Nonadiabatic tapered optical fiber for biosensor applications

Hamid Latifi, Mohammad I. Zibaii, Seyed M. Hosseini, Pedro Jorge

Photonic Sensors ›› 2011, Vol. 2 ›› Issue (4) : 340-356.

Photonic Sensors All Journals
Photonic Sensors ›› 2011, Vol. 2 ›› Issue (4) : 340-356. DOI: 10.1007/s13320-012-0086-z
Review

Nonadiabatic tapered optical fiber for biosensor applications

Author information +
History +

Abstract

A brief review on biconical tapered fiber sensors for biosensing applications is presented. A variety of configurations and formats of this sensor have been devised for label free biosensing based on measuring small refractive index changes. The biconical nonadiabatic tapered optical fiber offers a number of favorable properties for optical sensing, which have been exploited in several biosensing applications, including cell, protein, and DNA sensors. The types of these sensors present a low-cost fiber biosensor featuring a miniature sensing probe, label-free direct detection, and high sensitivity.

Keywords

Biconical tapered optical fiber / nonadiabatic / refractive index / biosensor

Cite this article

Download citation ▾
Hamid Latifi, Mohammad I. Zibaii, Seyed M. Hosseini, Pedro Jorge. Nonadiabatic tapered optical fiber for biosensor applications. Photonic Sensors, 2011, 2(4): 340‒356 https://doi.org/10.1007/s13320-012-0086-z

