Extracellular vesicles derived from mesenchymal stem cells: the wine in Hebe's hands to treat skin aging

Qixiang Gui , Neng Ding , Zuochao Yao , Minjuan Wu , Ruifeng Fu , Yue Wang , Yunpeng Zhao , Lie Zhu

Precision Clinical Medicine ›› 2024, Vol. 7 ›› Issue (1) : pbad004

PDF
Precision Clinical Medicine ›› 2024, Vol. 7 ›› Issue (1) : pbad004 DOI: 10.1093/pcmedi/pbae004
REVIEW

Extracellular vesicles derived from mesenchymal stem cells: the wine in Hebe's hands to treat skin aging

Author information +
History +
PDF

Cite this article

Download citation ▾
Qixiang Gui, Neng Ding, Zuochao Yao, Minjuan Wu, Ruifeng Fu, Yue Wang, Yunpeng Zhao, Lie Zhu. Extracellular vesicles derived from mesenchymal stem cells: the wine in Hebe's hands to treat skin aging. Precision Clinical Medicine, 2024, 7(1): pbad004 DOI:10.1093/pcmedi/pbae004

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Byrd AL, Belkaid Y, Segre JA The human skin microbiome. Nat Rev Micro. 2018; 16:143-55. https://doi.org/10.1038/nrmicro.2017.157.

[2]

Boroni M, Zonari A, Reis De Oliveira C et al. Highly accurate skin-specific methylome analysis algorithm as a platform to screen and validate therapeutics for healthy aging. Clinical Epigenetics. 2020;12:105. https://doi.org/10.1186/s13148-020-00899-1.

[3]

Freitas R, Martins A, Silva J et al. Highlighting the biological potential of the brown seaweed fucus spiralis for skin applications. Antioxidants (Basel, Switzerland). 2020;9:611. https://doi.org/10.3390/antiox9070611.

[4]

Lee D, Kim Y, Jo H et al. The anti-inflammatory effect of Aptamin C on House dust mite extract-induced inflammation in keratinocytes via regulation of IL-22 and GDNF production. Antioxidants (Basel, Switzerland). 2021;10:945. https://doi.org/10.3390/antiox10060945.

[5]

Cho HS, Lee MH, Lee JW et al. Anti-wrinkling effects of the mixture of vitamin C, vitamin E, pycnogenol and evening primrose oil, and molecular mechanisms on hairless mouse skin caused by chronic ultraviolet B irradiation. Photodermatol Photoimmunol Photomed. 2007; 23:155-62. https://doi.org/10.1111/j.1600-0781.2007.00298.x.

[6]

Knott A, Achterberg V, Smuda C et al. Topical treatment with coenzyme Q10-containing formulas improves skin's Q10 level and provides antioxidative effects. Biofactors. 2015; 41:383-90. https://doi.org/10.1002/biof.1239.

[7]

Cao C, Xiao Z, Tong H et al. Oral intake of chicken bone collagen peptides anti-skin aging in mice by regulating collagen degradation and synthesis, inhibiting inflammation and activating lysosomes. Nutrients. 2022;14:1622. https://doi.org/10.3390/nu14081622.

[8]

Papakonstantinou E, Roth M, Karakiulakis G Hyaluronic acid: A key molecule in skin aging. Dermato-endocrinology. 2012; 4:253-8. https://doi.org/10.4161/derm.21923.

[9]

Polo-Castellano C, Mateos RM, Visiedo F et al. Optimizing an enzymatic extraction method for the flavonoids in moringa (Moringa oleifera Lam.) leaves based on experimental designs methodologies. Antioxidants (Basel, Switzerland). 2023;12:369. https://doi.org/10.3390/antiox12020369.

[10]

Keshtkar S, Azarpira N, Ghahremani MH Mesenchymal stem cell-derived extracellular vesicles: novel frontiers in regenerative medicine. Stem Cell Res Ther. 2018;9:63. https://doi.org/10.1186/s13287-018-0791-7.

[11]

Deng L, Ren R, Liu Z et al. Stabilizing heterochromatin by DGCR8 alleviates senescence and osteoarthritis. Nat Commun. 2019;10:3329. https://doi.org/10.1038/s41467-019-10831-8.

[12]

Kim H, Lee MJ, Bae E-H et al. Comprehensive molecular profiles of functionally effective MSC-derived extracellular vesicles in immunomodulation. Mol Ther. 2020; 28:1628-44. https://doi.org/10.1016/j.ymthe.2020.04.020.

[13]

Dyball LE, Smales CM Exosomes: biogenesis, targeting, characterization and their potential as “Plug & Play” vaccine platforms. Biotechnol J. 2022;17: e2100646. https://doi.org/10.1002/biot.202100646.

[14]

Fu M, Gu J, Jiang P et al. Exosomes in gastric cancer: roles, mechanisms, and applications. Mol Cancer. 2019;18:41. https://doi.org/10.1186/s12943-019-1001-7.

[15]

Xie S, Zhang Q, Jiang L Current knowledge on exosome biogenesis, cargo-sorting mechanism and therapeutic implications. Membranes. 2022;12:498. https://doi.org/10.3390/membranes12050498.

[16]

Schünke H, Göbel U, Dikic I et al. OTULIN inhibits RIPK1-mediated keratinocyte necroptosis to prevent skin inflammation in mice. Nat Commun. 2021;12:5912. https://doi.org/10.1038/s41467-021-25945-1.

[17]

Arda O, Göksügür N, Tüzün Y Basic histological structure and functions of facial skin. Clin Dermatol. 2014; 32:3-13. https://doi.org/10.1016/j.clindermatol.2013.05.021.

[18]

Bollag WB, Aitkens L, White J et al. Aquaporin-3 in the epidermis: more than skin deep. Am J Physiol Cell Physiol. 2020;318: C1144-C1153. https://doi.org/10.1152/ajpcell.00075.2020.

[19]

Denis J-F, Lévesque M, Tran SD et al. Axolotl as a model to study scarless wound healing in vertebrates: role of the transforming growth factor beta signaling pathway. Adv Wound Care. 2013; 2:250-60. https://doi.org/10.1089/wound.2012.0371.

[20]

Fu H, Zhang Y, An Q et al. Anti-photoaging effect of rhodiola rosea fermented by Lactobacillus plantarum on UVA-damaged fibroblasts. Nutrients. 2022;14:2324. https://doi.org/10.3390/nu14112324.

[21]

Younis S, Deeba F, Fatima Saeed R et al. Regulation of cell cycle and differentiation markers by pathogenic, non-pathogenic and opportunistic skin bacteria. Saudi J Biolog Sci. 2022; 29:1717-29. https://doi.org/10.1016/j.sjbs.2021.10.058.

