Review of surface plasmon resonance and localized surface plasmon resonance sensor

Yong Chen, Hai Ming

Photonic Sensors ›› 2011, Vol. 2 ›› Issue (1) : 37-49.

Photonic Sensors All Journals
Photonic Sensors ›› 2011, Vol. 2 ›› Issue (1) : 37-49. DOI: 10.1007/s13320-011-0051-2
Review

Review of surface plasmon resonance and localized surface plasmon resonance sensor

Author information +
History +

Abstract

An overview of recent researches of surface plasmon resonance (SPR) sensing technology in Laboratory of Science and Technology of Micro-Nano Optics (LMNO), University of Science and Technology of China, is presented. Some novel SPR sensors, such as sensors based on metallic grating, metal-insulator-metal (MIM) nanoring and optical fiber, are designed or fabricated and tested. The sensor based on localized surface plasmon resonance (LSPR) of metallic nanoparticles is also be summarized. Because of the coupling of propagating surface plasmons and localized surface plasmons, the localized electromagnetic field is extremely enhanced, which is applied to surface-enhanced Raman scattering (SERS) and fluorenscence enhancement. Future prospects of SPR and/or LSPR sensing developments and applications are also discussed.

Keywords

Surface plasmons resonance / localized surface plasmon resonance / sensor / electromagnetic-field enhancement / high sensitivity

Cite this article

Download citation ▾
Yong Chen, Hai Ming. Review of surface plasmon resonance and localized surface plasmon resonance sensor. Photonic Sensors, 2011, 2(1): 37‒49 https://doi.org/10.1007/s13320-011-0051-2

