Exploring contractile protein mechanisms and target medications for cardiomyopathic patients with diastolic dysfunction

Dustin Gerber, Junjun Quan, Bo Pan, Xupei Huang, Jie Tian

PDF
Pediatric Discovery ›› 2024, Vol. 2 ›› Issue (1) : e60. DOI: 10.1002/pdi3.60
REVIEW

Exploring contractile protein mechanisms and target medications for cardiomyopathic patients with diastolic dysfunction

Author information +
History +

Abstract

Genetic defects have been increasingly found in cardiomyopathies, which are often present with mutations in cardiac contractile proteins. These congenital defects involve numerous intracellular pathways and share several critical clinical features, such as systolic or diastolic dysfunction fostering the various cardiomyopathic phenotypes. Hypertrophic cardiomyopathy and restrictive cardiomyopathy (RCM) share a common pathological feature, that is, diastolic dysfunction. Studies have shown that mutations of contractile proteins, especially myosin heavy chain and troponin, are tightly associated with diastolic dysfunction in patients with Cardiomyopathies (CMs), including pediatric patients with CM. Therapeutics, including green tea extract (epigallocatechin gallate) and mavacamten, interact directly with these contractile proteins and have shown promising results. This article will review recent and contemporary research on diastolic dysfunction in CMs, especially hypertrophic cardiomyopathy and RCM, which include their target proteins, mechanisms, clinical diagnosis, and potential therapies.

Keywords

cardiomyopathy / diastolic dysfunction / EGCG / green tea extract / mavacamten

Cite this article

Download citation ▾
Dustin Gerber, Junjun Quan, Bo Pan, Xupei Huang, Jie Tian. Exploring contractile protein mechanisms and target medications for cardiomyopathic patients with diastolic dysfunction. Pediatric Discovery, 2024, 2(1): e60 https://doi.org/10.1002/pdi3.60