[22]

Gu Y, Han J, Jiang C et al. Biomarkers, oxidative stress and autophagy in skin aging. Ageing Res Rev. 2020;59:101036. https://doi.org/10.1016/j.arr.2020.101036.

[23]

Choi JS, Lee Cho W, Choi YJ et al. Functional recovery in photo-damaged human dermal fibroblasts by human adipose-derived stem cell extracellular vesicles. J Extracell Vesicles. 2019;8:1565885. https://doi.org/10.1080/20013078.2019.1565885.

[24]

Bielach-Bazyluk A, Zbroch E, Mysliwiec H et al. Sirtuin 1 and skin: implications in intrinsic and extrinsic aging-A systematic review. Cells. 2021;10:813. https://doi.org/10.3390/cells10040813.

[25]

Low E, Alimohammadiha G, Smith LA et al. How good is the evidence that cellular senescence causes skin ageing?. Ageing Res Rev. 2021;71:101456. https://doi.org/10.1016/j.arr.2021.101456.

[26]

Iwasaki O, Tanizawa H, Kim K-D et al. Involvement of condensin in cellular senescence through gene regulation and compartmental reorganization. Nat Commun. 2019;10:5688. https://doi.org/10.1038/s41467-019-13604-5.

[27]

Chen L, Liao F, Wu J et al. Acceleration of ageing via disturbing mTOR-regulated proteostasis by a new ageing-associated gene PC4. Aging Cell. 2021;20: e13370. https://doi.org/10.1111/acel.13370.

[28]

Blair MJ, Jones JD, Woessner AE et al. Skin structure-function relationships and the wound healing response to intrinsic aging. Adv Wound Care. 2020; 9:127-43. https://doi.org/10.1089/wound.2019.1021.

[29]

Chambers ES, Vukmanovic-Stejic M. Skin barrier immunity and ageing. Immunology. 2020; 160:116-25. https://doi.org/10.1111/imm.13152.

[30]

Liu T, Li N, Yan Y-Q et al. Recent advances in the anti-aging effects of phytoestrogens on collagen, water content, and oxidative stress. Phytother Res. 2020; 34:435-47. https://doi.org/10.1002/ptr.6538.

[31]

Monteleone P, Mascagni G, Giannini A et al. Symptoms of menopause—global prevalence, physiology and implications. Nat Rev Endocrinol. 2018; 14:199-215. https://doi.org/10.1038/nrendo.2017.180.

[32]

Krutmann J, Schikowski T, Morita A et al. Environmentally-induced (Extrinsic) skin aging: exposomal factors and underlying mechanisms. J Invest Dermatol. 2021; 141:1096-103. https://doi.org/10.1016/j.jid.2020.12.011.

[33]

Wang F, Smith NR, Tran BAP et al. Dermal damage promoted by repeated low-level UV-A1 exposure despite tanning response in human skin. JAMA Dermatology. 2014; 150:401-6. https://doi.org/10.1001/jamadermatol.2013.8417.

[34]

Bernerd F, Passeron T, Castiel I et al. The damaging effects of long UVA (UVA1) rays: A major challenge to preserve skin health and integrity. Int J Mol Sci. 2022;23:8243. https://doi.org/10.3390/ijms23158243.

[35]

Pelclova D, Navratil T, Kacerova T et al. NanoTiO(2) sunscreen does not prevent systemic oxidative stress caused by UV radiation and a Minor amount of NanoTiO(2) is absorbed in humans. Nanomaterials (Basel). 2019;9:888. https://doi.org/10.3390/nano9060888.

[36]

Kim DJ, Iwasaki A, Chien AL et al. UVB-mediated DNA damage induces matrix metalloproteinases to promote photoaging in an AhR- and SP1-dependent manner. JCI Insight. 2022;7:e156344. https://doi.org/10.1172/jci.insight.156344.

[37]

Karapetsas A, Voulgaridou G-P, Iliadi D et al. Honey extracts exhibit cytoprotective properties against UVB-induced photodamage in Human experimental skin models. Antioxidants (Basel, Switzerland). 2020;9:566. https://doi.org/10.3390/antiox9070566.

[38]

Georgescu SR, Mitran CI, Mitran MI et al. Oxidative stress in cutaneous lichen planus-A narrative review. J Clin Med. 2021;10:2692. https://doi.org/10.3390/jcm10122692.

[39]

Tsuchida K, Kobayashi M Ultraviolet A irradiation induces ultraweak photon emission with characteristic spectral patterns from biomolecules present in human skin. Sci Rep. 2020;10:21667. https://doi.org/10.1038/s41598-020-78884-0.

[40]

Lan Y, Wang Y, Lu H Opsin 3 is a key regulator of ultraviolet A-induced photoageing in human dermal fibroblast cells. Br J Dermatol. 2020; 182:1228-44. https://doi.org/10.1111/bjd.18410.

[41]

Alam MB, Chowdhury NS, Sohrab MH et al. Cerevisterol alleviates inflammation via suppression of MAPK/NF-κB/AP-1 and activation of the Nrf2/HO-1 signaling cascade. Biomolecules. 2020;10:199. https://doi.org/10.3390/biom10020199.

[42]

Pittayapruek P, Meephansan J, Prapapan O et al. Role of matrix metalloproteinases in photoaging and photocarcinogenesis. Int J Mol Sci. 2016;17:868. https://doi.org/10.3390/ijms17060868.

[43]

Han S, Ballinger E, Choung S-Y et al. Anti-photoaging effect of hydrolysates from Pacific whiting skin via MAPK/AP-1, NF-kappaB, TGF-beta/smad, and nrf-2/HO-1 signaling pathway in UVB-induced Human dermal fibroblasts. Mar Drugs. 2022;20:308 https://doi.org/10.3390/md20050308.

[44]

Xu D, Li C, Zhao M Attenuation of UV-induced skin photoaging in rats by walnut protein hydrolysates is linked to the modulation of MAPK/AP-1 and TGF-beta/smad signaling pathways. Food Funct. 2022; 13:609-23. https://doi.org/10.1039/d1fo02598h.

[45]

Aguilera P, Whalen J, Minguet C et al. The nuclear pore complex prevents sister chromatid recombination during replicative senescence. Nat Commun. 2020;11:160. https://doi.org/10.1038/s41467-019-13979-5.

[46]

Xu X, Li Y, Bharath SR et al. Structural basis for reactivating the mutant TERT promoter by cooperative binding of p52 and ETS1. Nat Commun. 2018;9:3183. https://doi.org/10.1038/s41467-018-05644-0.

