Extracellular vesicles derived from mesenchymal stem cells: the wine in Hebe's hands to treat skin aging

Qixiang Gui, Neng Ding, Zuochao Yao, Minjuan Wu, Ruifeng Fu, Yue Wang, Yunpeng Zhao, Lie Zhu

PDF
Precision Clinical Medicine ›› 2024, Vol. 7 ›› Issue (1) : pbad004. DOI: 10.1093/pcmedi/pbae004
REVIEW

Extracellular vesicles derived from mesenchymal stem cells: the wine in Hebe's hands to treat skin aging

Author information +
History +

Cite this article

Download citation ▾
Qixiang Gui, Neng Ding, Zuochao Yao, Minjuan Wu, Ruifeng Fu, Yue Wang, Yunpeng Zhao, Lie Zhu. Extracellular vesicles derived from mesenchymal stem cells: the wine in Hebe's hands to treat skin aging. Precision Clinical Medicine, 2024, 7(1): pbad004 https://doi.org/10.1093/pcmedi/pbae004

References

[1.]
Byrd AL, Belkaid Y, Segre JA The human skin microbiome. Nat Rev Micro. 2018; 16:143-55. https://doi.org/10.1038/nrmicro.2017.157.
[2.]
Boroni M, Zonari A, Reis De Oliveira C et al. Highly accurate skin-specific methylome analysis algorithm as a platform to screen and validate therapeutics for healthy aging. Clinical Epigenetics. 2020;12:105. https://doi.org/10.1186/s13148-020-00899-1.
[3.]
Freitas R, Martins A, Silva J et al. Highlighting the biological potential of the brown seaweed fucus spiralis for skin applications. Antioxidants (Basel, Switzerland). 2020;9:611. https://doi.org/10.3390/antiox9070611.
[4.]
Lee D, Kim Y, Jo H et al. The anti-inflammatory effect of Aptamin C on House dust mite extract-induced inflammation in keratinocytes via regulation of IL-22 and GDNF production. Antioxidants (Basel, Switzerland). 2021;10:945. https://doi.org/10.3390/antiox10060945.
[5.]
Cho HS, Lee MH, Lee JW et al. Anti-wrinkling effects of the mixture of vitamin C, vitamin E, pycnogenol and evening primrose oil, and molecular mechanisms on hairless mouse skin caused by chronic ultraviolet B irradiation. Photodermatol Photoimmunol Photomed. 2007; 23:155-62. https://doi.org/10.1111/j.1600-0781.2007.00298.x.
[6.]
Knott A, Achterberg V, Smuda C et al. Topical treatment with coenzyme Q10-containing formulas improves skin's Q10 level and provides antioxidative effects. Biofactors. 2015; 41:383-90. https://doi.org/10.1002/biof.1239.
[7.]
Cao C, Xiao Z, Tong H et al. Oral intake of chicken bone collagen peptides anti-skin aging in mice by regulating collagen degradation and synthesis, inhibiting inflammation and activating lysosomes. Nutrients. 2022;14:1622. https://doi.org/10.3390/nu14081622.
[8.]
Papakonstantinou E, Roth M, Karakiulakis G Hyaluronic acid: A key molecule in skin aging. Dermato-endocrinology. 2012; 4:253-8. https://doi.org/10.4161/derm.21923.
[9.]
Polo-Castellano C, Mateos RM, Visiedo F et al. Optimizing an enzymatic extraction method for the flavonoids in moringa (Moringa oleifera Lam.) leaves based on experimental designs methodologies. Antioxidants (Basel, Switzerland). 2023;12:369. https://doi.org/10.3390/antiox12020369.
[10.]
Keshtkar S, Azarpira N, Ghahremani MH Mesenchymal stem cell-derived extracellular vesicles: novel frontiers in regenerative medicine. Stem Cell Res Ther. 2018;9:63. https://doi.org/10.1186/s13287-018-0791-7.
[11.]
Deng L, Ren R, Liu Z et al. Stabilizing heterochromatin by DGCR8 alleviates senescence and osteoarthritis. Nat Commun. 2019;10:3329. https://doi.org/10.1038/s41467-019-10831-8.
