The emerging application of ultrasound technology in pediatric bone fractures: Clinical application, related issues and development prospect
Xiang Li, Xing Liu, Mingyan Shi, Man Zhang, Peikang Wang, Xinkai Zhang
The emerging application of ultrasound technology in pediatric bone fractures: Clinical application, related issues and development prospect
Ultrasonography has begun to be applied to the examination of fractures in recent years owing to its safety, noninvasiveness, portability, and high sensitivity. The subcutaneous soft tissue of children is thinner than that of adults, children's bones have a high level of elasticity and a low level of brittleness, and the pediatric fractures heal quickly and produce more callus, therefore ultrasonography is a more suitable examination in pediatric bone fractures. In this paper, we intend to review the mechanism, performance, and examination effect of ultrasound examination in bone fractures, analyze the advantages and disadvantages between ultrasound imaging and X-ray imaging, and further propose an outlook for the application of ultrasound technology in pediatric bone fractures.
callus / fracture healing / pediatric fracture / ultrasonography
[1] |
Herren C, Sobottke R, Ringe M, et al. Ultrasound-guided diagnosis of fractures of the distal forearm in children. Orthop Traumatol Surg Res. 2015;101(4):501-505.
|
[2] |
Sesia SB, Prufer F, Mayr J. Sternal fracture in children: diagnosis by ultrasonography. Eur J Pediatr Surg Rep. 2017;5(1):e39-e42.
|
[3] |
Sujitkumar P, Hadfield JM, Yates DW. Sprain or fracture? An analysis of 2000 ankle injuries. Arch Emerg Med. 1986;3(2):101-106.
|
[4] |
Wang CL, Shieh JY, Wang TG, Hsieh FJ. Sonographic detection of occult fractures in the foot and ankle. J Clin Ultrasound. 1999;27(8):421-425.
|
[5] |
Jia G, Sun J. Application of ultrasound in the management of TRASH (the radiographic appearance seemed harmless) fractures in preschool children: a review. Medicine. 2023;102(34):e34855.
|
[6] |
Epema AC, Spanjer MJB, Kelder JC, Sanders M. Point-of-care ultrasound compared with conventional radiographic evaluation in children with suspected distal forearm fractures in The Netherlands: a diagnostic accuracy study. Emerg Med J. 2019;36(10):613-616.
|
[7] |
Zhang Y, Chen Y, Huang H, et al. Diagnostic radiography exposure increases the risk for thyroid microcarcinoma: a population-based case-control study. Eur J Cancer Prev. 2015;24(5):439-446.
|
[8] |
Iacob R, Stoicescu ER, Cerbu S, et al. Could ultrasound be used as a triage tool in diagnosing fractures in children? A literature review. Healthcare. 2022;10(5):823.
|
[9] |
Moritz JD. Sonographic fracture diagnosis in children and adolescents. Röfo. 2023;195(9):790-796.
|
[10] |
Durston W, Swartzentruber R. Ultrasound guided reduction of pediatric forearm fractures in the ED. Am J Emerg Med. 2000;18(1):72-77.
|
[11] |
Hubner U, Schlicht W, Outzen S, Barthel M, Halsband H. Ultrasound in the diagnosis of fractures in children. J Bone Joint Surg Br. 2000;82(8):1170-1173.
|
[12] |
Shulan JM, Vydro L, Schneider AB, Mihailescu DV. Role of biomarkers in predicting the occurrence of thyroid neoplasms in radiation-exposed children. Endocr Relat Cancer. 2018;25(4):481-491.
|
[13] |
Williamson D, Watura R, Cobby M. Ultrasound imaging of forearm fractures in children: a viable alternative?J Accid Emerg Med. 2000;17(1):22-24.
|
[14] |
Patel DS, Statuta SM, Ahmed N. Common fractures of the radius and ulna. Am Fam Physician. 2021;103(6):345-354.
|
[15] |
Gheduzzi S, Dodd SP, Miles AW, Humphrey VF, Cunningham JL. Numerical and experimental simulation of the effect of long bone fracture healing stages on ultrasound transmission across an idealized fracture. J Acoust Soc Am. 2009;126(2):887-894.
|
[16] |
Guo X, Yang D, Zhang D, Li W, Qiu Y, Wu J. Quantitative evaluation of fracture healing process of long bones using guided ultrasound waves: a computational feasibility study. J Acoust Soc Am. 2009;125(5):2834-2837.
|
[17] |
Liu Y, Wei X, Kuang Y, et al. Ultrasound treatment for accelerating fracture healing of the distal radius. A control study. Acta Cir Bras. 2014;29(11):765-770.
|
[18] |
Ackermann O, Simanowski J, Eckert K. Fracture ultrasound of the extremities. Ultraschall der Med. 2020;41(1):12-28.