[47]

Victorelli S, Lagnado A, Halim J et al. Senescent human melanocytes drive skin ageing via paracrine telomere dysfunction. EMBO J. 2019;38: e101982. https://doi.org/10.15252/embj.2019101982.

[48]

Jia Y, Mao Q, Yang J et al. (-)-Epigallocatechin-3-gallate protects Human skin fibroblasts from ultraviolet a induced photoaging. Clin Cosmet Investig Dermatol. 2023; 16:149-59. https://doi.org/10.2147/CCID.S398547.

[49]

Marion RM, Strati K, Li H et al. Telomeres acquire embryonic stem cell characteristics in induced pluripotent stem cells. Cell Stem Cell. 2009; 4:141-54. https://doi.org/10.1016/j.stem.2008.12.010.

[50]

Flores I, Cayuela ML, Blasco MA Effects of telomerase and telomere length on epidermal stem cell behavior. Science. 2005; 309:1253-6. https://doi.org/10.1126/science.1115025.

[51]

Ball JM, Chen S, Li W Mitochondria in cone photoreceptors act as microlenses to enhance photon delivery and confer directional sensitivity to light. Sci Adv. 2022; 8:eabn2070. https://doi.org/10.1126/sciadv.abn2070.

[52]

Watanabe M, Natsuga K, Nishie W et al. Type XVII collagen coordinates proliferation in the interfollicular epidermis. eLife. 2017;6: e 26635 https://doi.org/10.7554/eLife.26635.

[53]

Sreedhar A, Aguilera-Aguirre L, Singh KK Mitochondria in skin health, aging, and disease. Cell Death Dis. 2020;11:444. https://doi.org/10.1038/s41419-020-2649-z.

[54]

Xu Y, Qi F, Mao H et al. In-situ transfer vat photopolymerization for transparent microfluidic device fabrication. Nat Commun. 2022;13:918. https://doi.org/10.1038/s41467-022-28579-z.

[55]

Chen X, Su J, Wang R et al. Structural optimization of cannabidiol as multifunctional cosmetic raw materials. Antioxidants (Basel, Switzerland). 2023;12:314. https://doi.org/10.3390/antiox12020314.

[56]

Berneburg M, Plettenberg H, Medve-König K et al. Induction of the photoaging-associated mitochondrial common deletion in vivo in normal human skin. J Invest Dermatol. 2004; 122:1277-83. https://doi.org/10.1111/j.0022-202X.2004.22502.x.

[57]

Schroeder P, Gremmel T, Berneburg M et al. Partial depletion of mitochondrial DNA from human skin fibroblasts induces a gene expression profile reminiscent of photoaged skin. J Invest Dermatol. 2008; 128:2297-303. https://doi.org/10.1038/jid.2008.57.

[58]

Arslanbaeva L, Tosi G, Ravazzolo M et al. UBIAD1 and CoQ 10 protect melanoma cells from lipid peroxidation-mediated cell death. Redox Biol. 2022;51:102272. https://doi.org/10.1016/j.redox.2022.102272.

[59]

López-Lluch G Coenzyme Q homeostasis in aging: response to non-genetic interventions.Free Radical Biol Med. 2021; 164:285-302. https://doi.org/10.1016/j.freeradbiomed.2021.01.024.

[60]

Marcheggiani F, Cirilli I, Orlando P et al. Modulation of Coenzyme Q(10) content and oxidative status in human dermal fibroblasts using HMG-CoA reductase inhibitor over a broad range of concentrations. From mitohormesis to mitochondrial dysfunction and accelerated aging. Aging. 2019; 11:2565-82. https://doi.org/10.18632/aging.101926.

[61]

Bešlić I, Lugović-Mihić L, Vrtarić A et al. Melatonin in dermatologic allergic diseases and other skin conditions: current trends and reports. Int J Mol Sci. 2023;24:4039. https://doi.org/10.3390/ijms24044039.

[62]

Dong K, Goyarts E, Rella A et al. Age associated decrease of MT-1 melatonin receptor in Human dermal skin fibroblasts impairs protection against UV-induced DNA damage. Int J Mol Sci. 2020;21:326. https://doi.org/10.3390/ijms21010326.

[63]

Kleszczyński K, Tukaj S, Kruse N et al. Melatonin prevents ultraviolet radiation-induced alterations in plasma membrane potential and intracellular pH in human keratinocytes. J Pineal Res. 2013; 54:89-99. https://doi.org/10.1111/j.1600-079X.2012.01028.x.

[64]

Mansouri A, Gaou I, De Kerguenec C et al. An alcoholic binge causes massive degradation of hepatic mitochondrial DNA in mice. Gastroenterology. 1999; 117:181-90. https://doi.org/10.1016/s0016-5085(99)70566-4.

[65]

Díaz-Casado ME, Rusanova I, Aranda P et al. In vivo determination of mitochondrial respiration in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-treated zebrafish reveals the efficacy of melatonin in restoring mitochondrial normalcy. Zebrafish. 2018; 15:15-26. https://doi.org/10.1089/zeb.2017.1479.

[66]

Pi H, Xu S, Reiter RJ et al. SIRT3-SOD2-mROS-dependent autophagy in cadmium-induced hepatotoxicity and salvage by melatonin. Autophagy. 2015; 11:1037-51. https://doi.org/10.1080/15548627.2015.1052208.

[67]

Slominski AT, Zmijewski MA, Semak I et al. Melatonin, mitochondria, and the skin. Cell Mol Life Sci. 2017; 74:3913-25. https://doi.org/10.1007/s00018-017-2617-7.

[68]

Venegas C, García JA, Escames G et al. Extrapineal melatonin: analysis of its subcellular distribution and daily fluctuations. J Pineal Res. 2012; 52:217-27. https://doi.org/10.1111/j.1600-079X.2011.00931.x.

[69]

Slominski AT, Semak I, Fischer TW et al. Metabolism of melatonin in the skin: why is it important?. Exp Dermatol. 2017; 26:563-8. https://doi.org/10.1111/exd.13208.

[70]

Lu TX, Rothenberg ME. MicroRNA. J Allergy Clin Immunol. 2018; 141:1202-7. https://doi.org/10.1016/j.jaci.2017.08.034.

[71]

Ahmed MI, Pickup ME, Rimmer AG et al. Interplay of MicroRNA-21 and SATB1 in epidermal keratinocytes during skin aging. J Invest Dermatol. 2019; 139:2538-42. https://doi.org/10.1016/j.jid.2019.04.022.

