Design and optimization of photonic crystal fiber for liquid sensing applications

Md. Faizul Huq Arif, Kawsar Ahmed, Sayed Asaduzzaman, Md. Abul Kalam Azad

Photonic Sensors ›› 2015, Vol. 6 ›› Issue (3) : 279-288.

Photonic Sensors All Journals
Photonic Sensors ›› 2015, Vol. 6 ›› Issue (3) : 279-288. DOI: 10.1007/s13320-016-0323-y
Regular

Design and optimization of photonic crystal fiber for liquid sensing applications

Author information +
History +

Abstract

This paper proposes a hexagonal photonic crystal fiber (H-PCF) structure with high relative sensitivity for liquid sensing; in which both core and cladding are microstructures. Numerical investigation is carried out by employing the full vectorial finite element method (FEM). The analysis has been done in four stages of the proposed structure. The investigation shows that the proposed structure achieves higher relative sensitivity by increasing the diameter of the innermost ring air holes in the cladding. Moreover, placing a single channel instead of using a group of tiny channels increases the relative sensitivity effectively. Investigating the effects of different parameters, the optimized structure shows significantly higher relative sensitivity with a low confinement loss.

Keywords

Photonic crystal fiber (PCF) / liquid sensor / microstructure core / sensitivity / confinement loss

Cite this article

Download citation ▾
Md. Faizul Huq Arif, Kawsar Ahmed, Sayed Asaduzzaman, Md. Abul Kalam Azad. Design and optimization of photonic crystal fiber for liquid sensing applications. Photonic Sensors, 2015, 6(3): 279‒288 https://doi.org/10.1007/s13320-016-0323-y

