Retinoic acids and nuclear receptor signaling in liver development: Pathogenic roles in liver diseases
Wen Jia, Yang Bi
Retinoic acids and nuclear receptor signaling in liver development: Pathogenic roles in liver diseases
Retinoic acid (RA) serves as a metabolic intermediate of vitamin A. It plays a crucial physiological role in regulating cell proliferation, differentiation, apoptosis, embryonic development, and immunomodulation. Once vitamin A enters the body in the form of retinol, it undergoes conversion into RA through the intestinal epithelium and liver. Subsequently, it interacts with retinoic acid receptors and retinoid X receptors within the cell nucleus, thereby regulating gene expression. Throughout liver development, RA exerts precise temporal control, stimulating liver growth, inducing RALDH2 expression in liver somatic epithelial cells, and influencing hepatocyte differentiation. Recent studies have consistently demonstrated the indispensable connection between RA deficiency and the development of liver diseases, including nonalcoholic fatty liver disease, chronic hepatitis, liver fibrosis, and liver tumors. Studying the mechanisms underlying the relationship between RA and disease can enhance our understanding and improve disease treatment. This paper provides a comprehensive review of the role of RA signaling in liver development and liver diseases.
hepatitis / hepatocellular carcinoma / liver / liver fibrosis / retinoic acid
[1] |
Shiota G, Tsuchiya H, Hoshikawa Y. The liver as a target organ of retinoids. Hepatol Res. 2006;36(4):248-254.
|
[2] |
Sun S.-Y, Lotan R. Retinoids and their receptors in cancer development and chemoprevention. Crit Rev Oncol Hematol. 2002;41(1):41-55.
|
[3] |
Theodosiou M, Laudet V, Schubert M. From carrot to clinic: an overview of the retinoic acid signaling pathway. Cell Mol Life Sci. 2010;67(9):1423-1445.
|
[4] |
Carazo A, Macakova K, Matousova K, Krcmova LK, Protti M, Mladenka P. Vitamin A update: forms, sources, kinetics, detection, function, deficiency, therapeutic use and toxicity. Nutrients. 2021;13(5):1703.
|
[5] |
Steinhoff JS, Lass A, Schupp M. Retinoid homeostasis and beyond: how retinol binding protein 4 contributes to health and disease. Nutrients. 2022;15(6):14.
|
[6] |
Gudas LJ. Retinoid metabolism: new insights. J Mol Endocrinol. 2022;69(4):T37-T49.
|
[7] |
Reboul E. Proteins involved in fat-soluble vitamin and carotenoid transport across the intestinal cells: new insights from the past decade. Prog Lipid Res. 2023;89:101208.
|
[8] |
Andre A, Ruivo R, Fonseca E, Froufe E, Castro LFC, Santos MM. The retinoic acid receptor (RAR) in molluscs: function, evolution and endocrine disruption insights. Aquat Toxicol. 2019;208:80-89.
|
[9] |
Hyun J, Han J, Lee C, Yoon M, Jung Y. Pathophysiological aspects of alcohol metabolism in the liver. Int J Mol Sci. 2021;22(11):5717.
|
[10] |
Cotter TG, Rinella M. Nonalcoholic fatty liver disease 2020: the state of the disease. Gastroenterology. 2020;158(7):1851-1864.
|
[11] |
Saeed A, Dullaart RPF, Schreuder T, Blokzijl H, Faber KN. Disturbed vitamin A metabolism in non-alcoholic fatty liver disease (NAFLD). Nutrients. 2017;10(1):29.
|
[12] |
Vucetic Z, Zhang Z, Zhao J, Wang F, Soprano KJ, Soprano DR. Acinus-S' represses retinoic acid receptor (RAR)-regulated gene expression through interaction with the B domains of RARs. Mol Cell Biol. 2008;28(8):2549-2558.
|
[13] |
Sessler RJ, Noy N. A ligand-activated nuclear localization signal in cellular retinoic acid binding protein-II. Mol Cell. 2005;18(3):343-353.
|
[14] |
O'Connor C, Varshosaz P, Moise AR. Mechanisms of feedback regulation of vitamin A metabolism. Nutrients. 2022;21(6):14.
|
[15] |
Huang J, Bi Y, Zhu GH, et al. Retinoic acid signalling induces the differentiation of mouse fetal liver-derived hepatic progenitor cells. Liver Int. 2009;29(10):1569-1581.
|
[16] |
Clarke N, Germain P, Altucci L, Gronemeyer H. Retinoids: potential in cancer prevention and therapy. Expet Rev Mol Med. 2004;6(25):1-23.