[72]

Srivastava A, Karlsson M, Marionnet C et al. Identification of chronological and photoageing-associated microRNAs in human skin. Sci Rep. 2018;8:12990. https://doi.org/10.1038/s41598-018-31217-8.

[73]

Röck K, Tigges J, Sass S et al. miR-23a-3p causes cellular senescence by targeting hyaluronan synthase 2: possible implication for skin aging. J Invest Dermatol. 2015; 135:369-77. https://doi.org/10.1038/jid.2014.422.

[74]

Salminen A, Kaarniranta K, Kauppinen A Photoaging: UV radiation-induced inflammation and immunosuppression accelerate the aging process in the skin. Inflamm Res. 2022; 71:817-31. https://doi.org/10.1007/s00011-022-01598-8.

[75]

Lee YI, Choi S, Roh WS et al. Cellular senescence and inflammaging in the skin microenvironment. Int J Mol Sci. 2021;22:3849. https://doi.org/10.3390/ijms22083849.

[76]

Pilkington SM, Bulfone-Paus S, Griffiths CEM et al. Inflammaging and the skin. J Invest Dermatol. 2021; 141:1087-95. https://doi.org/10.1016/j.jid.2020.11.006.

[77]

Pilkington SM, Ogden S, Eaton LH et al. Lower levels of interleukin-1beta gene expression are associated with impaired Langerhans' cell migration in aged human skin. Immunology. 2018; 153:60-70. https://doi.org/10.1111/imm.12810.

[78]

Wang Y, Liu S, Li L et al. Peritoneal M2 macrophage-derived extracellular vesicles as natural multitarget nanotherapeutics to attenuate cytokine storms after severe infections. J Control Release. 2022; 349:118-32. https://doi.org/10.1016/j.jconrel.2022.06.063.

[79]

Gather L, Nath N, Falckenhayn C et al. Macrophages are polarized toward an inflammatory phenotype by their aged microenvironment in the Human skin. J Invest Dermatol. 2022; 142:3136-45. https://doi.org/10.1016/j.jid.2022.06.023.

[80]

Zhou Z, Liu J, Fu T et al. Phosphorylation regulates the binding of autophagy receptors to FIP 200 Claw domain for selective autophagy initiation. Nat Commun. 2021;12:1570. https://doi.org/10.1038/s41467-021-21874-1.

[81]

Yin Z, Liu X, Ariosa A et al. Psp2, a novel regulator of autophagy that promotes autophagy-related protein translation. Cell Res. 2019; 29:994-1008. https://doi.org/10.1038/s41422-019-0246-4.

[82]

Umar SA, Shahid NH, Nazir LA et al. Pharmacological activation of autophagy restores cellular homeostasis in ultraviolet-(B)-induced skin photodamage. Front Oncol. 2021;11:726066. https://doi.org/10.3389/fonc.2021.726066.

[83]

Chen Q, Zhang H, Yang Y et al. Metformin attenuates UVA-induced skin photoaging by suppressing mitophagy and the PI3K/AKT/mTOR pathway. Int J Mol Sci. 2022;23:6960. https://doi.org/10.3390/ijms23136960.

[84]

Khan A, Ikram M, Muhammad T et al. Caffeine modulates cadmium-induced oxidative stress, neuroinflammation, and cognitive impairments by regulating nrf-2/HO-1 In vivo and In vitro. J Clin Med. 2019;8:680. https://doi.org/10.3390/jcm8050680.

[85]

Li Y-F, Ouyang S-H, Tu L-F et al. Caffeine protects skin from oxidative stress-induced senescence through the activation of autophagy. Theranostics. 2018; 8:5713-30. https://doi.org/10.7150/thno.28778.

[86]

Kou X, Xu X, Chen C et al. The Fas/Fap-1/Cav-1 complex regulates IL-1RA secretion in mesenchymal stem cells to accelerate wound healing. Sci Transl Med. 2018;10:432. https://doi.org/10.1126/scitranslmed.aai8524.

[87]

Zhou H, He Y, Xiong W et al. MSC based gene delivery methods and strategies improve the therapeutic efficacy of neurological diseases. Bioact Mater. 2023; 23:409-37. https://doi.org/10.1016/j.bioactmat.2022.11.007.

[88]

Lv F-J, Tuan RS, Cheung KMC et al. Concise review: the surface markers and identity of human mesenchymal stem cells. Stem Cells. 2014; 32:1408-19. https://doi.org/10.1002/stem.1681.

[89]

Kalluri R, Lebleu VS. The biology, function, and biomedical applications of exosomes. Science. 2020;367:eaau6977. https://doi.org/10.1126/science.aau6977.

[90]

Trams EG, Lauter CJ, Norman Salem J et al. Exfoliation of membrane ecto-enzymes in the form of micro-vesicles. Biochim Biophys Acta. 1981; 645:63-70. https://doi.org/10.1016/0005-2736(81)90512-5.

[91]

Meng W, Hao Y, He C et al. Exosome-orchestrated hypoxic tumor microenvironment. Mol Cancer. 2019;18:57. https://doi.org/10.1186/s12943-019-0982-6.

[92]

Wang X, Wu R, Zhai P et al. Hypoxia promotes EV secretion by impairing lysosomal homeostasis in HNSCC through negative regulation of ATP6V1A by HIF-1α. J Extracell Vesicles. 2023;12: e12310. https://doi.org/10.1002/jev2.12310.

[93]

Meldolesi J Exosomes and ectosomes in intercellular communication. Current biology: CB. 2018; 28: R435-44. https://doi.org/10.1016/j.cub.2018.01.059.

[94]

Liang Y, Duan L, Lu J et al. Engineering exosomes for targeted drug delivery. Theranostics. 2021; 11:3183-95. https://doi.org/10.7150/thno.52570.

[95]

Liang G, Zhu Y, Ali DJ et al. Engineered exosomes for targeted co-delivery of miR-21 inhibitor and chemotherapeutics to reverse drug resistance in colon cancer. J Nanobiotechnology. 2020;18:10. https://doi.org/10.1186/s12951-019-0563-2.

[96]

Yeo RWY, Lai RC, Zhang B et al. Mesenchymal stem cell: an efficient mass producer of exosomes for drug delivery. Adv Drug Deliv Rev. 2013; 65:336-41. https://doi.org/10.1016/j.addr.2012.07.001.

[97]

Jadczyk T, Faulkner A, Madeddu P Stem cell therapy for cardiovascular disease: the demise of alchemy and rise of pharmacology. Br J Pharmacol. 2013; 169:247-68. https://doi.org/10.1111/j.1476-5381.2012.01965.x.