References

[1]
Cahill TJ, Ashrafian H, Watkins H. Genetic cardiomyopathies causing heart failure. Circ Res. 2013;113(6):660-675.
[2]
Mandinov L, Eberli FR, Seilei C, Hess OM. Diastolic heart failure. Cardiovasc Res. 2000;45(4):813-825.
[3]
Alves ML, Dias FA, Gaffin RD, et al. Desensitization of myofilaments to Ca sup2/sup as a therapeutic target for hypertrophic cardimyopathy with mutations in thin filament proteins. Circ Cardiovasc Genet. 2014;7(2):132-143.
[4]
Cho DH, Yoo BS. Current prevalence, incidence, and outcomes of heart failure with preserved ejection fraction. Heart Fail Clin. 2021;17(3):315-326.
[5]
Krittanawong C, Kukin ML. Current management and future directions of heart failure with preserved ejection fraction: a contemporary review. Curr Treat Opt Cardiovasc Med. 2018;20(4):28.
[6]
Lipshultz SE, Law YM, Asante-Korang A, et al. Cardiomyopathy in children: classification and diagnosis: a scientific statement from the American heart association. Circulation. 2019;140(1):E9-E68.
[7]
Wilkinson JD, Westphal JA, Bansal N, Czachor JD, Razoky H, Lipshultz SE. Lessons learned from the pediatric cardiomyopathy registry (PCMR) study group. Cardiol Young. 2015;25(S2):140-153.
[8]
Ditaranto R, Caponetti AG, Ferrara V, et al. Pediatric restrictive cardiomyopathies. Front Pediatr. 2021;9:745365.
[9]
Mocan M, Mocan Hognogi LD, Anton FP, et al. Biomarkers of inflammation in left ventricular diastolic dysfunction. Dis Mark. 2019;2019:7583690.
[10]
Gomes AV, Potter JD. Cellular and molecular aspects of familial hypertrophic cardiomyopathy caused by mutations in the cardiac troponin I gene. Mol Cell Biochem. 2004;263(1-2):99-114.
[11]
Seidman CE, Seidman JG. Identifying sarcomere gene mutations in hypertrophic cardiomyopathy. Circ Res. 2011;108(6):743-750.
[12]
Papadaki M, Vikhorev PG, Marston SB, Messer AE. Uncoupling of myofilament Casup2/supsensitivity from troponin I phosphorylation by mutations can be reversed by epigallocatechin-3-gallate. Cardiovasc Res. 2015;108(1):99-110.
[13]
Messer AE, Bayliss CR, El-Mezgueldi M, et al. Mutations in troponin T associated with Hypertrophic Cardiomyopathy increase Ca2-sensitivity and suppress the modulation of Ca2-sensitivity by troponin I phosphorylation. Arch Biochem Biophys. 2016;601:113-120.
[14]
Kimura A, Harada H, Park JE, et al. Mutations in the cardiac troponin I gene associated with hypertrophic cardiomyopathy. Nat Genet. 1997;16(4):379-382.
[15]
Thierfelder L, Watkins H, MacRae C, et al. -tropomyosin and cardiac troponin T mutations cause familial hypertrophic cardiomyopathy: a disease of the sarcomere. Cell. 1994;77(5):701-712.
[16]
Potluri PR, Cordina NM, Kachooei E, Brown LJ. Characterization of the L29Q hypertrophic cardiomyopathy mutation in cardiac troponin C by paramagnetic relaxation enhancement nuclear magnetic resonance. Biochemistry. 2019;58(7):908-917.
[17]
Robertson IM, Sevrieva I, Irving M, Sun YB, Sykes BD. The structural and functional effects of the familial hypertrophic cardiomyopathy-linked cardiac troponin C mutation, L29Q. J Mol Cell Cardiol. 2015;87:257-269.
[18]
Jääskeläinen P, Heliö T, Aalto-Setälä K, et al. Two founder mutations in the alpha-tropomyosin and the cardiac myosin-binding protein C genes are common causes of hypertrophic cardiomyopathy in the Finnish population. Ann Med. 2012;45(1):85-90.
[19]
Friedrich FW, Carrier L. Genetics of hypertrophic and dilated cardiomyopathy. Curr Pharm Biotechnol. 2012;13(13):2467-2476.
[20]
Mogensen J, Kubo T, Duque M, et al. Idiopathic restrictive cardiomyopathy is part of the clinical expression of cardiac troponin I mutations. J Clin Invest. 2003;111(2):209-216.
[21]
Ware SM, Quinn M, Ballard E, Miller E, Uzark K, Spicer R. Pediatric restrictive cardiomyopathy associated with a mutation in -myosin heavy chain. Clin Genet. 2007;73(2):165-170.
[22]
Lee TM, Hsu DT, Kantor P, et al. Pediatric cardiomyopathies. Circ Res. 2017;121(7):855-873.