|
[17] |
Magomedova L, Tiefenbach J, Zilberman E, et al. ARGLU1 is a transcriptional coactivator and splicing regulator important for stress hormone signaling and development. Nucleic Acids Res. 2019;47(6):2856-2870.
|
[18] |
Gutierrez-Mazariegos J, Schubert M, Laudet V. Evolution of retinoic acid receptors and retinoic acid signaling. Subcell Biochem. 2014;70:55-73.
|
[19] |
Sandell LL, Sanderson BW, Moiseyev G, et al. RDH10 is essential for synthesis of embryonic retinoic acid and is required for limb, craniofacial, and organ development. Genes Dev. 2007;21(9):1113-1124.
|
[20] |
Bowles J, Knight D, Smith C, et al. Retinoid signaling determines germ cell fate in mice. Science. 2006;312(5773):596-600.
|
[21] |
Duester G. Retinoic acid synthesis and signaling during early organogenesis. Cell. 2008;134(6):921-931.
|
[22] |
Sosnik J, Zheng L, Rackauckas CV, et al. Noise modulation in retinoic acid signaling sharpens segmental boundaries of gene expression in the embryonic zebrafish hindbrain. Elife. 2016;5:e14034.
|
[23] |
Ghyselinck NB, Duester G. Retinoic acid signaling pathways. Development. 2019;146(13).
|
[24] |
Shannon SR, Moise AR, Trainor PA. New insights and changing paradigms in the regulation of vitamin A metabolism in development. Wiley Interdiscip Rev Dev Biol. 2017;6(3).
|
[25] |
Brondani V, Klimkait T, Egly JM, Hamy F. Promoter of FGF8 reveals a unique regulation by unliganded RARalpha. J Mol Biol. 2002;319(3):715-728.
|
[26] |
Nowotschin S, Hadjantonakis AK. Guts and gastrulation: emergence and convergence of endoderm in the mouse embryo. Curr Top Dev Biol. 2020;136:429-454.
|
[27] |
Han L, Chaturvedi P, Kishimoto K, et al. Single cell transcriptomics identifies a signaling network coordinating endoderm and mesoderm diversification during foregut organogenesis. Nat Commun. 2020;11(1):4158.
|
[28] |
Kopp JL, Grompe M, Sander M. Stem cells versus plasticity in liver and pancreas regeneration. Nat Cell Biol. 2016;18(3):238-245.
|
[29] |
McLin VA, Rankin SA, Zorn AM. Repression of Wnt/beta-catenin signaling in the anterior endoderm is essential for liver and pancreas development. Development. 2007;134(12):2207-2217.
|
[30] |
Monga SP, Monga HK, Tan X, Mule K, Pediaditakis P, Michalopoulos GK. Beta-catenin antisense studies in embryonic liver cultures: role in proliferation, apoptosis, and lineage specification. Gastroenterology. 2003;124(1):202-216.
|
[31] |
Ijpenberg A, Perez-Pomares JM, Guadix JA, et al. Wt1 and retinoic acid signaling are essential for stellate cell development and liver morphogenesis. Dev Biol. 2007;312(1):157-170.
|
[32] |
Kung JW, Currie IS, Forbes SJ, Ross JA. Liver development, regeneration, and carcinogenesis. J Biomed Biotechnol. 2010;2010:984248.
|
[33] |
Zhu X, Wang W, Zhang X, et al. All-trans retinoic acid-induced deficiency of the Wnt/beta-catenin pathway enhances hepatic carcinoma stem cell differentiation. PLoS One. 2015;10(11):e0143255.
|
[34] |
Duncan SA. Mechanisms controlling early development of the liver. Mech Dev. 2003;120(1):19-33.
|
[35] |
Liu HX, Ly I, Hu Y, Wan YJ. Retinoic acid regulates cell cycle genes and accelerates normal mouse liver regeneration. Biochem Pharmacol. 2014;91(2):256-265.
|
[36] |
Falasca L, Favale A, Serafino A, Ara C, Conti Devirgiliis L. The effect of retinoic acid on the re-establishment of differentiated hepatocyte phenotype in primary culture. Cell Tissue Res. 1998;293(2):337-347.
|
[37] |
Chen W, Chen G. The roles of vitamin A in the regulation of carbohydrate, lipid, and protein metabolism. J Clin Med. 2014;3(2):453-479.
|
[38] |
Xue S, Lee D, Berry DC. Thermogenic adipose tissue in energy regulation and metabolic health. Front Endocrinol. 2023;14:1150059.
|
[39] |
Malibary MA. Vitamin A: a key inhibitor of adipocyte differentiation. PPAR Res. 2023;2023:7405954.