References

[1]
Liedberg B., Nylander C., Lunstrom I.. Surface plasmon resonance for gas detection and biosensing. Sensors and Actuators, 1983, 4(2): 299-304.
CrossRef Google scholar
[2]
Jorgenson R. C., Yee S. S.. A fiber-optic chemical sensor based on surface plasmon resonance. Sensors and Actuators B: Chemical, 1993, 12(3): 213-220.
CrossRef Google scholar
[3]
Huber A., Demartis S., Neri D.. The use of biosensor technology for the engineering of antibodies and enzymes. Journal of Molecular Recognition, 1999, 12(3): 198-216.
CrossRef Google scholar
[4]
Weiss M. N., Srivastava R., Groger H., Lo P., Luo S. F.. A theoretical investigation of environmental monitoring using surface plasmon resonance waveguide sensors. Sensors and Actuators A: Physical, 1995, 51(2–3): 211-217.
CrossRef Google scholar
[5]
Shankaran D. R., Gobi K. V., Miura N.. Recent advancements in surface plasmon resonance immunosensors for detection of small molecules of biomedical, food and environmental interest. Sensors and Actuators B: Chemical, 2007, 121(1): 158-177.
CrossRef Google scholar
[6]
Maier S. A.. Plasmonics: Fundamentals and Applications, 2007, New York: Springer-Verlag, 21-34.
[7]
Matsubara K., Kawata S., Minami S.. Optical chemical sensor based on surface plasmon measurement. Applied Optics, 1988, 27(6): 1160-1163.
CrossRef Google scholar
[8]
Otto A.. Excitation of nonradiative surface plasma waves in silver by the method of frustrated total reflection. Zeitschrift für Physik A Hadrons and Nuclei, 1968, 216(4): 398-410.
[9]
Harris R. D., Wilkinson J. S.. Waveguide surface plasmon resonance sensors. Sensors and Actuators B: Chemical, 1995, 29(1–3): 261-267.
CrossRef Google scholar
[10]
Ritchie R. H., Arakawa E. T., Cowan J. J., Hamm R. N.. Surface-plasmon resonance effect in grating diffraction. Phys. Rev. Lett., 1968, 21(22): 1530-1533.
CrossRef Google scholar
[11]
Webb D. J.. Research activities arising from the University of Kent. Photonic Sensors, 2011, 1(2): 140-151.
CrossRef Google scholar
[12]
Chen C. Y., Burstein E.. Giant Raman scattering by molecules at metal-island films. Phys. Rev. Lett., 1980, 45(15): 1287-1291.
CrossRef Google scholar
[13]
Sokolov K., Chumanov G., Cotton T. M.. Enhancement of molecular fluorescence near the surface of colloidal metal films. Anal. Chem., 1998, 70(18): 3898-3905.
CrossRef Google scholar
[14]
Zeng J., Liang D., Cao Z. X.. Applications of optical fiber SPR sensor for measuring of temperature and concentration of liquids. Proc. SPIE, 2005, 5855, 667-670.
CrossRef Google scholar
[15]
Karlsson R., Fält A.. Experimental design for kinetic analysis of protein-protein interactions with surface plasmon resonance biosensors. Journal of Immunological Methods, 1998, 200(1–3): 121-133.
[16]
Lin K. Q., Lu Y. H., Chen J. X., Zheng R. S., Wang P., Ming H.. Surface plasmon resonance hydrogen sensor based on metallic grating with high sensitivity. Optics Express, 2008, 16(23): 18599-18604.
CrossRef Google scholar
[17]
Wang X. L., Wang P., Chen C. C., Chen J. X., Lu Y. H., Ming H., Zhan Q. W.. Plasmonic racetrack resonator with high extinction ratio under critical coupling condition. Journal of Applied Physics, 2010, 107(12): 124517-1-124517-4.
[18]
Cai D. B., Lu Y. H., Lin K. Q., Wang P., Ming H.. Improving the sensitivity of SPR sensors based on gratings by double-dips method (DDM). Optics Express, 2008, 16(19): 14597-14602.
CrossRef Google scholar
[19]
Sherry L. J., Chang S. H., Schatz G. C., Van Duyne R. P., Wiley B. J., Xia Y.. Localized surface plasmon resonance spectroscopy of single silver nanocubes. Nano. Lett., 2005, 5(10): 2034-2038.
CrossRef Google scholar
[20]
Lin K. Q., Lu Y. H., Luo Z. F., Zheng R. S., Wang P., Ming H.. Numerical and experimental investigation of temperature effects on the surface plasmon resonance sensor. Chinese Optics Letter, 2009, 7(5): 428-431.
CrossRef Google scholar
[21]
Chen Y., Zheng R. S., Zhang D. G., Lu Y. H., Wang P., Ming H., Luo Z. F., Kan Q.. Bimetallic chip for a surface plasmon resonance sensing instrument. Applied Optics, 2011, 50(3): 387-391.
CrossRef Google scholar
[22]
Chen Y., Zheng R. S., Lu Y. H., Wang P., Ming H.. Fiber-optic surface plasmon resonant sensor with low-index anti-oxidation coating. Chinese Optics Letter, 2011, 9(10): 100605-100608.
CrossRef Google scholar
[23]
Yan J., Lu Y. H., Wang P., Gu C., Zheng R. S., Chen Y., Ming H., Zhan Q. W.. Improving the sensitivity of fiber-optic SPR sensor via radially polarized beam excitation. Chinese Optics Letter, 2009, 7(10): 909-911.
CrossRef Google scholar
[24]
Lin K. Q., Wei L. M., Zhang D. G., Zheng R. S., Wang P., Lu Y. H., Ming H.. Temperature effects on prism-based surface plasmon resonance sensor. Chinese Physics Letters, 2007, 24(11): 3081-3084.
CrossRef Google scholar
[25]
Zynio S. A., Samoylov A. V., Surovtseva E. R., Mirsky V. M., Shirshov Y. M.. Bimetallic layers increase sensitivity of affinity sensors based on surface plasmon resonance. Sensors, 2002, 2(2): 62-70.
CrossRef Google scholar
[26]