References

[1]
Arjmand M., Talebzadeh R.. Optical filter based on photonic crystal resonant cavity. Optoelectronics and Advanced Materials-Rapid Communications, 2015, 9(1–2): 32-35.
[2]
Fasihi K.. High-contrast all-optical controllable switching and routing in nonlinear photonic crystals. Journal of Lightwave Technology, 2014, 32(18): 3126-3131.
CrossRef Google scholar
[3]
Cui K., Zhao Q., Feng X., Huang Y., Li Y., Wang D., . Thermo-optic switch based on transmission-dip shifting in a double-slot photonic crystal waveguide. Applied Physics Letters, 2012, 100(20): 2011021-2011024.
CrossRef Google scholar
[4]
Brosi J. M., Koos C., Andreani L. C., Waldow M., Leuthold J., Freude W.. High-speed low-voltage electro-optic modulator with a polymer-infiltrated silicon photonic crystal waveguide. Optics Express, 2008, 16(6): 4177-4191.
CrossRef Google scholar
[5]
Gao Y., Shiue R. J., Gan X., Li L., Peng C., Meric I., . High-speed electro-optic modulator integrated with graphene-boron nitride heterostructure and photonic crystal nanocavity. Nano Letters, 2015, 15(3): 2001-2005.
CrossRef Google scholar
[6]
Xuan H., Ma J., Jin W., Jin W.. Polarization converters in highly birefringent microfibers. Optics Express, 2014, 22(3): 3648-3660.
CrossRef Google scholar
[7]
Chang Y. H., Jhu Y. Y., Wu C. J.. Temperature dependence of defect mode in a defective photonic crystal. Optics Communications, 2012, 285(6): 1501-1504.
CrossRef Google scholar
[8]
Liu Y., Salemink H. W. M.. All-optical on-chip sensor for high refractive index sensing in photonic crystals. Europhysics Letters, 2014, 107(3): 1160-1170.
CrossRef Google scholar
[9]
Zheng S., Zhu Y., Krishnaswamy S.. Nanofilm-coated photonic crystal fiber long-period gratings with modal transition for high chemical sensitivity and selectivity. Proc. SPIE, 2012, 8346(14): 1844-1864.
[10]
Lee C., Thillaigovindan J.. Optical nanomechanical sensor using a silicon photonic crystal cantilever embedded with a nanocavity resonator. Applied Optics, 2009, 48(10): 1797-1803.
CrossRef Google scholar
[11]
Olyaee S., Dehghani A. A.. Ultrasensitive pressure sensor based on point defect resonant cavity in photonic crystal. Sensor Letters, 2013, 11(10): 1854-1859.
CrossRef Google scholar
[12]
Zhang Y. N., Zhao Y., Wang Q.. Multi-component gas sensing based on slotted photonic crystal waveguide with liquid infiltration. Sensors and Actuators B: Chemical, 2013, 184(8): 179-188.
CrossRef Google scholar
[13]
Morshed M., Arif M. F. H., Asaduzzaman S., Ahmed K.. Design and characterization of photonic crystal fiber for sensing applications. European Scientific Journal, 2015, 11(12): 228-235.
[14]
Lu T. W., Lee P. T.. Ultra-high sensitivity optical stress sensor based on double-layered photonic crystal microcavity. Optics Express, 2009, 17(3): 1518-1526.
CrossRef Google scholar
[15]
Hu P., Dong X., Wong W. C., Chen L. H., Ni K., Chan C. C.. Photonic crystal fiber interferometric pH sensor based on polyvinyl alcohol/polyacrylic acid hydrogel coating. Applied Optics, 2015, 54(10): 2647-2652.
CrossRef Google scholar
[16]
Lai W. C., Chakravarty S., Zou Y., Chen R. T.. Multiplexed detection of xylene and trichloroethylene in water by photonic crystal absorption spectroscopy. Optics Letters, 2013, 38(19): 3799-3802.
CrossRef Google scholar
[17]
Akowuah E. K., Gorman T., Ademgil H., Haxha S., Robinson G. K., Oliver J. V.. Numerical analysis of a photonic crystal fiber for biosensing applications. IEEE Journal of Quantum Electronics, 2012, 48(11): 1403-1410.
CrossRef Google scholar
[18]
Pushkarsky M. B., Webber M. E., Baghdassarian O., Narasimhan L. R., Patel C. K. N.. Laser-based photoacoustic ammonia sensors for industrial applications. Applied Physics B, 2002, 75(2-3): 391-396.
CrossRef Google scholar
[19]
Whitenett G., Stewart G., Atherton K., Culshaw B., Johnstone W.. Optical fibre instrumentation for environmental monitoring applications. Journal of Optics A: Pure and Applied Optics, 2003, 5(5): S140-S145.
CrossRef Google scholar
[20]
Carvalho J. P., Lehmann H., Bartelt H., Magalhaes F., Amezcua-Correa R., Santos J. L., . Remote system for detection of low-levels of methane based on photonic crystal fibres and wavelength modulation spectroscopy. Journal of Sensors, 2009, 2009(2): 1-10.
CrossRef Google scholar
[21]
Park J., Lee S., Kim S., Oh K.. Enhancement of chemical sensing capability in a photonic crystal fiber with a hollow high index ring defect at the center. Optics Express, 2011, 19(3): 1921-1929.
CrossRef Google scholar
[22]
Cordeiro C. M., Franco M. A., Chesini G., Barretto E. C., Lwin R., Cruz C. B., . Microstructured-core optical fibre for evanescent sensing applications. Optics Express, 2006, 14(26): 13056-13066.
CrossRef Google scholar
[23]
Morshed M., Imarn H. M., Roy T. K., Uddinand M. S., Razzak S. A.. Microstructure core photonic crystal fiber for gas sensing applications. Applied Optics, 2015, 54(29): 8637-8643.
CrossRef Google scholar
[24]
Ademgil H.. Highly sensitive octagonal photonic crystal fiber based sensor. Optik–International Journal for Light and Electron Optics, 2014, 125(20): 6274-6278.
CrossRef Google scholar
[25]
Ahmed K., Morshed M.. Design and numerical analysis of microstructured-core octagonal photonic crystal fiber for sensing applications. Sensing and Bio-Sensing Research, 2016, 7, 1-6.
CrossRef Google scholar
[26]
Asaduzzaman S., Ahmed K., Arif M. F. H., Morshed M.. Proposal of simple structure photonic crystal fiber for lower indexed chemical sensing. 18th International Conference on Computer and Information Technology, MIST, Bangladesh, 2015
[27]
Asaduzzaman S., Ahmed K., Arif M. F. H.. Numerical analysis of O-PCF structure for sensing applications with high relative sensitivity. 2nd International Conference on Electrical Information and Communication Technology, 2015
[28]
Asaduzzaman S., Ahmed K., Arif M. M. F. H., Morshed M.. Application of microarray-core based modified photonic crystal fiber in chemical sensing. International Conference on Electrical and Electronic Engineering, 2015
[29]
Morshed M., Hasan M. I., Razzak S. M. A.. Enhancement of the sensitivity of gas sensor based on microstructure optical fiber. Photonic Sensors, 2015, 5(4): 312-320.
CrossRef Google scholar
[30]
Selleri S., Vincetti L., Cucinotta A., Zoboli M.. Complex FEM modal solver of optical waveguides with PML boundary conditions. Optical and Quantum Electronics, 2001, 33(4–5): 359-371.
CrossRef Google scholar
[31]
Wu B. Q., Lu Y., Hao C. J., Duan L. C., Luan N. N., Zhao Z. Q., . December. hollow-core photonic crystal fiber based on C2H2 and NH3 gas sensor. Applied Mechanics and Materials, 2013, 411, 1577-1580.
[32]
Ghosh G.. Sellmeier coefficients and dispersion of thermo-optic coefficients for some optical glasses. Applied Optics, 1997, 36(7): 1540-1546.
CrossRef Google scholar
[33]
Huang Y., Xu Y., Yariv A.. Fabrication of functional microstructured optical fibers through a selective-filling technique. Applied Physics Letters, 2004, 85(22): 5182-5184.
CrossRef Google scholar
[34]
Luo M., Liu Y. G., Wang Z., Han T., Wu Z., Guo J., . Twin-resonance-coupling and high sensitivity sensing characteristics of a selectively fluid-filled microstructured optical fiber. Optics Express, 2013, 21(25): 30911-30917.
CrossRef Google scholar
[35]
Gerosa R. M., Spadoti D. H., de Matos C. J., Menezes L. D. S., Franco M. A.. Efficient and shortrange light coupling to index-matched liquid-filled hole in a solid-core photonic crystal fiber. Optics Express, 2011, 19(24): 24687-24698.
CrossRef Google scholar
[36]
Bise R. T., Trevor D. J.. Sol-gel derived microstructured fiber: fabrication and characterization. Optical Fiber Communications Conference, 2005
[37]
Huang Y., Xu Y., Yariv A.. Fabrication of functional microstructured optical fibers through a selective-filling technique. Applied Physics Letters, 2004, 85(22): 5182-5184.
CrossRef Google scholar
[38]
Cox F. M., Argyros A., Large M. C. J.. Liquid-filled hollow core microstructured polymer optical fiber. Optics Express, 2006, 14(9): 4135-4140.
CrossRef Google scholar

9

Accesses

113

Citations

5

Altmetric

Detail

Sections
Recommended

/