|
[40] |
Park S, Lee YJ, Ko EH, Kim JW. Regulation of retinoid X receptor gamma expression by fed state in mouse liver. Biochem Biophys Res Commun. 2015;458(1):134-139.
|
[41] |
Chen G. The interactions of insulin and vitamin A signaling systems for the regulation of hepatic glucose and lipid metabolism. Cells. 2021;10(8):2160.
|
[42] |
Blaner WS. Vitamin A signaling and homeostasis in obesity, diabetes, and metabolic disorders. Pharmacol Ther. 2019;197:153-178.
|
[43] |
Trasino SE, Tang XH, Jessurun J, Gudas LJ. Obesity leads to tissue, but not serum vitamin A deficiency. Sci Rep. 2015;5(1):15893.
|
[44] |
Villarroya F, Gavalda-Navarro A, Peyrou M, Villarroya J, Giralt M. The lives and times of brown adipokines. Trends Endocrinol Metabol. 2017;28(12):855-867.
|
[45] |
Chaves GV, Peres WA, Goncalves JC, Ramalho A. Vitamin A and retinol-binding protein deficiency among chronic liver disease patients. Nutrition. 2015;31(5):664-668.
|
[46] |
Freund C, Gotthardt DN. Vitamin A deficiency in chronic cholestatic liver disease: is vitamin A therapy beneficial?Liver Int. 2017;37(12):1752-1758.
|
[47] |
Liu Y, Chen H, Wang J, Zhou W, Sun R, Xia M. Association of serum retinoic acid with hepatic steatosis and liver injury in nonalcoholic fatty liver disease. Am J Clin Nutr. 2015;102(1):130-137.
|
[48] |
Villaca Chaves G, Pereira SE, Saboya CJ, Ramalho A. Non-alcoholic fatty liver disease and its relationship with the nutritional status of vitamin A in individuals with class III obesity. Obes Surg. 2008;18(4):378-385.
|
[49] |
Beydoun MA, Canas JA, Beydoun HA, Chen X, Shroff MR, Zonderman AB. Serum antioxidant concentrations and metabolic syndrome are associated among U.S. adolescents in recent national surveys. J Nutr. 2012;142(9):1693-1704.
|
[50] |
Lu Q, Tian X, Wu H, et al. Metabolic changes of hepatocytes in NAFLD. Front Physiol. 2021;12:710420.
|
[51] |
Chaves GV, Pereira SE, Saboya CJ, Spitz D, Rodrigues CS, Ramalho A. Association between liver vitamin A reserves and severity of nonalcoholic fatty liver disease in the class III obese following bariatric surgery. Obes Surg. 2014;24(2):219-224.
|
[52] |
Clemente C, Elba S, Buongiorno G, Berloco P, Guerra V, Di Leo A. Serum retinol and risk of hepatocellular carcinoma in patients with child-Pugh class A cirrhosis. Cancer Lett. 2002;178(2):123-129.
|
[53] |
Shiota G, Kanki K. Retinoids and their target genes in liver functions and diseases. J Gastroenterol Hepatol. 2013;28(suppl 1):33-37.
|
[54] |
Chigbu DI, Loonawat R, Sehgal M, Patel D, Jain P. Hepatitis C virus infection: host(-)virus interaction and mechanisms of viral persistence. Cells. 2019;8(4):376.
|
[55] |
D'Souza S, Lau KC, Coffin CS, Patel TR. Molecular mechanisms of viral hepatitis induced hepatocellular carcinoma. World J Gastroenterol. 2020;26(38):5759-5783.
|
[56] |
Murakami Y, Fukasawa M, Kaneko Y, Suzuki T, Wakita T, Fukazawa H. Retinoids and rexinoids inhibit hepatitis C virus independently of retinoid receptor signaling. Microbes Infect. 2014;16(2):114-122.
|
[57] |
Wang Y, Ye L, Wang X, Li J, Song L, Ho W. Retinoic acid inducible gene-I (RIG-I) signaling of hepatic stellate cells inhibits hepatitis C virus replication in hepatocytes. Innate Immun. 2013;19(2):193-202.
|
[58] |
Morbitzer M, Herget T. Expression of gastrointestinal glutathione peroxidase is inversely correlated to the presence of hepatitis C virus subgenomic RNA in human liver cells. J Biol Chem. 2005;280(10):8831-8841.
|
[59] |
Bocher WO, Wallasch C, Hohler T, Galle PR. All-trans retinoic acid for treatment of chronic hepatitis C. Liver Int. 2008;28(3):347-354.
|
[60] |
Brigelius-Flohe R, Flohe L. Regulatory phenomena in the glutathione peroxidase superfamily. Antioxidants Redox Signal. 2020;33(7):498-516.