|
[19] |
Cheng S, Tylavsky F, Carbone L. Utility of ultrasound to assess risk of fracture. J Am Geriatr Soc. 1997;45(11):1382-1394.
|
[20] |
Ghavami S, Gregory A, Webb J, et al. Ultrasound radiation force for the assessment of bone fracture healing in children: an in vivo pilot study. Sensors. 2019;19(4):955.
|
[21] |
Bhavsar MB, Moll J, Barker JH. Bone fracture sensing using ultrasound pitch-catch measurements: a proof-of-principle study. Ultrasound Med Biol. 2020;46(3):855-860.
|
[22] |
Robb JE, Annan IH, Macnicol MF. Guidewire damage during cannulated screw fixation for slipped capital femoral epiphysis. J Pediatr Orthop B. 2003;12(3):219-221.
|
[23] |
Price CT, Scott DS, Kurzner ME, Flynn JC. Malunited forearm fractures in children. J Pediatr Orthop. 1990;10(6):705-712.
|
[24] |
Kotlarsky P, Feldman O, Shavit I, Eidelman M. The use of real-time sonography-assisted fracture reduction in children with displaced forearm fractures. J Pediatr Orthop B. 2022;31(3):303-309.
|
[25] |
Zhou H, Zhang G, Li M, et al. Ultrasonography-guided closed reduction in the treatment of displaced transphyseal fracture of the distal humerus. J Orthop Surg Res. 2020;15(1):575.
|
[26] |
Shen S, Wang X, Fu Z. Value of ultrasound-guided closed reduction and minimally invasive fixation in the treatment of metacarpal fractures. J Ultrasound Med. 2019;38(10):2659-2666.
|
[27] |
Auten JD, Hurst ND, Kanegaye JT. Correspondence: comparison of pediatric post-reduction fluoroscopic- and ultrasound forearm fracture images. Am J Emerg Med. 2020;38(2):395-396.
|
[28] |
Tsou PY, Ma YK, Wang YH, Gillon JT, Rafael J, Deanehan JK. Diagnostic accuracy of ultrasound for upper extremity fractures in children: a systematic review and meta-analysis. Am J Emerg Med. 2021;44:383-394.
|
[29] |
Snelling PJ, Jones P, Gillespie A, Bade D, Keijzers G, Ware RS. Point-of-care ultrasound fracture-physis distance association with Salter-Harris II fractures of the distal radius in children: the "POCUS 1-cm Rule". Ultrasound Med Biol. 2023;49(2):520-526.
|
[30] |
Sik N, Öztürk A, Koşay MC, Yılmaz D, Duman M. Accuracy of point-of-care ultrasound for determining the adequacy of pediatric forearm fracture reductions. Am J Emerg Med. 2021;48:243-248.
|
[31] |
Scheier E, Balla U. Ultrasound-guided distal forearm fracture reduction by pediatric emergency physicians: a single center retrospective study. Pediatr Emerg Care. 2022;38(2):e756-e760.
|
[32] |
Li J, Wu J, Zhang Y, et al. Elastic stable intramedullary nailing for pediatric humeral shaft fractures under ultrasonographic guidance: a retrospective study. Front Pediatr. 2021;9:806100.
|
[33] |
Jia S, Wang J, Yu B, Xu C, Li K. Ultrasound assistance in treatment with elastic stable intramedullary nail fixation in radial and ulnar fractures in children. Int Orthop. 2023;47(3):773-779.
|
[34] |
Yuan S, et al. [Ultrasound-guided closed reduction and Kirschner wires internal fixation for the treatment of Kilfoyle II and III medial condylar fracture of humerus in children]. Zhongguo Gu Shang. 2021;34(5):437-441. (in Chinese revision)
|
[35] |
Xu WB, et al. [Ultrasound-guided reduction and percutaneous crossed pin fixation for the treatment of displaced supracondylar fracture of the humerus in children]. Zhongguo Gu Shang. 2020;33(10):907-911. (in Chinese revision)
|
[36] |
Fan Y, Liu Q, Yu X, Zhang J, Wang W, Liu C. Ultrasound, a new adjuvant method for treating acute Monteggia fracture in children. J Orthop Surg Res. 2023;18(1):595.
|
[37] |
Bao YF, Xu WB, Zhuang W. [Feasibility study of protecting ulnar nerve by ultrasound in treating children with supracondylar fracture of humerus by closed reduction and intercross needle fixation]. Zhongguo Gu Shang. 2022;35(9):863-868.
|
[38] |
Mori T, Nomura O, Ihara T. Ultrasound-guided peripheral forearm nerve block for digit fractures in a pediatric emergency department. Am J Emerg Med. 2019;37(3):489-493.
|
[39] |
Tokutake K, Okui N, Hirata H. Primary radial nerve exploration determined by ultrasound in pediatric supracondylar humerus fracture: a report of two cases. J Hand Surg Asian Pac. 2021;26(2):284-289.