[98]

Chan AML, Sampasivam Y, Lokanathan Y Biodistribution of mesenchymal stem cells (MSCs) in animal models and implied role of exosomes following systemic delivery of MSCs: a systematic review. Am J Transl Res. 2022;14:2147-61.

[99]

Furlani D, Ugurlucan M, Ong L et al. Is the intravascular administration of mesenchymal stem cells safe? Mesenchymal stem cells and intravital microscopy. Microvasc Res. 2009; 77:370-6. https://doi.org/10.1016/j.mvr.2009.02.001.

[100]

Merino-González C, Zuñiga FA, Escudero C et al. Mesenchymal stem cell-derived extracellular vesicles promote angiogenesis: potencial clinical application. Front Physiol. 2016;7:24. https://doi.org/10.3389/fphys.2016.00024.

[101]

Santos AC, Morais F, Simões A et al. Nanotechnology for the development of new cosmetic formulations. Expert Opin Drug Deliv. 2019; 16:313-30. https://doi.org/10.1080/17425247.2019.1585426.

[102]

Kaul S, Gulati N, Verma D et al. Role of nanotechnology in cosmeceuticals: A review of recent advances. J Pharm (Cairo). 2018;2018:3420204. https://doi.org/10.1155/2018/3420204.

[103]

Aziz ZAA, Mohd-Nasir H, Ahmad A et al. Role of nanotechnology for design and development of Cosmeceutical: application in makeup and skin care. Front Chem. 2019;7:739. https://doi.org/10.3389/fchem.2019.00739.

[104]

Sharma A, Madhunapantula SV, Robertson GP Toxicological considerations when creating nanoparticle-based drugs and drug delivery systems. Expert Opin Drug Metab Toxicol. 2012; 8:47-69. https://doi.org/10.1517/17425255.2012.637916.

[105]

Guo S-C, Tao S-C, Yin W-J et al. Exosomes derived from platelet-rich plasma promote the re-epithelization of chronic cutaneous wounds via activation of YAP in a diabetic rat model. Theranostics. 2017; 7:81-96. https://doi.org/10.7150/thno.16803.

[106]

Chi B, Zou A, Mao L et al. Empagliflozin-pretreated mesenchymal stem cell-derived small extracellular vesicles attenuated heart injury. Oxid Med Cell Longev. 2023;2023:7747727. https://doi.org/10.1155/2023/7747727.

[107]

Magny R, Regazzetti A, Kessal K et al. Lipid annotation by combination of UHPLC-HRMS (MS), molecular networking, and retention time prediction: application to a lipidomic study of In vitro models of dry eye disease. Metabolites. 2020;10: 225 https://doi.org/10.3390/metabo10060225.

[108]

Kong L, Zhang D, Huang S et al. Extracellular vesicles in mental disorders: A state-of-art review. Int J Biol Sci. 2023; 19:1094-109. https://doi.org/10.7150/ijbs.79666.

[109]

Yin X, Jiang L-H Extracellular vesicles: targeting the heart. Front Cardiovasc Med. 2022;9:1041481. https://doi.org/10.3389/fcvm.2022.1041481.

[110]

Lőrincz ÁM, Timár CI, Marosvári KA et al. Effect of storage on physical and functional properties of extracellular vesicles derived from neutrophilic granulocytes. J Extracell Vesicles. 2014;3:25465. https://doi.org/10.3402/jev.v3.25465.

[111]

Zhou H, Yuen PST, Pisitkun T et al. Collection, storage, preservation, and normalization of human urinary exosomes for biomarker discovery. Kidney Int. 2006; 69:1471-6. https://doi.org/10.1038/sj.ki.5000273.

[112]

Mahanty S, Dakappa SS, Shariff R et al. Keratinocyte differentiation promotes ER stress-dependent lysosome biogenesis. Cell Death Dis. 2019;10:269. https://doi.org/10.1038/s41419-019-1478-4.

[113]

Lee S, Choi YJ, Lee S et al. Protective effects of withagenin A diglucoside from indian Ginseng (Withania somnifera) against Human dermal fibroblast damaged by TNF-α stimulation. Antioxidants (Basel, Switzerland). 2022;11:2248. https://doi.org/10.3390/antiox11112248.

[114]

Zou Z, Long X, Zhao Q et al. A single-cell transcriptomic atlas of Human skin aging. Dev Cell. 2021; 56:383-97. https://doi.org/10.1016/j.devcel.2020.11.002.

[115]

Chang H, Chen J, Ding K et al. Highly-expressed lncRNA FOXD2-AS1 in adipose mesenchymal stem cell derived exosomes affects HaCaT cells via regulating miR-185-5p/ROCK2 axis. Adipocyte. 2023;12:2173513. https://doi.org/10.1080/21623945.2023.2173513.

[116]

Zhao G, Liu F, Liu Z et al. MSC-derived exosomes attenuate cell death through suppressing AIF nucleus translocation and enhance cutaneous wound healing. Stem Cell Res Ther. 2020;11:174. https://doi.org/10.1186/s13287-020-01616-8.

[117]

Zhang W, Bai X, Zhao B et al. Cell-free therapy based on adipose tissue stem cell-derived exosomes promotes wound healing via the PI3K/Akt signaling pathway. Exp Cell Res. 2018; 370:333-42. https://doi.org/10.1016/j.yexcr.2018.06.035.

[118]

Jiang T, Wang Z, Sun J Human bone marrow mesenchymal stem cell-derived exosomes stimulate cutaneous wound healing mediates through TGF-β/smad signaling pathway. Stem Cell Res Ther. 2020;11:198. https://doi.org/10.1186/s13287-020-01723-6.

[119]

Cui N, Hu M, Khalil RA Biochemical and biological attributes of matrix metalloproteinases. Prog Mol Biol Transl Sci. 2017; 147:1-73. https://doi.org/10.1016/bs.pmbts.2017.02.005.

[120]

Szilágyi Z, Németh Z, Bakos J et al. Assessment of inflammation in 3D reconstructed Human skin exposed to combined exposure to ultraviolet and Wi-fi radiation. Int J Mol Sci. 2023;24:2853. https://doi.org/10.3390/ijms24032853.

[121]

Kim H, Jang J, Song MJ et al. Inhibition of matrix metalloproteinase expression by selective clearing of senescent dermal fibroblasts attenuates ultraviolet-induced photoaging. Biomed Pharmacother. 2022;150:113034. https://doi.org/10.1016/j.biopha.2022.113034.

[122]

Park J-Y, Lee JY, Kim Y et al. Latilactobacillus sakei Wikim 0066 protects skin through MMP regulation on UVB-irradiated In vitro and In vivo model. Nutrients. 2023;15:726. https://doi.org/10.3390/nu15030726.