Yuan X. C., Ong B. H., Tan Y. G., Irawan R., Tjin S. C.. Sensitivity stability optimized surface plasmon resonance sensing with double metal layers. J. Opt. A: Pure Appl. Opt., 2006, 8(11): 959-963.
CrossRef Google scholar
[27]
Tan Y. Y., Yuan X. C., Ong B. H., Bu J., Lin Q. Y.. Two layered metallic film induced surface plasmons for enhanced optical propulsion of microparticles. Applied Physics Letter, 2007, 91(14): 141108-1-141108-3.
CrossRef Google scholar
[28]
Wang S., Zhang H. Y., Wang L., Duan Z. J., Kennedy I.. Analysis of sulphonamide residues in edible animal products: a review. Food Additives and Contaminants, 2006, 23(4): 362-384.
CrossRef Google scholar
[29]
Zhou H. M., Ou H. C., Jiang H., Jiang H. F., Wang X. P., Luo Z. F.. Surface plasmon resonance for rapid determination of sulfamethoxazole in milk. Food Science, 2010, 31(6): 168-171.
[30]
Sharma A. K., Jha R., Gupta B. D.. Fiber-optic sensors based on surface plasmon resonance: a comprehensive review. IEEE Sensors Journal, 2007, 7(8): 1118-1129.
CrossRef Google scholar
[31]
Habel W. R., Krebber K.. Fiber-optic sensor applications in civil and geotechnical engineering. Photonic Sensors, 2011, 1(3): 268-280.
CrossRef Google scholar
[32]
Xie Z. G., Tao J., Lu Y. H., Lin K. Q., Yan J., Wang P., Ming H.. Polymer optical fiber SERS sensor with gold nanorods. Opt. Commun., 2009, 282(3): 439-442.
CrossRef Google scholar
[33]
Xie Z. G., Lu Y. H., Wei H., Yan J., Wang P., Ming H.. Broad spectral photonic crystal fiber surface enhanced Raman scattering probe. Applied Physics B, 2009, 95(4): 751-755.
CrossRef Google scholar
[34]
Xie Z. G., Wang P., Lu Y. H., Lin K. Q., Yan J., Ming H.. Photonic crystal fiber SERS sensors based on silver nanoparticle colloid. Chinese Physics Letters, 2008, 25(12): 4473-4475.
CrossRef Google scholar
[35]
Wen X. L., Yi M. F., Zhang D. G., Wang P., Lu Y. H., Ming H.. Tunable plasmonic coupling between silver nano-cubes and silver nano-hole arrays. Nanotechnology, 2011, 22(8): 085203.
CrossRef Google scholar
[36]
Yi M. F., Zhang D. G., Wang P., Jiao X. J., Blair S., Wen X. L., Fu Q., Lu Y. H., Ming H.. Plasmonic interaction between silver nano-cubes and a silver ground plane studied by surface-enhanced Raman scattering. Plasmonics, 2011, 6(3): 515-519.
CrossRef Google scholar
[37]
Yi M. F., Zhang D. G., Wen X. L., Fu Q., Wang P., Lu Y. H., Ming H.. Fluorescence enhancement caused by plasmonics coupling between silver nano-cubes and silver film. Plasmonics, 2011, 6(12): 213-217.
CrossRef Google scholar
[38]
Sau T. K., Murphy C. J.. Seeded high yield synthesis of short au nanorods in aqueous solution. Langmuir, 2004, 20(15): 6414-6420.
CrossRef Google scholar
[39]
Jimenez F., Arrue J., Aldabaldetreku G., Durana G., Zubia J., Ziemann O., Bunge C. A.. Analysis ofa plastic optical fiber-based displacement sensor. Applied Optics, 2007, 46(25): 6256-6262.
CrossRef Google scholar
[40]
Tay C. M., Tan K. M., Tjin S. C., Chan C. C., Rahardjo H.. Humidity sensing using plastic optical fibers. Microwave and Optical Technology Letters, 2004, 43(5): 387-390.
CrossRef Google scholar
[41]
Baldini F., Bechi P., Bracci S., Cosi F., Pucciani F.. In vivo optical-fiber pH sensor for gastro-oesophageal measurements. Sensors and Actuators B: Chemical, 1995, 29(1–3): 164-168.
CrossRef Google scholar
[42]
Merchant D. F., Scully P. J., Schmitt N. F.. Chemical tapering of polymer optical fiber. Sensors and Actuators A: Physical, 1999, 76(1–3): 365-371.
CrossRef Google scholar
[43]
Polwart E., Keir R. L., Davidson C. M., Smith W. E., Sadler D. A.. Novel SERS-active optical fibers prepared by the immobilization of silver colloidal particles. Applied Spectroscopy, 2000, 54(4): 522-527.
CrossRef Google scholar
[44]
Jain P. K., El-Sayed M. A.. Plasmonic coupling in noble metal nanostructures. Chem. Phys. Lett., 2010, 487(4–6): 153-164.
CrossRef Google scholar
[45]
Chen H. J., Sun Z. H., Ni W. H., Woo K. C., Lin H. Q., Sun L. D., Yan C. H., Wang J. F.. Plasmon coupling in clusters composed of two-dimensionally ordered gold nanocubes. Small, 2009, 5(18): 2111-2119.
CrossRef Google scholar
[46]
Masuda H., Fukuda K.. Ordered metal nanohole arrays made by a two-step replication of honeycomb structures of anodic alumina. Science, 1995, 268(5216): 1466-1468.
CrossRef Google scholar
[47]
Skrabalak S. E., Au L., Li X., Xia Y.. Facile synthesis of Ag nanocubes and Au nanocages. Nat. Protocols, 2007, 2(9): 2182-2190.
CrossRef Google scholar
[48]
Siekkinen A. R., McLellan J. M., Chen J., Xia Y.. Rapid synthesis of small silver nanocubes by mediating polyol reduction with a trace amount of sodium sulfide or sodium hydrosulfide. Chem. Phys. Lett., 2006, 432(4–6): 491-496.
CrossRef Google scholar
[49]
Van Duyne R. P., Hulteen J. C., Treichel D. A.. Atomic force microscopy and surface-enhanced Raman spectroscopy. I. Ag island films and Ag film over polymer nanosphere surfaces supported on glass. J. Chem. Phys., 1993, 99(3): 2101-2115.
CrossRef Google scholar

6

Accesses

235

Citations

3

Altmetric

Detail

Sections
Recommended

/