References

[1]
Marazuela M. D., Moreno-Bondi M. C.. Fiber-optic biosensors — an overview. Analytical and Bioanalytical Chemistry, 2002, 372(5–6): 664-682.
CrossRef Google scholar
[2]
Valadez A. M., Lana C. A., Tu S. I., Morgan M. T., Bhunia A. K.. Evanescent wave fiber optic biosensor for Salmonella detection in food. Sensors, 2009, 9(7): 5810-5824.
CrossRef Google scholar
[3]
Snyder A. W., Love J. D.. Optical Waveguide Theory, 1983, London: Chapman and Hall
[4]
W. J. Stewart and J. D. Love, “Design limitation on tapers and couplers in singlemode fiber tapers,” in Proc. ECOC 85, Venice, Oct. 1–4, pp. 559–562, 1985.
[5]
Love J. D., Henry W. M.. Quantifying loss minimisation in single-mode fiber tapers. Electronics Letters, 1986, 22(17): 912-914.
CrossRef Google scholar
[6]
Sumetsky M., Dulashko Y., Hale A.. Fabrication and study of bent and coiled free silica nanowires: self-coupling microloop optical interferometer. Optics Express, 2004, 12(15): 3521-3531.
CrossRef Google scholar
[7]
Shi L., Chen X., Liu H., Chen Y., Ye Z., Liao W., . Fabrication of submicron-diameter silica fibers using electric strip heater. Optics Express, 2006, 14(12): 5055-5060.
CrossRef Google scholar
[8]
Zhang E. J., Sacher W. D., Poon J. K.. Hydrofluoric acid flow etching of low-loss subwavelength-diameter biconical fiber tapers. Optics Express, 2010, 18(21): 22593-22598.
CrossRef Google scholar
[9]
Pricking S., Giessen H.. Tapering fibers with complex shape. Optics Express, 2010, 18(4): 3426-3437.
CrossRef Google scholar
[10]
Minkovich V. P., Monzón-Hernández D.. Microstructured optical fiber coated with thin films for gas and chemical sensing. Optics Express, 2006, 14(18): 8413-8418.
CrossRef Google scholar
[11]
Ju J., Ma L., Jin W.. Photonic bandgap fiber tapers and interferometric sensors. Proc. SPIE, 2009, 7503, 75035B-1-75035B-4.
CrossRef Google scholar
[12]
Zibaii M. I., Latifi H., Karami K., Gholami M., Hosseini S. M., Ghezelayagh M. H.. Non-adiabatic tapered optical fiber sensor for measuring the interaction between α-amino acids in aqueous carbohydrate solution. Measurement and Science Technology, 2010, 21(10): 105801.
CrossRef Google scholar
[13]
Love J. D., Henry W. M., Stewart W. J., Black R. J., Lacroix S., Gonthier F.. Tapered single-mode fibers and devices: part 1. adiabaticity criteria. IEE Proc. J. Optoelectronics, 1991, 138(5): 343-354.
CrossRef Google scholar
[14]
Black R. J., Lacroix S., Gonthier F., Love J. D.. 1991 tapered single mode fibers and devices: part 2. experimental and theoretical quantification. IEE Proc. J Optoelectronics, 1991, 138(5): 355-364.
CrossRef Google scholar
[15]
White I. M., Oveys H., Fan X.. Liquid-coreoptical ring-resonator sensors. Optics Letters, 2006, 31(9): 1319-1321.
CrossRef Google scholar
[16]
Armani A. M., Vahala K. J.. Heavy water detection using ultra-high-Q microcavities. Optics Letters, 2006, 31(12): 1896-1898.
CrossRef Google scholar
[17]
Keng D., McAnanama S. R., Teraoka I., Arnold S.. Resonance fluctuations of a whispering gallery mode biosensor by particles undergoing Brownian motion. Applied Physics Letters, 2007, 91(10): 103902-1-103902-3.
CrossRef Google scholar
[18]
Yi J., Jao C. Y., Kandas I. L. N., Liu B., Xu Y., Robinson H. D.. Irreversible adsorption of gold nanospheres on fiber optical tapers and microspheres. Applied Physics Letters, 2012, 100(15): 153107-1-153107-4.
CrossRef Google scholar
[19]
Vollmer F., Braun D., Libchaber A., Khoshsima M., Teraoka I., Arnold S.. Protein detection by optical shift of a resonant microcavity. Applied Physics Letters, 2002, 80(21): 4057-4059.
CrossRef Google scholar
[20]
Kieu K. Q., Mansuripur M.. Biconical fiber taper sensor. IEEE Photonics Technology Letters, 2006, 18(21): 2239-2241.
CrossRef Google scholar
[21]
Datta P., Matias C., Aramburu C., Bakas A., Lopez-Amo M., Oton J. M.. Tapered optical fiber temperature sensor. Microwave Optical Technology Letters, 1996, 11(2): 93-95.
CrossRef Google scholar
[22]
Corres J. M., Bravo J., Matias I. R., Arregui F. J.. Nonadiabatic tapered single-mode fiber coated with humidity sensitive nanofilms. IEEE Photonics Technology Letters, 2006, 18(8): 935-937.
CrossRef Google scholar
[23]
Kawasaki B. S., Hill K. O., Lamont R. C.. Biconical taper single-mode fiber coupler. Optics Letter, 1981, 6(7): 327-328.
CrossRef Google scholar
[24]
Bums W., Abebe M., Villarruel C., Moeller R.. Loss mechanisms in single-mode tapers. Journal of Lightwave Technology, 1986, 4(6): 608-613.
CrossRef Google scholar
[25]
Bobb L. C., Shankar P. M., Krumboltz H. D.. Bending effects in biconically tapered single-mode fibers. Journal of Lightwave Technology, 1990, 8(7): 1084-1090.
CrossRef Google scholar
[26]