[123]

Deng M, Yu TZ, Li D et al. Human umbilical cord mesenchymal stem cell-derived and dermal fibroblast-derived extracellular vesicles protect dermal fibroblasts from ultraviolet radiation-induced photoaging in vitro. Photochem Photobiol Sci. 2020; 19:406-14. https://doi.org/10.1039/c9pp00421a.

[124]

Gao W, Yuan L-M, Zhang Y et al. miR-1246-overexpressing exosomes suppress UVB-induced photoaging via regulation of TGF-β/smad and attenuation of MAPK/AP-1 pathway. Photochem Photobiol Sci. 2023; 22:135-46. https://doi.org/10.1007/s43630-022-00304-1.

[125]

Zhang Y, Zhang M, Yao A et al. Circ_0011129 encapsulated by the small extracellular vesicles derived from Human stem cells ameliorate skin photoaging. Int J Mol Sci. 2022;23:15390. https://doi.org/10.3390/ijms232315390.

[126]

Yen C-A, Curran SP. Incomplete proline catabolism drives premature sperm aging. Aging Cell. 2021;20: e13308. https://doi.org/10.1111/acel.13308.

[127]

Liu X, Xing Y, Yuen M et al. Anti-aging effect and mechanism of proanthocyanidins extracted from sea buckthorn on hydrogen peroxide-induced aging Human skin fibroblasts. Antioxidants (Basel, Switzerland). 2022; 11:1900. https://doi.org/10.3390/antiox11101900.

[128]

Feng W, Han X, Hu H et al. 2D vanadium carbide MXenzyme to alleviate ROS-mediated inflammatory and neurodegenerative diseases. Nat Commun. 2021; 12:2203. https://doi.org/10.1038/s41467-021-22278-x.

[129]

Jiang Q, Yin J, Chen J et al. Mitochondria-targeted antioxidants: A step towards disease treatment. Oxid Med Cell Longev. 2020;2020:8837893. https://doi.org/10.1155/2020/8837893.

[130]

Wang T, Jian Z, Baskys A et al. MSC-derived exosomes protect against oxidative stress-induced skin injury via adaptive regulation of the NRF 2 defense system. Biomaterials. 2020;257:120264. https://doi.org/10.1016/j.biomaterials.2020.120264.

[131]

Shiekh PA, Singh A, Kumar A Exosome laden oxygen releasing antioxidant and antibacterial cryogel wound dressing OxOBand alleviate diabetic and infectious wound healing. Biomaterials. 2020;249:120020. https://doi.org/10.1016/j.biomaterials.2020.120020.

[132]

Li X, Xie X, Lian W et al. Exosomes from adipose-derived stem cells overexpressing Nrf2 accelerate cutaneous wound healing by promoting vascularization in a diabetic foot ulcer rat model. Exp Mol Med. 2018; 50:1-14. https://doi.org/10.1038/s12276-018-0058-5.

[133]

Wu P, Zhang B, Han X et al. HucMSC exosome-delivered 14-3-3ζ alleviates ultraviolet radiation-induced photodamage via SIRT1 pathway modulation. Aging. 2021; 13:11542-63. https://doi.org/10.18632/aging.202851.

[134]

Miró L, Garcia-Just A, Amat C et al. Dietary animal plasma proteins improve the intestinal immune response in senescent mice. Nutrients. 2017;9:1346. https://doi.org/10.3390/nu9121346.

[135]

Qin Z-Y, Gu X, Chen Y-L et al. Toll-like receptor 4 activates the NLRP3 inflammasome pathway and periodontal inflammaging by inhibiting bmi-1 expression. Int J Mol Med. 2021; 47:137-50. https://doi.org/10.3892/ijmm.2020.4787.

[136]

Agrawal A, Agrawal S, Gupta S Role of dendritic cells in inflammation and loss of tolerance in the elderly. Front Immunol. 2017;8:896. https://doi.org/10.3389/fimmu.2017.00896.

[137]

Rodrigues LP, Teixeira VR, Alencar-Silva T et al. Hallmarks of aging and immunosenescence: connecting the dots. Cytokine Growth Factor Rev. 2021; 59:9-21. https://doi.org/10.1016/j.cytogfr.2021.01.006.

[138]

Pilkington SM, Bulfone-Paus S, Griffiths CEM et al. Inflammaging and the skin. J Invest Dermatol. 2021; 141:1087-95. https://doi.org/10.1016/j.jid.2020.11.006.

[139]

Hasegawa T, Nakashima M, Suzuki Y Nuclear DNA damage-triggered NLRP3 inflammasome activation promotes UVB-induced inflammatory responses in human keratinocytes. Biochem Biophys Res Commun. 2016; 477:329-35. https://doi.org/10.1016/j.bbrc.2016.06.106.

[140]

Xiao T, Chen Y, Song C et al. Possible treatment for UVB-induced skin injury: anti-inflammatory and cytoprotective role of metformin in UVB-irradiated keratinocytes. J Dermatol Sci. 2021; 102:25-35., https://doi.org/10.1016/j.jdermsci.2021.02.002.

[141]

Shi Y, Wang Y, Li Q et al. Immunoregulatory mechanisms of mesenchymal stem and stromal cells in inflammatory diseases. Nat Rev Nephrol. 2018; 14:493-507. https://doi.org/10.1038/s41581-018-0023-5.

[142]

Zhang B, Lai RC, Sim WK et al. Topical application of mesenchymal stem cell exosomes alleviates the imiquimod induced psoriasis-like inflammation. Int J Mol Sci. 2021;22:720. https://doi.org/10.3390/ijms22020720.

[143]

Cho BS, Kim JO, Ha DH et al. Exosomes derived from human adipose tissue-derived mesenchymal stem cells alleviate atopic dermatitis. Stem Cell Res Ther. 2018;9:187. https://doi.org/10.1186/s13287-018-0939-5.

[144]

Patel RS, Impreso S, Lui A et al. Long noncoding RNA GAS 5 contained in exosomes derived from Human adipose stem cells promotes repair and modulates inflammation in a chronic dermal wound healing model. Biology. 2022;11:426. https://doi.org/10.3390/biology11030426.

[145]

Liu W, Yu M, Xie D et al. Melatonin-stimulated MSC-derived exosomes improve diabetic wound healing through regulating macrophage M1 and M2 polarization by targeting the PTEN/AKT pathway. Stem Cell Res Ther. 2020;11:259. https://doi.org/10.1186/s13287-020-01756-x.

