Numerical investigation of a refractive index SPR D-type optical fiber sensor using COMSOL multiphysics

D. F. Santos, A. Guerreiro, J. M. Baptista

Photonic Sensors ›› 2012, Vol. 3 ›› Issue (1) : 61-66.

Photonic Sensors All Journals
Photonic Sensors ›› 2012, Vol. 3 ›› Issue (1) : 61-66. DOI: 10.1007/s13320-012-0080-5
Regular

Numerical investigation of a refractive index SPR D-type optical fiber sensor using COMSOL multiphysics

Author information +
History +

Abstract

Recently, many programs have been developed for simulation or analysis of the different parameters of light propagation in optical fibers, either for sensing or for communication purposes. In this paper, it is shown the COMSOL Multiphysics as a fairly robust and simple program, due to the existence of a graphical environment, to perform simulations with good accuracy. Results are compared with other simulation analysis, focusing on the surface plasmon resonance (SPR) phenomena for refractive index sensing in a D-type optical fiber, where the characteristics of the material layers, in terms of the type and thickness, and the residual fiber cladding thickness are optimized.

Keywords

Refractive index sensor / optical fiber sensor / surface plasmon resonance / light propagation simulation / COMSOL Multiphysics / graphical environment

Cite this article

Download citation ▾
D. F. Santos, A. Guerreiro, J. M. Baptista. Numerical investigation of a refractive index SPR D-type optical fiber sensor using COMSOL multiphysics. Photonic Sensors, 2012, 3(1): 61‒66 https://doi.org/10.1007/s13320-012-0080-5

References

[1]
Lee B., Roh S., Park J.. Current status of micro- and nano-structured optical fiber sensors. Optical Fiber Technology, 2009, 15(3): 209-221.
CrossRef Google scholar
[2]
Slavik R., Homola J., Ctyroký J., Brynda E.. Novel spectral fiber optic sensor based on surface plasmon resonance. Sensors and Actuators B: Chemical, 2001, 74(1–4): 106-111.
CrossRef Google scholar
[3]
Sharma A. K., Gupta B. D.. On the performance of different bimetallic combinations in surface plasmon resonance based fiber optic sensors. Journal of Applied Physics, 2007, 101(9): 093111-1-093111-6.
[4]
Anemogiannis E., Glytsis E. N., Gaylord T. K.. Transmission characteristics of long-period fiber gratings having arbitrary azimuthal/radial refractive index variations. Journal of Lightwave Technology, 2003, 21(1): 218-227.
CrossRef Google scholar
[5]
Al-Qazwini Y., Arasu P. T., Noor A. S. M.. Numerical investigation of the performance of an SPR-based optical fiber sensor in an aqueous environment using finite-difference time domain. Proc. 2011 2nd International Conference on Photonics, Oct. 17–19, 2011, 1, 1-4.
CrossRef Google scholar
[6]
Culshaw B., Muhammad F., Ewyk R. V., Stewart G., Murray S., Pinchbeck D., . Evanescent wave methane detection using optical fibers. Electronics Letters, 1992, 28(24): 2232-2234.
CrossRef Google scholar
[7]
Araújo F. M., Ferreira L. A., Santos J. L., Farahi F.. Temperature and strain insensitive bending measurements with D-type fiber Bragg gratings. Measurement Science and Technology, 2001, 12(7): 829-833.
CrossRef Google scholar
[8]
Chiu M. H., Wang S. F., Chang R. S.. D-type fiber biosensor based on surface-plasmon resonance technology and heterodyne interferometry. Optics Letters, 2005, 30(3): 233-235.
CrossRef Google scholar
[9]
Chen Y., Ming H.. Review of surface plasmon resonance and localized surface plasmon resonance sensor. Photonics Sensors, 2012, 2(1): 37-49.
CrossRef Google scholar
[10]
Fliziani M., Maradei F.. Edge element analysis of complex configurations in presence of shields. IEEE Transactions on Magnetics, 1997, 33(2): 1548-1551.
CrossRef Google scholar
[11]
Méndez A., Morse T. F.. Specialty Optical Fibers Handbook, 2007, San Diego, California: Academic Press, 39-40.
[12]
Chiu M. H., Shih C. H., Chi M. H.. Optimum sensitivity of single-mode D-type optical fiber sensor in the intensity measurement. Sensors and Actuators B: Chemical, 2007, 123(2): 1120-1124.
CrossRef Google scholar
[13]
Christensen D., Fowers D.. Modeling SPR sensors with the finite-difference time-domain method. Biosensors & Bioelectronics, 1996, 11(6): 677-684.
CrossRef Google scholar

7

Accesses

51

Citations

Detail

Sections
Recommended

/