal fibers with ultra-flattened chromatic dispersion. Optics Communications, 2009, 282(7): 1416-1421.
|
| [15] |
Arif M. F. H., Ahmed K., Asaduzzaman S., Azad M. A. K.. Design and optimization of photonic crystal fiber for liquid sensing applications. Photonic Sensors, 2016, 6(3): 279-288.
|
| [16] |
Nozaki K., Tanabe T., Shinya A., Matsuo S., Sato T., Taniyama H., . Sub-femtojoule all-optical switching using a photonic-crystal nanocavity. Nature Photonics, 2010, 4(7): 477-483.
|
| [17] |
Brosi J. M., Koos C., Andreani L. C., Waldow M., Leuthold J., Freude W.. High-speed low-voltage electro-optic modulator with a polymer-infiltrated silicon photonic crystal waveguide. Optics Express, 2008, 16(6): 4177-4191.
|
| [18] |
Gao Y., Shiue R. J., Gan X., Li L., Peng C., Meric I., . High-speed electro-optic modulator integrated with graphene-boron nitride heterostructure and photonic crystal nanocavity. Nano Letters, 2015, 15(3): 2001-2005.
|
| [19] |
Chen D.. Stable multi-wavelength erbium-doped fiber laser based on a photonic crystal fiber Sagnac loop filter. Laser Physics Letters, 2007, 4(6): 437-439.
|
| [20] |
Xuan H., Ma J., Jin W.. Polarization converters in highly birefringent microfibers. Optics Express, 2014, 22(3): 3648-3660.
|
| [21] |
Benabid F., Couny F., Knight J. C., Birks T. A., Russell P. S. J.. Compact, stable and efficient all-fiber gas cells using hollow-core photonic crystal fibers. Nature, 2005, 434(7032): 488-491.
|
| [22] |
Dudley J. M., Genty G., Coen S.. Supercontinuum generation in photonic crystal fiber. Reviews of Modern Physics, 2006, 78(4): 1135-1184.
|
| [23] |
Milenko K., Hu D. J. J., Shum P. P., Zhang T., Lim J. L., Wang Y., . Photonic crystal fiber tip interferometer for refractive index sensing. Optics Letters, 2012, 37(8): 1373-1375.
|
| [24] |
Larsen T., Bjarklev A., Hermann D., Broeng J.. Optical devices based on liquid crystal photonic bandgap fibers. Optics Express, 2003, 11(20): 2589-2596.
|
| [25] |
Fu H. Y., Tam H. Y., Shao L. Y., Dong X., Wai P. K. A., Lu C., . Pressure sensor realized with polarization-maintaining photonic crystal fiber-based Sagnac interferometer. Applied Optics, 2008, 47(15): 2835-2839.
|
| [26] |
Zhao C., Yang X., Lu C., Jin W., Demokan M. S.. Temperature-insensitive interferometer using a highly birefringent photonic crystal fiber loop mirror. IEEE Photonics Technology Letters, 2004, 16(11): 2535-2537.
|
| [27] |
Eichenfield M., Chan J., Camacho R. M., Vahala K. J., Painter O.. Optomechanical crystals. Nature, 2009, 462(7269): 78-82.
|
| [28] |
Lee K., Asher S. A.. Photonic crystal chemical sensors: PH and ionic strength. Journal of the American Chemical Society, 2000, 122(39): 9534-9537.
|
| [29] |
Skivesen N., Têtu A., Kristensen M., Kjems J., Frandsen L. H., Borel P. I.. Photonic-crystal waveguide biosensor. Optics Express, 2007, 15(6): 3169-3176.
|
| [30] |
Bonifacio L. D., Puzzo D. P., Breslav S., Willey B. M., McGeer A., Ozin G. A.. Towards the photonic nose: a novel platform for molecule and bacteria identification. Advanced Materials, 2009, 22(12): 1351-1354.
|
| [31] |
Pinto A. M. R., Lopez-Amo M.. Photonic crystal fibers for sensing applications. Journal of Sensors, 2012, 2012, 1-21.
|
| [32] |
Hansen T. P., Broeng J., Libori S. E., Knudsen E., Bjarklev A., Jensen J. R., . Highly birefringent index-guiding photonic crystal fibers. IEEE Photonics Technology Letters, 2001, 13(6): 588-590.
|
| [33] |
Olyaee S., Seifouri M., Nikoosohbat A., Abadi M. S. E.. Low nonlinear effects index-guiding nanostructured photonic crystal fiber. International Journal of Chemical, Nuclear, Materials and Metallurgical Engineering, 2015, 9(2): 253-257.