Gonthier F., Henault A., Lacroix S., Black R. J., Bures J.. Mode coupling in nonuniform fibers: comparison between coupled-mode theory and finite-difference beam-propagation method simulations. Optical Society of America B: Optical Physics, 1991, 8(2): 416-421.
CrossRef Google scholar
[27]
Moar P. N., Huntington S. T., Katsifolis J., Cahill L. W., Roberts A., Nugent K. A.. Fabrication, modeling, and direct evanescent field measurement of tapered optical fiber sensors. Journal of Applied Physics, 1999, 85(7): 3395-3398.
CrossRef Google scholar
[28]
Fielding A. J., Davis C. C.. Tapered single-mode optical fiber evanescent coupling. IEEE Photonics Technology Letters, 2002, 14(1): 53-55.
CrossRef Google scholar
[29]
Matias I. R., Valdivielso C. F., Arregui F. J., Bariain C., Amo M. L.. Transmitted optical power through a tapered single-mode fiber under dynamic bending effects. Fiber and Integrated Optics, 2003, 22(3): 173-187.
CrossRef Google scholar
[30]
Ahmad M., Hench L. L.. Effect of taper geometries and launch angle on evanescent wave penetration depth in optical fibers. Biosensors and Bioelectronics, 2005, 20(7): 1312-1319.
CrossRef Google scholar
[31]
Tubb A. J. C., Payne F. P., Millington R., Lowe C. R.. Singlemode optical fiber surface plasma wave chemical sensor. Electronics Letters, 1995, 31(20): 1770-1771.
CrossRef Google scholar
[32]
Esteban, Díaz-Herrera N., Navarrete M. C., González-Cano A.. Surface plasmon resonance sensors based on uniform-waist tapered fibers in a reflective configuration. Applied Optics, 2006, 45(28): 7294-7298.
CrossRef Google scholar
[33]
Verma R. K., Sharma A. K., Gupta B. D.. Surface plasmon resonance based tapered fiber optic sensor with different taper profiles. Optics Communications, 2008, 281(6): 1486-1491.
CrossRef Google scholar
[34]
N. Díaz-Herrera, A. González-Cano, D. Viegas, J. Luís. Santos, and M. C. Navarrete, “Refractive index sensing of aqueous media based on plasmonic resonance in tapered optical fibers operating in the 1.5 μm region,” Sensors and Actuators B: Chemical, vol. 146, no. 1, pp. 195–198.
[35]
Díaz-Herrera N., Esteban O., Navarrete M. C., González-Cano A., Benito-Pena E., Orellana G.. Improved performance of SPR sensors by a chemical etching of tapered optical fibers. Optics and Lasers in Engineering, 2011, 49(8): 1065-1068.
CrossRef Google scholar
[36]
Kumar A., Subrahmonium T. V. B., Sharma A. D., Thyagarajan K., Pal B. P., Goyal I. C.. Novel refractometer using a tapered optical fiber. Electronics Letters, 1984, 20(13): 534-535.
CrossRef Google scholar
[37]
Villiatoro J., Monzoon-Hernandez D., Talavera D.. High resolution refractive index sensing with cladded multimode tapered optical fiber. Electronics Letters, 2004, 40(2): 106-107.
CrossRef Google scholar
[38]
Wang P., Brambilla G., Ding M., Semenova Y., Wu Q., Farrell G.. High-sensitivity, evanescent field refractometric sensor based on a tapered, multimode fiber interference. Optics Letters, 2011, 36(12): 2233-2235.
CrossRef Google scholar
[39]
Polynkin P., Polynkin A., Peyghambarian N., Mansuripur M.. Evanescent field-based optical fiber sensing device for measuring the refractive index of liquids in microfluidic channels. Optics Letters, 2005, 30(11): 1273-1275.
CrossRef Google scholar
[40]
Arrue J., Jiménez F., Aldabaldetreku G., Durana G., Zubia J., Lomer M., . Analysis of the use of tapered graded-index polymer optical fibers for refractive-index sensors. Optics Express, 2008, 16(21): 16616-16631.
[41]
Leung A., Mohana Shankar P., Mutharasan R.. Model protein detection using antibody-immobilized tapered fiber optic biosensors (TFOBS) in a flow cell at 1310 nm and 1550 nm. Sensors and Actuators B: Chemical, 2008, 129(2): 716-725.
CrossRef Google scholar
[42]
Cohoon G., Boyter C., Errico M., Vandervoort K., Salik E.. Enhancing sensitivity of biconical tapered fiber sensors with multiple passes through the taper. Optical Engineering, 2010, 49(3): 034401-5.
CrossRef Google scholar
[43]
Rahman H. A., Harun S. W., Yasin M., Phang S. W., Damanhuri S. S. A., Arof H., . Tapered plastic multimode fiber sensor for salinity detection. Sensors and Actuators A: Physical, 2011, 171(2): 219-222.
CrossRef Google scholar
[44]
Beres C., Nazaré F. V. B., Souza N. C. C., Miguel M. A. L., Werneck M. M.. Tapered plastic optical fiber-based biosensor — tests and application. Biosensors and Bioelectronics, 2011, 30(1): 328-332.
[45]
Ding J. F., Zhang A. P., Shao L. Y., Yan J. H., He S.. Fiber-taper seeded long-period grating pair as a highly sensitive refractive-index sensor. IEEE Photonics Technology Letters, 2005, 17(6): 1247-1249.
CrossRef Google scholar
[46]
Allsop T., Floreani F., Jedrzejewski K. P., Marques P. V. S., Romero R., Webb D. J., . Spectral characteristics of tapered LPG device as a sensing element for refractive index and temperature. Journal of Lightwave Technology, 2006, 24(2): 870-878.
CrossRef Google scholar
[47]
