Design of optical logic gates using self-collimated beams in 2D photonic crystal

X. Susan Christina, A. P. Kabilan

Photonic Sensors ›› 2011, Vol. 2 ›› Issue (2) : 173-179.

Photonic Sensors All Journals
Photonic Sensors ›› 2011, Vol. 2 ›› Issue (2) : 173-179. DOI: 10.1007/s13320-012-0054-7
Regular

Design of optical logic gates using self-collimated beams in 2D photonic crystal

Author information +
History +

Abstract

Optical logic gates are elementary components for optical network and optical computing. In this paper, we propose a structure for AND, NAND, XNOR and NOR logic gates in the two dimensional photonic crystal which utilizes the dispersion based self-collimation effect. The self-collimated beam is splitted by the line defect and interfered with other self-collimated beam. This interference may be constructive or destructive based on their phase difference. This phenomenon is employed to realize all-optical logic gates. The gates are demonstrated numerically by computing electromagnetic field distribution using the finite difference time domain (FDTD) method. The results ensure that this design can function as AND, NAND, XNOR and NOR logic gates. The size of the structure is about 10 μm × 10 μm which in turn results in an increase in the speed and all the gates are realized in the same configuration. The ON-OFF contrast ratio is about 6 dB.

Keywords

Optical computing / photonic crystal / band diagram / equifrequency contour / all-optical logic gates

Cite this article

Download citation ▾
X. Susan Christina, A. P. Kabilan. Design of optical logic gates using self-collimated beams in 2D photonic crystal. Photonic Sensors, 2011, 2(2): 173‒179 https://doi.org/10.1007/s13320-012-0054-7