[23]
Pinto JR, Parvatiyar MS, Jones MA, Liang J, Potter JD. A troponin T mutation that causes infantile restrictive cardiomyopathy increases Ca2 sensitivity of force development and impairs the inhibitory properties of troponin. J Biol Chem. 2008;283(4):2156-2166.
[24]
Ripoll-Vera T, Zorio E, Gámez JM, Molina P, Govea N, Crémer D. Phenotypic patterns of cardiomyopathy caused by mutations in the desmin gene. A clinical and genetic study in two inherited heart disease units. Rev Esp Cardiol. 2015;68(11):1027-1029.
[25]
Kiselev A, Vaz R, Knyazeva A, et al. De novo mutations in iFLNC/i leading to early-onset restrictive cardiomyopathy and congenital myopathy. Hum Mutat. 2018;39(9):1161-1172.
[26]
Brodehl A, Ferrier RA, Hamilton SJ, et al. Mutations iniFLNC/iare associated with familial restrictive cardiomyopathy. Hum Mutat. 2016;37(3):269-279.
[27]
Liu X, Zhang L, Pacciulli D, et al. Restrictive cardiomyopathy caused by troponin mutations: application of disease animal models in translational studies. Front Physiol. 2016;7:629.
[28]
Rai TS, Ahmad S, Ahluwalia TS, et al. Genetic and clinical profile of Indian patients of idiopathic restrictive cardiomyopathy with and without hypertrophy. Mol Cell Biochem. 2009;331(1-2):187-192.
[29]
van den Wijngaard A, Volders P, Van Tintelen JP, et al. Recurrent and founder mutations in The Netherlands: cardiac Troponin I (TNNI3) gene mutations as a cause of severe forms of hypertrophic and restrictive cardiomyopathy. Neth Heart J. 2011;19(7-8):344-351.
[30]
Gomes AV, Liang J, Potter JD. Mutations in human cardiac troponin I that are associated with restrictive cardiomyopathy affect basal ATPase activity and the calcium sensitivity of force development. J Biol Chem. 2005;280(35):30909-30915.
[31]
Yumoto F, Lu QW, Morimoto S, et al. Drastic Ca2 sensitization of myofilament associated with a small structural change in troponin I in inherited restrictive cardiomyopathy. Biochem Biophys Res Commun. 2005;338(3):1519-1526.
[32]
Kobayashi T, Solaro RJ. Increased Ca2 affinity of cardiac thin filaments reconstituted with cardiomyopathy-related mutant cardiac troponin I. J Biol Chem. 2006;281(19):13471-13477.
[33]
Davis J, Wen H, Edwards T, Metzger JM. Thin filament disinhibition by restrictive cardiomyopathy mutant R193H troponin I induces Ca sup2/sup -independent mechanical tone and acute myocyte remodeling. Circ Res. 2007;100(10):1494-1502.
[34]
Davis J, Wen H, Edwards T, Metzger JM. Allele and species dependent contractile defects by restrictive and hypertrophic cardiomyopathy-linked troponin I mutants. J Mol Cell Cardiol. 2008;44(5):891-904.
[35]
Chang AN, Potter JD. Sarcomeric protein mutations in dilated cardiomyopathy. Heart Fail Rev. 2005;10(3):225-235.
[36]
Spudich J. Hypertrophic and dilated cardiomyopathy: four decades of basic research on muscle lead to potential therapeutic approaches to these devastating genetic diseases. Biophys J. 2014;106(6):1236-1249.
[37]
Vander Roest A, Liu C, Morck MM, et al. Hypertrophic cardiomyopathy β-cardiac myosin mutation (P710R) leads to hypercontractility by disrupting super relaxed state. Proc Natl Acad Sci U S A. 2021;118(24):e2025030118.
[38]
Hooijman P, Stewart M, Cooke R. A New state of cardiac myosin with very slow ATP turnover: a potential cardioprotective mechanism in the heart. Biophys J. 2011;100(8): 1969-1976.
[39]
Nag S, Trivedi DV. To lie or not to lie: super-relaxing with myosins. Elife. 2021;10:e63703.
[40]
Anderson RL, Trivedi DV, Sarkar SS, et al. Deciphering the super relaxed state of human β-cardiac myosin and the mode of action of mavacamten from myosin molecules to muscle fibers. Proc Natl Acad Sci U S A. 2018;115(35):E8143-E8152.
[41]
Rohde JA, Roopnarine O, Thomas DD, Muretta JM. Mavacamten stabilizes an autoinhibited state of two-headed cardiac myosin. Proc Natl Acad Sci U S A. 2018;115(32):E7486-E7494.
[42]