[12.]
Kim H, Lee MJ, Bae E-H et al. Comprehensive molecular profiles of functionally effective MSC-derived extracellular vesicles in immunomodulation. Mol Ther. 2020; 28:1628-44. https://doi.org/10.1016/j.ymthe.2020.04.020.
[13.]
Dyball LE, Smales CM Exosomes: biogenesis, targeting, characterization and their potential as “Plug & Play” vaccine platforms. Biotechnol J. 2022;17: e2100646. https://doi.org/10.1002/biot.202100646.
[14.]
Fu M, Gu J, Jiang P et al. Exosomes in gastric cancer: roles, mechanisms, and applications. Mol Cancer. 2019;18:41. https://doi.org/10.1186/s12943-019-1001-7.
[15.]
Xie S, Zhang Q, Jiang L Current knowledge on exosome biogenesis, cargo-sorting mechanism and therapeutic implications. Membranes. 2022;12:498. https://doi.org/10.3390/membranes12050498.
[16.]
Schünke H, Göbel U, Dikic I et al. OTULIN inhibits RIPK1-mediated keratinocyte necroptosis to prevent skin inflammation in mice. Nat Commun. 2021;12:5912. https://doi.org/10.1038/s41467-021-25945-1.
[17.]
Arda O, Göksügür N, Tüzün Y Basic histological structure and functions of facial skin. Clin Dermatol. 2014; 32:3-13. https://doi.org/10.1016/j.clindermatol.2013.05.021.
[18.]
Bollag WB, Aitkens L, White J et al. Aquaporin-3 in the epidermis: more than skin deep. Am J Physiol Cell Physiol. 2020;318: C1144-C1153. https://doi.org/10.1152/ajpcell.00075.2020.
[19.]
Denis J-F, Lévesque M, Tran SD et al. Axolotl as a model to study scarless wound healing in vertebrates: role of the transforming growth factor beta signaling pathway. Adv Wound Care. 2013; 2:250-60. https://doi.org/10.1089/wound.2012.0371.
[20.]
Fu H, Zhang Y, An Q et al. Anti-photoaging effect of rhodiola rosea fermented by Lactobacillus plantarum on UVA-damaged fibroblasts. Nutrients. 2022;14:2324. https://doi.org/10.3390/nu14112324.
[21.]
Younis S, Deeba F, Fatima Saeed R et al. Regulation of cell cycle and differentiation markers by pathogenic, non-pathogenic and opportunistic skin bacteria. Saudi J Biolog Sci. 2022; 29:1717-29. https://doi.org/10.1016/j.sjbs.2021.10.058.
[22.]
Gu Y, Han J, Jiang C et al. Biomarkers, oxidative stress and autophagy in skin aging. Ageing Res Rev. 2020;59:101036. https://doi.org/10.1016/j.arr.2020.101036.
[23.]
Choi JS, Lee Cho W, Choi YJ et al. Functional recovery in photo-damaged human dermal fibroblasts by human adipose-derived stem cell extracellular vesicles. J Extracell Vesicles. 2019;8:1565885. https://doi.org/10.1080/20013078.2019.1565885.
[24.]
Bielach-Bazyluk A, Zbroch E, Mysliwiec H et al. Sirtuin 1 and skin: implications in intrinsic and extrinsic aging-A systematic review. Cells. 2021;10:813. https://doi.org/10.3390/cells10040813.
[25.]
Low E, Alimohammadiha G, Smith LA et al. How good is the evidence that cellular senescence causes skin ageing?. Ageing Res Rev. 2021;71:101456. https://doi.org/10.1016/j.arr.2021.101456.
[26.]
Iwasaki O, Tanizawa H, Kim K-D et al. Involvement of condensin in cellular senescence through gene regulation and compartmental reorganization. Nat Commun. 2019;10:5688. https://doi.org/10.1038/s41467-019-13604-5.
[27.]
Chen L, Liao F, Wu J et al. Acceleration of ageing via disturbing mTOR-regulated proteostasis by a new ageing-associated gene PC4. Aging Cell. 2021;20: e13370. https://doi.org/10.1111/acel.13370.
[28.]