References

[1]
Yamamoto T., Yoshida E., Nakazawa M.. Ultrafast nonlinear optical loop mirror for demultiplexing 640 Gbit/s TDM signals. Electronics Letters, 1998, 34(10): 1013-1014.
CrossRef Google scholar
[2]
Fjelde T., Kloch A., Wolfson D., Dagens B., Coquelin A., Guillemot I., Gaborit F., Poingt F., Renaud M.. Novel scheme for simple label-swapping employing XOR logic in integrated interferometric wavelength converter. IEEE Photonics Technology Letters, 2001, 13(7): 750-752.
CrossRef Google scholar
[3]
Wang J. P., Robinson B. S., Hamilton S. A., Ippen E. P.. Demonstration of 40 Gb/s packet routing using all optical header processing. IEEE Photonics Technology Letters, 2006, 18(21): 2275-2277.
CrossRef Google scholar
[4]
Menezes J. W. M., Fraga W. B., Ferreira A. C., Saboia K. D. A., Filho A. F. G. F., Guimarães G. F., Sousa J. R. R., Rocha H. H. B., Sombra A. S. B.. Logic gates based in two and three-modes nonlinear optical fiber couplers. Optical and Quantum Electronics, 2007, 39(14): 1191-1206.
CrossRef Google scholar
[5]
Bogoni A., Poti L., Proietti R., Meloni G., Ponzini F., Ghelfi P.. Regenerative and reconfigurable all-optical logic gates for ultra-fast applications. Electronics Letters, 2005, 41(7): 435-436.
CrossRef Google scholar
[6]
Ahn K. H., Cao X. D., Liang Y., Barnett B. C., Chaikamnerd S., Islam M. N.. Cascadability and functionality of all-optical low-birefringent non-linear optical loop mirror: experimental demonstration. Journal of Optical Society of America B, 1997, 14(5): 1228-1236.
CrossRef Google scholar
[7]
Choi K. S., Byun Y. T., Lee S., Jhon Y. M.. All-optical OR/NOR bi-functional logic gate by using cross-gain modulation in semiconductor optical amplifiers. Journal of the Korean Physical Society, 2010, 56(4): 1093-1096.
CrossRef Google scholar
[8]
Kim J. H., Jhon Y. M., Byun Y. T., Lee S., Woo D. H., Kim S. H.. All-optical XOR gate using semiconductor optical amplifiers without additional input beam. IEEE Photonics Technology Letters, 2002, 14(10): 1436-1438.
CrossRef Google scholar
[9]
Li Z. H., Li G. F.. Ultrahigh speed reconfigurable logic gates based on four-wave mixing in a semiconductor optical amplifier. IEEE Photonics Technology Letters, 2006, 18(12): 1341-1343.
CrossRef Google scholar
[10]
Dorren H. J. S., Yang X. L., Mishra A. K., Li Z. G., Ju H., Waardt H., Khoe G. D., Simoyama T., Ishikawa H., Kawashima H., Hasama T.. All-optical logic based on ultrafast gain and index dynamics in a semiconductor optical amplifier. IEEE Journal of Selected Topics in Quantum Electronics, 2004, 10(5): 1079-1092.
CrossRef Google scholar
[11]
Stubkjaer K. E.. Semiconductor optical amplifier-based all-optical gates for high-speed optical processing. IEEE Journal of Selected Topics in Quantum Electronics, 2000, 6(6): 1428-1435.
CrossRef Google scholar
[12]
Yabu T., Geshiro M., Kitamura T., Nishida K., Sawa S.. All-optical logic gates containing a two-mode nonlinear waveguide. IEEE Journal of Quantum Electronics, 2002, 38(1): 37-46.
CrossRef Google scholar
[13]
Wu Y. D.. All-optical logic gates by using multibranch waveguide structure with localized optical nonlinearity. IEEE Journal of Selected Topics in Quantum Electronics, 2005, 11(2): 307-312.
CrossRef Google scholar
[14]
Wu Y. D., Shih T. T., Chen M. H.. New all-optical logic gates based on the local nonlinear Mach-Zehnder interferometer. Optics Express, 2008, 16(1): 248-257.
CrossRef Google scholar
[15]
Lee K. Y., Yang Y. C., Lin Y. J., Lee W. Y., Lee C. C., Wong S. H.. The designs of 4×2 encoder based on photonic crystals. Proc. SPIE (Proceedings of OSA-IEEE Asia Communications and Photonics), 2009, 7630, 76300I-1-76300I-7.
[16]
Cuesta-Soto F., Martínez A., García J., Ramos F., Sanchis P., Blasco J., Martí J.. All-optical switching structure based on a photonic crystal directional coupler. Optics Express, 2004, 12(1): 161-167.
CrossRef Google scholar
[17]
Notomi M., Tanabe T., Shinya A., Kuramochi E., Taniyama H., Mitsugi S., Morita M.. Nonlinear and adiabatic control of high-Q photonic crystal nanocavities. Optics Express, 2007, 15(26): 17458-17481.
CrossRef Google scholar
[18]
Andalib P., Granpayeh N.. All-optical ultra compact photonic crystal AND gate based on nonlinear ring resonators. Journal of Optical Society of America B, 2009, 26(1): 10-16.
CrossRef Google scholar
[19]
Kim H. S., Lee T. K., Oh G. Y., Kim D. G., Choi Y. W.. Analysis of all optical logic gate based on photonic crystals multimode interference. Proc. SPIE, 2010, 7606, 76061F-1.
CrossRef Google scholar
[20]
Christina X. S., Kabilan A. P., Caroline P. E.. Ultra compact all optical logic gates using photonic band-gap materials. Journal of Nanoelectronics and Optoelectronics, 2010, 5(3): 397-401.
CrossRef Google scholar
[21]
Kosaka H., Kawashima T., Tomita A., Notomi M., Tamamura T., Sato T., Kawakami S.. Self-collimating phenomena in photonic crystals. Applied Physics Letters, 1999, 74(9): 1212-1214.
CrossRef Google scholar
[22]
Zhao D. Y., Zhang J., Yao P. J., Jiang X. Y.. Photonic crystal Mach-Zehnder interferometer based on self-collimation. Applied Physics Letters, 2007, 90(23): 231114-1-231114-3.

5

Accesses

31

Citations

Detail

Sections
Recommended

/