|
[61] |
Seki E, Brenner DA. Recent advancement of molecular mechanisms of liver fibrosis. J Hepatobiliary Pancreat Sci. 2015;22(7):512-518.
|
[62] |
Lee YA, Wallace MC, Friedman SL. Pathobiology of liver fibrosis: a translational success story. Gut. 2015;64(5):830-841.
|
[63] |
Budi EH, Duan D, Derynck R. Transforming growth factor-beta receptors and Smads: regulatory complexity and functional versatility. Trends Cell Biol. 2017;27(9):658-672.
|
[64] |
Bejjani F, Evanno E, Zibara K, Piechaczyk M, Jariel-Encontre I. The AP-1 transcriptional complex: local switch or remote command?Biochim Biophys Acta Rev Cancer. 2019;1872(1):11-23.
|
[65] |
Robert S, Gicquel T, Victoni T, et al. Involvement of matrix metalloproteinases (MMPs) and inflammasome pathway in molecular mechanisms of fibrosis. Biosci Rep. 2016;36(4).
|
[66] |
Kanki K, Akechi Y, Ueda C, et al. Biological and clinical implications of retinoic acid-responsive genes in human hepatocellular carcinoma cells. J Hepatol. 2013;59(5):1037-1044.
|
[67] |
Zhou TB, Drummen GP, Qin YH. The controversial role of retinoic acid in fibrotic diseases: analysis of involved signaling pathways. Int J Mol Sci. 2012;14(1):226-243.
|
[68] |
Urvalek AM, Gudas LJ. Retinoic acid and histone deacetylases regulate epigenetic changes in embryonic stem cells. J Biol Chem. 2014;289(28):19519-19530.
|
[69] |
Trivedi P, Wang S, Friedman SL. The power of plasticity-metabolic regulation of hepatic stellate cells. Cell Metab. 2021;33(2):242-257.
|
[70] |
Lam AP, Gottardi CJ. Beta-catenin signaling: a novel mediator of fibrosis and potential therapeutic target. Curr Opin Rheumatol. 2011;23(6):562-567.
|
[71] |
Tao LL, Cheng YY, Ding D, et al. C/EBP-alpha ameliorates CCl(4)-induced liver fibrosis in mice through promoting apoptosis of hepatic stellate cells with little apoptotic effect on hepatocytes in vitro and in vivo. Apoptosis. 2012;17(5):492-502.
|
[72] |
Gu H, Hu P, Zhao Y, et al. Nuclear receptor RORalpha/gamma: exciting modulators in metabolic syndrome and related disorders. Front Nutr. 2022;9:925267.
|
[73] |
Kang HS, Okamoto K, Takeda Y, et al. Transcriptional profiling reveals a role for RORalpha in regulating gene expression in obesity-associated inflammation and hepatic steatosis. Physiol Genom. 2011;43(13):818-828.
|
[74] |
Dhamija E, Paul SB, Kedia S. Non-alcoholic fatty liver disease associated with hepatocellular carcinoma: an increasing concern. Indian J Med Res. 2019;149(1):9-17.
|
[75] |
Shimizu M, Sakai H, Moriwaki H. Chemoprevention of hepatocellular carcinoma by acyclic retinoid. Front Biosci. 2011;16(2):759-769.
|
[76] |
Haaker MW, Vaandrager AB, Helms JB. Retinoids in health and disease: a role for hepatic stellate cells in affecting retinoid levels. Biochim Biophys Acta Mol Cell Biol Lipids. 2020;1865(6):158674.
|
[77] |
Yanagitani A, Yamada S, Yasui S, et al. Retinoic acid receptor alpha dominant negative form causes steatohepatitis and liver tumors in transgenic mice. Hepatology. 2004;40(2):366-375.
|
[78] |
Weber D, Grune T. The contribution of beta-carotene to vitamin A supply of humans. Mol Nutr Food Res. 2012;56(2):251-258.
|
[79] |
Galluzzi L, Green DR. Autophagy-independent functions of the autophagy machinery. Cell. 2019;177(7):1682-1699.
|
[80] |
Fang S, Hu C, Xu L, et al. All-trans-retinoic acid inhibits the malignant behaviors of hepatocarcinoma cells by regulating autophagy. Am J Transl Res. 2020;12(10):6793-6810.
|
[81] |
Sun Y, He Y, Tong J, et al. All-trans retinoic acid inhibits the malignant behaviors of hepatocarcinoma cells by regulating ferroptosis. Genes Dis. 2022;9(6):1742-1756.
|
/
〈 | 〉 |