Grobnic D., Mihailov S. J., Huimin D., Smelser C. W.. Bragg grating evanescent field sensor made in biconical tapered fiber with femtosecond IR radiation. IEEE Photonics Technology Letters, 2006, 18(1): 160-162.
CrossRef Google scholar
[48]
Liang W., Huang Y. Y., Xu Y., Reginald K. L., Amnon Y.. Highly sensitive fiber Bragg grating refractive index sensors. Applied Physics Letters, 2005, 86(15): 151122-1-151122-3.
CrossRef Google scholar
[49]
Fang X., Liao C. R., Wang D. N.. Femtosecond laser fabricated fiber Bragg grating in microfiber for refractive index sensing. Optics Letters, 2010, 35(7): 1007-1009.
CrossRef Google scholar
[50]
Zibaii M. I., Frazão O., Latifi H., Jorge P. A. S.. Controlling the sensitivity of refractive index measurement using a tapered fiber loop mirror. IEEE Photonics Technology Letters, 2011, 23(17): 1219-1221.
CrossRef Google scholar
[51]
Frazão O., Baptista J. M., Santos J. L.. Recent advances in high-birefringence fiber loop mirror sensors. Sensors, 2007, 7(11): 2970-2983.
CrossRef Google scholar
[52]
Moerner W. E.. New directions in single-molecule imaging and analysis. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104(31): 12596-12602.
CrossRef Google scholar
[53]
W. G. Cox and V. L. Singer, “Fluorescent DNA hybridization probe preparation using amine modification and reactive dye coupling,” Biotechniques, vol. 36, no. 1, pp.114–122, 2004.
[54]
James E. A., Schmeltzer K., Ligler F. S.. Detection of endotoxin using an evanescent wave fiber-optic biosensor. Applied Biochemistry and Biotechnology, 1996, 60(3): 189-202.
CrossRef Google scholar
[55]
Hale Z. M., Payne F. P., Marks R. S., Lowe C. R., Lowe C. R., Levine M. M.. The single mode tapered optical fiber loop immunosensor. Biosensors and Bioelectronics, 1996, 11(1–2): 137-148.
CrossRef Google scholar
[56]
Narang U., Anderson G. P., Ligler F. S., Burans J.. Fiber optic-based biosensor for ricin. Biosensors and Bioelectronics, 1997, 12(9–10): 937-945.
CrossRef Google scholar
[57]
Pilevar S., Davis C. C., Portugal F.. Tapered optical fiber sensor using near infrared fluorophores to assay hybridization. Analytical Chemistry, 1998, 70(10): 2031-2037.
CrossRef Google scholar
[58]
Haddock H. S., Shankar P. M., Mutharasan R.. Evanescent sensing of biomolecules and cells. Sensors Actuators B: Chemical, 2003, 88(1): 67-74.
CrossRef Google scholar
[59]
Ferreira A. P., Werneck M. M., Ribeiro R. M.. Development of an evanescent-field fiber optic sensor for Escherichia coli O157: H7. Biosensors and Bioelectronics, 2001, 16(6): 399-408.
CrossRef Google scholar
[60]
Rijal K., Leung A., Shankar P. M., Mutharasan R.. Detection of vathoizen Escherichia coli O157: H7 AT 70 cells/mL using antibody-immobilized biconical tapered fiber sensors. Biosensor and Bioelectronics, 2005, 21(6): 871-880.
CrossRef Google scholar
[61]
Maraldo D., Shankar P. M., Mutharasan R.. Measuring bacterial growth by tapered fiber and changes in evanescent field. Biosensors and Bioelectronics, 2006, 21(7): 1339-1344.
CrossRef Google scholar
[62]
Zibaii M. I., Kazemi A., Latifi H., Karimi Azar M., Hosseini S. M., Ghezelaiagh M. H.. Measuring bacterial growth by refractive index tapered fiber optic biosensor. Photochemistry and Photobiology B: Biology, 2010, 101(3): 313-320.
CrossRef Google scholar
[63]
Tazawa H., Kanie T., Katayama M.. Fiber-optic coupler based refractive index sensor and its application to biosensing. Applied Physics Letters, 2007, 91(11): 113901-1-113901-3.
CrossRef Google scholar
[64]
Leung A., Shankar P. M., Mutharasan R.. Real-time monitoring of bovine serum albumin at femtogram/mL levels on antibody immobilized tapered fibers. Sensors Actuators B: Chemical, 2007, 123(2): 888-895.
CrossRef Google scholar
[65]
Corres J. M., Matias I. R., Bravo J., Arregui F. J.. Tapered optical fiber biosensor for the detection of anti-gliadin antibodies. Sensors and Actuators B: Chemical, 2008, 135(1): 166-171.
CrossRef Google scholar
[66]
Zibaii M. I., Latifi H., Arabsorkhi M., Kazemi A., Gholami M., Karimi Azar M., . Biconical tapered optical fiber biosensor for real-time monitoring of bovine serum albumin at femtogram/mL levels on antibodyimmobilized tapered fibers. Proc. SPIE, 2010, 7653, 765322.
CrossRef Google scholar
[67]
Leung A., Shankar P. M., Mutharasan R.. Label-free detection of DNA hybridization using gold-coated tapered fiber optic biosensors (TFOBS) in a flow cell at 1310 nm and 1550 nm. Sensors and Actuators B: Chemical, 2008, 131(2): 640-645.
CrossRef Google scholar
[68]
Zibaii M. I., Taghipour Z., Saeedian Z., Latifi H., Gholami M., Hosseini S. M.. Kinetic study for the hybridization of 25-mer DNA by nonadiabatic tapered optical fiber sensor. Proc. SPIE-OSA-IEEE, 2011, 8311, 831109-1-831109-6.

8

Accesses

58

Citations

Detail

Sections
Recommended

/