[146]

Heo JS Selenium-stimulated exosomes enhance wound healing by modulating inflammation and angiogenesis. Int J Mol Sci. 2022;23:11543. https://doi.org/10.3390/ijms231911543.

[147]

Park G-H, Kwon HH, Seok J et al. Efficacy of combined treatment with human adipose tissue stem cell-derived exosome-containing solution and microneedling for facial skin aging: A 12-week prospective, randomized, split-face study. J Cosmet Dermatol. 2023; 22:3418-26. https://doi.org/10.1111/jocd.15872.

[148]

Rohde E, Pachler K, Gimona M Manufacturing and characterization of extracellular vesicles from umbilical cord-derived mesenchymal stromal cells for clinical testing. Cytotherapy. 2019; 21:581-92. https://doi.org/10.1016/j.jcyt.2018.12.006.

[149]

Imai T, Takahashi Y, Nishikawa M et al. Macrophage-dependent clearance of systemically administered B16BL6-derived exosomes from the blood circulation in mice. J Extracell Vesicles. 2015;4:26238. https://doi.org/10.3402/jev.v4.26238.

[150]

Cao H, Duan L, Zhang Y et al. Current hydrogel advances in physicochemical and biological response-driven biomedical application diversity. Signal Transduct Target Ther. 2021;6:426. https://doi.org/10.1038/s41392-021-00830-x.

[151]

Lai W-F, He Z-D Design and fabrication of hydrogel-based nanoparticulate systems for in vivo drug delivery. J Control Release. 2016; 243:269-82. https://doi.org/10.1016/j.jconrel.2016.10.013.

[152]

Teixeira MO, Antunes JC, Felgueiras HP Recent advances in Fiber-hydrogel composites for wound healing and drug delivery systems. Antibiotics (Basel). 2021;10:248. https://doi.org/10.3390/antibiotics10030248.

[153]

Wang Q, Qu Y, Zhang Z et al. Injectable DNA hydrogel-based local drug delivery and immunotherapy. Gels. 2022;8:400. https://doi.org/10.3390/gels8070400.

[154]

Mol EA, Lei Z, Roefs MT et al. Injectable supramolecular ureidopyrimidinone hydrogels provide sustained release of extracellular vesicle therapeutics. Adv Healthc Mater. 2019;8: e1900847. https://doi.org/10.1002/adhm.201900847.

[155]

Zhang K, Chen X, Li H et al. A nitric oxide-releasing hydrogel for enhancing the therapeutic effects of mesenchymal stem cell therapy for hindlimb ischemia. Acta Biomater. 2020; 113:289-304. https://doi.org/10.1016/j.actbio.2020.07.011.

[156]

Zhang S, Liu Y, Zhang X et al. Prostaglandin E(2) hydrogel improves cutaneous wound healing via M2 macrophages polarization. Theranostics. 2018; 8:5348-61. https://doi.org/10.7150/thno.27385.

[157]

Zhao X, Liu Y, Jia P et al. Chitosan hydrogel-loaded MSC-derived extracellular vesicles promote skin rejuvenation by ameliorating the senescence of dermal fibroblasts. Stem Cell Res Ther. 2021;12:196. https://doi.org/10.1186/s13287-021-02262-4.

[158]

You DG, An JY, Um W et al. Stem cell-derived extracellular vesicle-bearing dermal filler ameliorates the dermis microenvironment by supporting CD301b-expressing macrophages. ACS Nano. 2022; 16:251-60. https://doi.org/10.1021/acsnano.1c06096.

[159]

Ma G, Wu C. Microneedle, bio-microneedle and bio-inspired microneedle: A review. J Control Release. 2017; 251:11-23. https://doi.org/10.1016/j.jconrel.2017.02.011.

[160]

Hong JY, Kwon T-R, Kim JH et al. Prospective, preclinical comparison of the performance between radiofrequency microneedling and microneedling alone in reversing photoaged skin. J Cosmet Dermatol. 2020; 19:1105-9. https://doi.org/10.1111/jocd.13116.

[161]

Cao Z, Jin S, Wang P et al. Microneedle based adipose derived stem cells-derived extracellular vesicles therapy ameliorates UV-induced photoaging in SKH-1 mice. J Biomed Mater Res A. 2021; 109:1849-57. https://doi.org/10.1002/jbm.a.37177.

[162]

You Y, Tian Y, Yang Z et al. Intradermally delivered mRNA-encapsulating extracellular vesicles for collagen-replacement therapy. Nat Biomed Eng. 2023; 7:887-900. https://doi.org/10.1038/s41551-022-00989-w.

[163]

Zhang S, Ou H, Liu C et al. Skin delivery of hydrophilic biomacromolecules using marine sponge spicules. Mol Pharm. 2017; 14:3188-200. https://doi.org/10.1021/acs.molpharmaceut.7b00468.

[164]

Zhang K, Yu L, Li F-R et al. Topical application of exosomes derived from Human umbilical cord mesenchymal stem cells in combination with sponge spicules for treatment of photoaging. Int J Nanomedicine. 2020; 15:2859-72. https://doi.org/10.2147/IJN.S249751.

[165]

Nkosi D, Howell LA, Cheerathodi MR et al. Transmembrane domains mediate intra- and extracellular trafficking of Epstein-Barr Virus latent membrane protein 1. J Virol. 2018; 92:e00280-18. https://doi.org/10.1128/jvi.00280-18.

[166]

Fang Y, Wu N, Gan X et al. Higher-order oligomerization targets plasma membrane proteins and HIV gag to exosomes. PLoS Biol. 2007;5: e158. https://doi.org/10.1371/journal.pbio.0050158.

[167]

Gan X, Gould SJ Identification of an inhibitory budding signal that blocks the release of HIV particles and exosome/microvesicle proteins. Mol Biol Cell. 2011; 22:817-30. https://doi.org/10.1091/mbc.E10-07-0625.

[168]

Hu CMJ, Zhang L Nanoparticle-based combination therapy toward overcoming drug resistance in cancer. Biochem Pharmacol. 2012; 83:1104-11. https://doi.org/10.1016/j.bcp.2012.01.008.

[169]

Gibis M, Rahn N, Weiss J Physical and oxidative stability of uncoated and chitosan-coated liposomes containing grape seed extract. Pharmaceutics. 2013; 5:421-33. https://doi.org/10.3390/pharmaceutics5030421.

[170]

Hu CMJ, Zhang L, Aryal S et al. Erythrocyte membrane-camouflaged polymeric nanoparticles as a biomimetic delivery platform. Proc Natl Acad Sci USA. 2011; 108:10980-5. https://doi.org/10.1073/pnas.1106634108.