Blair MJ, Jones JD, Woessner AE et al. Skin structure-function relationships and the wound healing response to intrinsic aging. Adv Wound Care. 2020; 9:127-43. https://doi.org/10.1089/wound.2019.1021.
[29.]
Chambers ES, Vukmanovic-Stejic M. Skin barrier immunity and ageing. Immunology. 2020; 160:116-25. https://doi.org/10.1111/imm.13152.
[30.]
Liu T, Li N, Yan Y-Q et al. Recent advances in the anti-aging effects of phytoestrogens on collagen, water content, and oxidative stress. Phytother Res. 2020; 34:435-47. https://doi.org/10.1002/ptr.6538.
[31.]
Monteleone P, Mascagni G, Giannini A et al. Symptoms of menopause—global prevalence, physiology and implications. Nat Rev Endocrinol. 2018; 14:199-215. https://doi.org/10.1038/nrendo.2017.180.
[32.]
Krutmann J, Schikowski T, Morita A et al. Environmentally-induced (Extrinsic) skin aging: exposomal factors and underlying mechanisms. J Invest Dermatol. 2021; 141:1096-103. https://doi.org/10.1016/j.jid.2020.12.011.
[33.]
Wang F, Smith NR, Tran BAP et al. Dermal damage promoted by repeated low-level UV-A1 exposure despite tanning response in human skin. JAMA Dermatology. 2014; 150:401-6. https://doi.org/10.1001/jamadermatol.2013.8417.
[34.]
Bernerd F, Passeron T, Castiel I et al. The damaging effects of long UVA (UVA1) rays: A major challenge to preserve skin health and integrity. Int J Mol Sci. 2022;23:8243. https://doi.org/10.3390/ijms23158243.
[35.]
Pelclova D, Navratil T, Kacerova T et al. NanoTiO(2) sunscreen does not prevent systemic oxidative stress caused by UV radiation and a Minor amount of NanoTiO(2) is absorbed in humans. Nanomaterials (Basel). 2019;9:888. https://doi.org/10.3390/nano9060888.
[36.]
Kim DJ, Iwasaki A, Chien AL et al. UVB-mediated DNA damage induces matrix metalloproteinases to promote photoaging in an AhR- and SP1-dependent manner. JCI Insight. 2022;7:e156344. https://doi.org/10.1172/jci.insight.156344.
[37.]
Karapetsas A, Voulgaridou G-P, Iliadi D et al. Honey extracts exhibit cytoprotective properties against UVB-induced photodamage in Human experimental skin models. Antioxidants (Basel, Switzerland). 2020;9:566. https://doi.org/10.3390/antiox9070566.
[38.]
Georgescu SR, Mitran CI, Mitran MI et al. Oxidative stress in cutaneous lichen planus-A narrative review. J Clin Med. 2021;10:2692. https://doi.org/10.3390/jcm10122692.
[39.]
Tsuchida K, Kobayashi M Ultraviolet A irradiation induces ultraweak photon emission with characteristic spectral patterns from biomolecules present in human skin. Sci Rep. 2020;10:21667. https://doi.org/10.1038/s41598-020-78884-0.
[40.]
Lan Y, Wang Y, Lu H Opsin 3 is a key regulator of ultraviolet A-induced photoageing in human dermal fibroblast cells. Br J Dermatol. 2020; 182:1228-44. https://doi.org/10.1111/bjd.18410.
[41.]
Alam MB, Chowdhury NS, Sohrab MH et al. Cerevisterol alleviates inflammation via suppression of MAPK/NF-κB/AP-1 and activation of the Nrf2/HO-1 signaling cascade. Biomolecules. 2020;10:199. https://doi.org/10.3390/biom10020199.
[42.]
Pittayapruek P, Meephansan J, Prapapan O et al. Role of matrix metalloproteinases in photoaging and photocarcinogenesis. Int J Mol Sci. 2016;17:868. https://doi.org/10.3390/ijms17060868.
[43.]
Han S, Ballinger E, Choung S-Y et al. Anti-photoaging effect of hydrolysates from Pacific whiting skin via MAPK/AP-1, NF-kappaB, TGF-beta/smad, and nrf-2/HO-1 signaling pathway in UVB-induced Human dermal fibroblasts. Mar Drugs. 2022;20:308 https://doi.org/10.3390/md20050308.