|
| [34] |
Ademgil H., Haxha S.. PCF based sensor with high sensitivity, high birefringence and low confinement losses for liquid analyte sensing applications. Sensors, 2015, 15(12): 31833-31842.
|
| [35] |
Ahmed K., Morshed M.. Design and numerical analysis of microstructured-core octagonal photonic crystal fiber for sensing applications. Sensing and Bio-Sensing Research, 2016, 7, 1-6.
|
| [36] |
Rashed A. N. Z., E E. N. A., Mohamed G., R S. A. E., Hanafy S., Aly M. H.. A comparative study of the performance of graded index perfluorinated plastic and alumino silicate optical fibers in internal optical interconnections. Optik–International Journal for Light and Electron Optics, 2016, 127(20): 9259-9263.
|
| [37] |
Kim S. E., Kim B. H., Lee C. G., Lee S., Oh K., Kee C. S.. Elliptical defected core photonic crystal fiber with high birefringence and negative flattened dispersion. Optics Express, 2012, 20(2): 1385-1391.
|
| [38] |
Luan N., Yao J.. Surface plasmon resonance sensor based on exposed-core microstructured optical fiber placed with a silver wire. IEEE Photonics Journal, 2016, 8(1): 1-8.
|
| [39] |
Haxha S., Teyeb A., Malek F. A., Akowuah E. K., Dayoub I.. Design of environmental biosensor based on photonic crystal fiber with bends using finite element method. Optics and Photonics Journal, 2015, 05(3): 69-78.
|
| [40] |
Kuhlmey B. T., Eggleton B. J., Wu D. K. C.. Fluid-filled solid-core photonic bandgap fibers. Journal of Lightwave Technology, 2009, 27(11): 1617-1630.
|
| [41] |
Vieweg M., Gissibl T., Pricking S., Kuhlmey B. T., Wu D. C., Eggleton B. J., . Ultrafast nonlinear optofluidics in selectively liquid-filled photonic crystal fibers. Optics Express, 2010, 18(24): 25232-25240.
|
| [42] |
Asaduzzaman S., Ahmed K.. Proposal of a gas sensor with high sensitivity, birefringence and nonlinearity for air pollution monitoring. Sensing and Bio-Sensing Research, 2016, 10, 20-26.
|
| [43] |
Shi F., Zhou G., Li D., Peng L., Hou Z., Xia C.. Surface plasmon mode coupling in photonic crystal fiber symmetrically filled with Ag/Au alloy wires. Plasmonics, 2014, 10(2): 335-340.
|
| [44] |
Kaneshima K.. Numerical investigation of octagonal Photonic crystal fibers with strong confinement field. IEICE Transactions on Electronics, 2006, 89(6): 830-837.
|
| [45] |
Matsui T., Zhou J., Nakajima K., Sankawa I.. Dispersion-flattened photonic crystal fiber with large effective area and low confinement loss. Journal of Lightwave Technology, 2005, 23(12): 4178-4183.
|
| [46] |
Sato T., Makino S., Ishizaka Y., Fujisawa T., Saitoh K.. A rigorous definition of nonlinear parameter ¦G and effective area Aeff for photonic crystal optical waveguides. Journal of the Optical Society of America B, 2015, 32(6): 653-657.
|
| [47] |
Huang Y., Xu Y., Yariv A.. Fabrication of functional microstructured optical fibers through a selective-filling technique. Applied Physics Letters, 2004, 85(22): 5182-5184.
|
| [48] |
Zhang Y., Shi C., Gu C., Seballos L., Zhang J. Z.. Liquid core photonic crystal fiber sensor based on surface enhanced Raman scattering. Applied Physics Letters, 2007, 90(19): 193504.
|
| [49] |
Ebendorff-Heidepriem H., Petropoulos P., Asimakis S., Finazzi V., Moore R., Frampton K., . Bismuth glass holey fibers with high nonlinearity. Optics Express, 2004, 12(21): 5082-5087.
|
| [50] |
Broeng J., Mogilevstev D., Barkou S. E., Bjarklev A.. Photonic crystal fibers: a new class of optical waveguides. Optical Fiber Technology, 1999, 5(3): 305-330.
|
| [51] |
Petrovich M. N., Brakel A. V., Poletti F., Mukasa K., Austin E., Finazzi V., . Micro structured fibers for sensing applications. Proc. SPIE, 2005, 6005, 1-15.
|
| [52] |
El H. H., Ouerdane Y., Bigot L., Bouwmans G., Capoen B., Boukenter A., . Sol-gel derived ionic copper-doped micro structured optical fiber: a potential selective ultraviolet radiation dosimeter. Optics Express, 2012, 20(28): 29751-29760.
|