[171]

Hu CMJ, Fang RH, Wang K-C et al. Nanoparticle biointerfacing by platelet membrane cloaking. Nature. 2015; 526:118-21. https://doi.org/10.1038/nature15373.

[172]

Boada C, Zinger A, Tsao C et al. Rapamycin-loaded biomimetic nanoparticles reverse vascular inflammation. Circ Res. 2020; 126:25-37. https://doi.org/10.1161/CIRCRESAHA.119.315185. Epub 2019 Oct 24. Erratum in: Circ Res. 2020 Jul 3;127(2):e77. PMID: 31647755.

[173]

Evers MJW, Van De Wakker SI, De Groot EM et al. Functional siRNA delivery by extracellular vesicle-liposome hybrid nanoparticles. Adv Healthc Mater. 2022;11: e2101202. https://doi.org/10.1002/adhm.202101202.

[174]

Zhou X, Miao Y, Wang Y et al. Tumour-derived extracellular vesicle membrane hybrid lipid nanovesicles enhance siRNA delivery by tumour-homing and intracellular freeway transportation. J Extracell Vesicles. 2022;11: e12198. https://doi.org/10.1002/jev2.12198.

[175]

Belhadj Z, He B, Deng H et al. A combined “eat me/don't eat me” strategy based on extracellular vesicles for anticancer nanomedicine. J Extracell Vesicles. 2020;9:1806444. https://doi.org/10.1080/20013078.2020.1806444.

[176]

Delcayre A, Estelles A, Sperinde J et al. Exosome display technology: applications to the development of new diagnostics and therapeutics. Blood Cells Mol Dis. 2005; 35:158-68. https://doi.org/10.1016/j.bcmd.2005.07.003.

[177]

Hartman ZC, Wei J, Glass OK et al. Increasing vaccine potency through exosome antigen targeting. Vaccine. 2011; 29:9361-7. https://doi.org/10.1016/j.vaccine.2011.09.133.

[178]

Wang J-H, Forterre AV, Zhao J et al. Anti-HER2 scFv-directed extracellular vesicle-mediated mRNA-based gene delivery inhibits growth of HER2-positive Human breast tumor xenografts by prodrug activation. Mol Cancer Ther. 2018; 17:1133-42. https://doi.org/10.1158/1535-7163.Mct-17-0827.

[179]

Longatti A, Schindler C, Collinson A et al. High affinity single-chain variable fragments are specific and versatile targeting motifs for extracellular vesicles. Nanoscale. 2018; 10:14230-44. https://doi.org/10.1039/c8nr03970d.

[180]

Alvarez-Erviti L, Seow Y, Yin H et al. Delivery of siRNA to the mouse brain by systemic injection of targeted exosomes. Nat Biotechnol. 2011; 29:341-5. https://doi.org/10.1038/nbt.1807.

[181]

Antes TJ, Middleton RC, Luther KM et al. Targeting extracellular vesicles to injured tissue using membrane cloaking and surface display. J Nanobiotechnology. 2018;16:61. https://doi.org/10.1186/s12951-018-0388-4.

[182]

Cao Y, Wu T, Zhang K et al. Engineered exosome-mediated Near-Infrared-II region V(2)C quantum dot delivery for nucleus-target low-temperature photothermal therapy. ACS Nano. 2019; 13:1499-510. https://doi.org/10.1021/acsnano.8b07224.

[183]

Qi H, Liu C, Long L et al. Blood exosomes endowed with magnetic and targeting properties for cancer therapy. ACS Nano. 2016; 10:3323-33. https://doi.org/10.1021/acsnano.5b06939.

[184]

Vyas KS, Kaufman J, Munavalli GS et al. Exosomes: the latest in regenerative aesthetics. Regen Med. 2023; 18:181-94. https://doi.org/10.2217/rme-2022-0134.

[185]

Wu H, Zhang Z, Zhang Y et al. Extracellular vesicle: A magic lamp to treat skin aging, refractory wound, and pigmented dermatosis?. Front Bioeng Biotechnol. 2022;10:1043320. https://doi.org/10.3389/fbioe.2022.1043320.

[186]

Kamerkar S, Lebleu VS, Sugimoto H et al. Exosomes facilitate therapeutic targeting of oncogenic KRAS in pancreatic cancer. Nature. 2017; 546:498-503. https://doi.org/10.1038/nature22341.

[187]

Yang Z, Shi J, Xie J et al. Large-scale generation of functional mRNA-encapsulating exosomes via cellular nanoporation. Nat Biomed Eng. 2020; 4:69-83. https://doi.org/10.1038/s41551-019-0485-1.

[188]

Ravi A, Sadhna D, Nagpaal D et al. Needle free injection technology: A complete insight. Int J Pharm Investig. 2015; 5:192-9. https://doi.org/10.4103/2230-973x.167662.

[189]

Hu S, Li Z, Cores J et al. Needle-free injection of exosomes derived from human dermal fibroblast spheroids ameliorates skin photoaging. ACS Nano. 2019; 13:11273-82. https://doi.org/10.1021/acsnano.9b04384.

[190]

Zheng G, Huang R, Qiu G et al. Mesenchymal stromal cell-derived extracellular vesicles: regenerative and immunomodulatory effects and potential applications in sepsis. Cell Tissue Res. 2018; 374:1-15. https://doi.org/10.1007/s00441-018-2871-5.

[191]

Cully M Exosome-based candidates move into the clinic. Nat Rev Drug Discov. 2021; 20:6-7. https://doi.org/10.1038/d41573-020-00220-y.

[192]

Görgens A, Corso G, Hagey DW et al. Identification of storage conditions stabilizing extracellular vesicles preparations. J Extracell Vesicles. 2022;11: e12238. https://doi.org/10.1002/jev2.12238.

[193]

Zhang K, Cheng K Stem cell-derived exosome versus stem cell therapy. Nat Rev Bioeng. 2023; 12:1-2. https://doi.org/10.1038/s44222-023-00064-2.

[194]

Elsharkasy OM, Nordin JZ, Hagey DW et al. Extracellular vesicles as drug delivery systems: why and how?. Adv Drug Deliv Rev. 2020; 159:332-43. https://doi.org/10.1016/j.addr.2020.04.004.

[195]

Meng W, He C, Hao Y et al. Prospects and challenges of extracellular vesicle-based drug delivery system: considering cell source. Drug Deliv. 2020; 27:585-98. https://doi.org/10.1080/10717544.2020.1748758.

[196]

Ng K Penetration enhancement of topical formulations. Pharmaceutics. 2018;10:51. https://doi.org/10.3390/pharmaceutics10020051.

AI Summary AI Mindmap
PDF

598

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/