Adhikari AS, Trivedi DV, Sarkar SS, et al. Cardiac myosin hypertrophic cardiomyopathy mutations release sequestered heads and increase enzymatic activity. Nat Commun. 2019;10(1):2685.
[43]
Wakabayashi T. Mechanism of the calcium-regulation of muscle contraction in pursuit of its structural basis. Proc Jpn Acad Ser B Phys Biol Sci. 2015;91(7):321-350.
[44]
Huang X, Pi Y, Lee KJ, et al. Cardiac troponin I gene knockout. Circ Res. 1999;84(1):1-8.
[45]
Huang X, Lee KJ, Riedel B, Zhang C, Lemanski LF, Walker JW. Thyroid hormone regulates slow skeletal troponin I gene inactivation in cardiac troponin I null mouse hearts. J Mol Cell Cardiol. 2000;32(12):2221-2228.
[46]
Galin’ska A, Hatch V, Craig R, et al. The C terminus of cardiac troponin I stabilizes the Ca sup2/sup -activated state of tropomyosin on actin filaments. Circ Res. 2010;106(4):705-711.
[47]
Friedrich FW, Flenner F, Nasib M, Eschenhagen T, Carrier L. Epigallocatechin-3-Gallate accelerates relaxation and Ca2+ transient decay and desensitizes myofilaments in healthy and Mybpc3-targeted knock-in cardiomyopathic mice. Front Physiol. 2016;7:607.
[48]
Messer AE, Chan J, Daley A, Copeland O, Marston SB, Connolly DJ. Investigations into the sarcomeric protein and Ca2+-regulation abnormalities underlying hypertrophic cardiomyopathy in cats (Felix catus). Front Physiol. 2017;8:348.
[49]
Du J, Liu J, Feng HZ, et al. Impaired relaxation is the main manifestation in transgenic mice expressing a restrictive cardiomyopathy mutation, R193H, in cardiac TnI. Am J Physiol Heart Circ Physiol. 2008;294(6):H2604-H2613.
[50]
Liu J, Du J, Zhang C, Walker JW, Huang X. Progressive troponin I loss impairs cardiac relaxation and causes heart failure in mice. Am J Physiol Heart Circ Physiol. 2007;293(2):H1273-H1281.
[51]
Li Y, Charles PYJ, Nan C, et al. Correcting diastolic dysfunction by Ca2 desensitizing troponin in a transgenic mouse model of restrictive cardiomyopathy. J Mol Cell Cardiol. 2010;49(3):402-411.
[52]
Li Y, Zhang L, Jean-Charles PY, et al. Dose-dependent diastolic dysfunction and early death in a mouse model with cardiac troponin mutations. J Mol Cell Cardiol. 2013;62:227-236.
[53]
Wen Y, Xu Y, Wang Y, Pinto JR, Potter JD, Kerrick WGL. Functional effects of a restrictive-cardiomyopathy-linked cardiac troponin I mutation (R145W) in transgenic mice. J Mol Biol. 2009;392(5):1158-1167.
[54]
Jean-Charles P-Y, Du J, Li Y, Gobara N, Huang X. Abstract 843: restrictive cardiomyopathy linked cTnI mutation (K178E) causes severe heart failure and early mortality. Circulation. 2008;118(Suppl 18):S623.
[55]
Dvornikov AV, Smolin N, Zhang M, Martin JL, Robia SL, de Tombe PP. Restrictive cardiomyopathy troponin I R145W mutation does not perturb myofilament length-dependent activation in human cardiac sarcomeres. J Biol Chem. 2016;291(41):21817-21828.
[56]
Nguyen S, Siu R, Dewey S, Cui Z, Gomes AV. Amino acid changes at arginine 204 of troponin I result in increased calcium sensitivity of force development. Front Physiol. 2016;7:520.
[57]
Houser SR, Margulies KB, Murphy AM, et al. Animal models of heart failure. Circ Res. 2012;111(1):131-150.
[58]
Mishra S, Kass DA. Cellular and molecular pathobiology of heart failure with preserved ejection fraction. Nat Rev Cardiol. 2021;18(6):400-423.
[59]
Liou YM, Kuo SC, Hsieh SR. Differential effects of a green tea-derived polyphenol (-)-epigallocatechin-3-gallate on the acidosis-induced decrease in the Ca2 sensitivity of cardiac and skeletal muscle. Pflugers Arch. 2008;456(5):787-800.
[60]
Robertson IM, Li MX, Sykes BD. Solution structure of human cardiac troponin C in complex with the green tea polyphenol, (-)-Epigallocatechin 3-gallate. J Biol Chem. 2009;284(34):23012-23023.
[61]
Higdon JV, Frei B Tea catechins and polyphenols: health effects, metabolism, and antioxidant functions. Crit Rev Food Sci Nutr. 2003;43(1):89-143.
[62]