|
[40] |
Jiaqi W, Hui L, Yanzhou W, Long L, Tianyou L. Radial nerve trapped posterior to the proximal fracture end after closed reduction of supracondylar humerus fracture in children: a case report. Int J Surg Case Rep. 2022;99:107628.
|
[41] |
Gao H, Yin S, Su Y. Assessment of ulnar nerve stability at the elbow by ultrasonography in children. J Shoulder Elb Surg. 2023;32(6):1249-1253.
|
[42] |
Averill LW, Kraft DB, Sabado JJ, Atanda A, Long SS, Nazarian LN. Ultrasonography of the pediatric elbow. Pediatr Radiol. 2023;53(8):1526-1538.
|
[43] |
Boutis K, Grootendorst P, Willan A, et al. Effect of the Low Risk Ankle Rule on the frequency of radiography in children with ankle injuries. CMAJ (Can Med Assoc J). 2013;185(15):E731-E738.
|
[44] |
Veera Kumaran R, Krishna Kumar S. A comparative study of ultrasound and x-ray in detection, of fracture callus in tibial shaft fractures, treated by unreamed interlocking nailing. Int J Res Orthop. 2019;5(3):1-5.
|
[45] |
Wawrzyk M, Sokal J, Andrzejewska E, Przewratil P. The role of ultrasound imaging of callus formation in the treatment of long bone fractures in children. Pol J Radiol. 2015;80:473-478.
|
[46] |
Nilsson A. Artefacts in sonography and Doppler. Eur Radiol. 2001;11(8):1308-1315.
|
[47] |
Mauldin FW, Owen K, Hossack JA. Mitigation of off-axis specular reflection artifacts in diagnostic bone imaging with medical ultrasound using mechanically scanned piston transducers, 2011 IEEE International Ultrasonics Symposium, Orlando, USA, IEEE; 2011:385-388.
CrossRef
Google scholar
|
[48] |
Bianchi S, Zwass A, Abdelwahab IF, Ricci G, Rettagliata F, Olivieri M. Sonographic evaluation of lipohemarthrosis: clinical and in vitro study. J Ultrasound Med. 1995;14(4):279-282.
|
[49] |
Bonnefoy O, Diris B, Moinard M, Aunoble S, Diard F, Hauger O. Acute knee trauma: role of ultrasound. Eur Radiol. 2006;16(11):2542-2548.
|
[50] |
Costa DN, Cavalcanti CF, Sernik RA. Sonographic and CT findings in lipohemarthrosis. AJR Am J Roentgenol. 2007;188(4):W389.
|
[51] |
Yabe M, Suzuki M, Hiraoka N, Nakada K, Tsuda T. A case of intra-articular fracture of the knee joint with three layers within lipohemarthrosis by ultrasonography and computed tomography. Radiat Med. 2000;18(5):319-321.
|
[52] |
Snelling PJ, Keijzers G, Byrnes J, et al. Bedside ultrasound conducted in kids with distal upper limb fractures in the emergency department (BUCKLED): a protocol for an open-label non-inferiority diagnostic randomised controlled trial. Trials. 2021;22(1):282.
|
[53] |
Snelling PJ, Jones P, Keijzers G, Bade D, Herd DW, Ware RS. Nurse practitioner administered point-of-care ultrasound compared with X-ray for children with clinically non-angulated distal forearm fractures in the ED: a diagnostic study. Emerg Med J. 2021;38(2):139-145.
|
[54] |
Scheier E, Shir Y, Balla U. The child with a painful arm: a POCUS screening protocol to identify fracture in children with upper extremity injury. J Emerg Med. 2021;60(2):202-209.
|
[55] |
Navaratnam R, Davis T. The role of ultrasound in the diagnosis of pediatric nasal fractures. J Craniofac Surg. 2019;30(7):2099-2101.
|
[56] |
Jones S, Colaco K, Fischer J, Stimec J, Kwan C, Boutis K. Accuracy of point-of-care ultrasonography for pediatric ankle sprain injuries. Pediatr Emerg Care. 2018;34(12):842-847.
|
[57] |
Zhang J, Boora N, Melendez S, Rakkunedeth Hareendranathan A, Jaremko J. Diagnostic accuracy of 3D ultrasound and artificial intelligence for detection of pediatric wrist injuries. Children. 2021;8(6):431.
|
[58] |
du Toit C, Orlando N, Papernick S, Dima R, Gyacskov I, Fenster A. Automatic femoral articular cartilage segmentation using deep learning in three-dimensional ultrasound images of the knee. Osteoarthr Cartil Open. 2022;4(3):100290.
|
[59] |
du Toit C, Dima R, Papernick S, et al. Three-dimensional ultrasound to investigate synovitis in first carpometacarpal osteoarthritis: a feasibility study. Med Phys. 2023.
|
/
〈 | 〉 |