Tadano N, Du C, Yumoto F, et al. Biological actions of green tea catechins on cardiac troponin C. Br J Pharmacol. 2010;161(5):1034-1043.
[63]
Zhang L, Nan C, Chen Y, et al. Calcium desensitizer catechin reverses diastolic dysfunction in mice with restrictive cardiomyopathy. Arch Biochem Biophys. 2015;573:69-76.
[64]
Warren CM, Karam CN, Wolska BM, et al. Green tea catechin normalizes the enhanced Ca sup2/sup sensitivity of myofilaments regulated by a hypertrophic CardiomyopathyAssociated mutation in human cardiac troponin I (K206I). Circ Cardiovasc Genet. 2015;8(6):765-773.
[65]
Wang X, Zhang Z, Wu G, et al. Green tea extract catechin improves internal cardiac muscle relaxation in RCM mice. J Biomed Sci. 2016;23(1):51.
[66]
Sheehan A, Messer AE, Papadaki M, et al. Molecular defects in cardiac myofilament Ca2-regulation due to cardiomyopathy-linked mutations can be reversed by small molecules binding to troponin. Front Physiol. 2018;9.
[67]
Tardiff JC, Carrier L, Bers DM, et al. Targets for therapy in sarcomeric cardiomyopathies. Cardiovasc Res. 2015;105(4):457-470.
[68]
Quan J, Jia Z, Lv T, et al. Green tea extract catechin improves cardiac function in pediatric cardiomyopathy patients with diastolic dysfunction. J Biomed Sci. 2019;26(1):32.
[69]
Ding W-H, Han L, Xiao YY, et al. Role of whole-exome sequencing in phenotype classification and clinical treatment of pediatric restrictive cardiomyopathy. Chin Med J. 2017;130(23):2823-2828.
[70]
Solomon SD, McMurray JJ, Anand IS, et al. Angiotensin–neprilysin inhibition in heart failure with preserved ejection fraction. N Engl J Med. 2019;381(17):1609-1620.
[71]
Lam CSP, Chandramouli C, Ahooja V, Verma S. SGLT-2 inhibitors in heart failure: current management, unmet needs, and therapeutic prospects. J Am Heart Assoc. 2019;8(20):e013389.
[72]
Nag S, Trivedi DV, Sarkar SS, et al. The myosin mesa and the basis of hypercontractility caused by hypertrophic cardiomyopathy mutations. Nat Struct Molec Biol. 2017;24(6):525-533.
[73]
Malik FI, Morgan BP. Cardiac myosin activation part 1: from concept to clinic. J Mol Cell Cardiol. 2011;51(4):454-461.
[74]
Day SM, Tardiff JC, Ostap EM. Myosin modulators: emerging approaches for the treatment of cardiomyopathies and heart failure. J Clini Invest. 2022;132(5):e148557.
[75]
Kawas RF, Anderson RL, Ingle SRB, Song Y, Sran AS, Rodriguez HM. A small-molecule modulator of cardiac myosin acts on multiple stages of the myosin chemomechanical cycle. J Biol Chem. 2017;292(40):16571-16577.
[76]
Mamidi R, Li J, Doh CY, Verma S, Stelzer JE. Impact of the myosin modulator mavacamten on force generation and cross-bridge behavior in a murine model of hypercontractility. J Am Heart Assoc. 2018;7(17):e009627.
[77]
Spertus JA, Fine JT, Elliott P, et al. Mavacamten for treatment of symptomatic obstructive hypertrophic cardiomyopathy (EXPLORER-HCM): health status analysis of a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet. 2021;397(10293):2467-2475.
[78]
Saberi S, Cardim N, Yamani M, et al. Mavacamten favorably impacts cardiac structure in obstructive hypertrophic cardiomyopathy. Circulation. 2021;143(6):606-608.
[79]
Rader F, Giles R. Symptomatic obstructive hypertrophic cardiomyopathy: long-term mavacamten control. In: Bonaca M, ed. Medicom Conference Report ACC 2022. Medicom Medical Publishers; 2022.
[80]
Tian Z, Li L, Li, X, et al. Effect of Mavacamten on Chinese Patients With Symptomatic Obstructive Hypertrophic Cardiomyopathy: The EXPLORER-CN Randomized Clinical Trial. JAMA Cardiol. 2023;8(10):957-965.
[81]
Lairez O, Pelliccia, F, Scholtz S, Rudolph, V & Reil JC. Alcohol septal ablation or mavacamten for obstructive hypertrophic cardiomyopathy. J Clin Med. 2023;12(20):6628.

RIGHTS & PERMISSIONS

2024 2024 The Authors. Pediatric Discovery published by John Wiley & Sons Australia, Ltd on behalf of Children's Hospital of Chongqing Medical University.
PDF

Accesses

Citations

Detail

Sections
Recommended

/