[44.]
Xu D, Li C, Zhao M Attenuation of UV-induced skin photoaging in rats by walnut protein hydrolysates is linked to the modulation of MAPK/AP-1 and TGF-beta/smad signaling pathways. Food Funct. 2022; 13:609-23. https://doi.org/10.1039/d1fo02598h.
[45.]
Aguilera P, Whalen J, Minguet C et al. The nuclear pore complex prevents sister chromatid recombination during replicative senescence. Nat Commun. 2020;11:160. https://doi.org/10.1038/s41467-019-13979-5.
[46.]
Xu X, Li Y, Bharath SR et al. Structural basis for reactivating the mutant TERT promoter by cooperative binding of p52 and ETS1. Nat Commun. 2018;9:3183. https://doi.org/10.1038/s41467-018-05644-0.
[47.]
Victorelli S, Lagnado A, Halim J et al. Senescent human melanocytes drive skin ageing via paracrine telomere dysfunction. EMBO J. 2019;38: e101982. https://doi.org/10.15252/embj.2019101982.
[48.]
Jia Y, Mao Q, Yang J et al. (-)-Epigallocatechin-3-gallate protects Human skin fibroblasts from ultraviolet a induced photoaging. Clin Cosmet Investig Dermatol. 2023; 16:149-59. https://doi.org/10.2147/CCID.S398547.
[49.]
Marion RM, Strati K, Li H et al. Telomeres acquire embryonic stem cell characteristics in induced pluripotent stem cells. Cell Stem Cell. 2009; 4:141-54. https://doi.org/10.1016/j.stem.2008.12.010.
[50.]
Flores I, Cayuela ML, Blasco MA Effects of telomerase and telomere length on epidermal stem cell behavior. Science. 2005; 309:1253-6. https://doi.org/10.1126/science.1115025.
[51.]
Ball JM, Chen S, Li W Mitochondria in cone photoreceptors act as microlenses to enhance photon delivery and confer directional sensitivity to light. Sci Adv. 2022; 8:eabn2070. https://doi.org/10.1126/sciadv.abn2070.
[52.]
Watanabe M, Natsuga K, Nishie W et al. Type XVII collagen coordinates proliferation in the interfollicular epidermis. eLife. 2017;6: e 26635 https://doi.org/10.7554/eLife.26635.
[53.]
Sreedhar A, Aguilera-Aguirre L, Singh KK Mitochondria in skin health, aging, and disease. Cell Death Dis. 2020;11:444. https://doi.org/10.1038/s41419-020-2649-z.
[54.]
Xu Y, Qi F, Mao H et al. In-situ transfer vat photopolymerization for transparent microfluidic device fabrication. Nat Commun. 2022;13:918. https://doi.org/10.1038/s41467-022-28579-z.
[55.]
Chen X, Su J, Wang R et al. Structural optimization of cannabidiol as multifunctional cosmetic raw materials. Antioxidants (Basel, Switzerland). 2023;12:314. https://doi.org/10.3390/antiox12020314.
[56.]
Berneburg M, Plettenberg H, Medve-König K et al. Induction of the photoaging-associated mitochondrial common deletion in vivo in normal human skin. J Invest Dermatol. 2004; 122:1277-83. https://doi.org/10.1111/j.0022-202X.2004.22502.x.
[57.]
Schroeder P, Gremmel T, Berneburg M et al. Partial depletion of mitochondrial DNA from human skin fibroblasts induces a gene expression profile reminiscent of photoaged skin. J Invest Dermatol. 2008; 128:2297-303. https://doi.org/10.1038/jid.2008.57.
[58.]
Arslanbaeva L, Tosi G, Ravazzolo M et al. UBIAD1 and CoQ 10 protect melanoma cells from lipid peroxidation-mediated cell death. Redox Biol. 2022;51:102272. https://doi.org/10.1016/j.redox.2022.102272.
[59.]
López-Lluch G Coenzyme Q homeostasis in aging: response to non-genetic interventions.Free Radical Biol Med. 2021; 164:285-302. https://doi.org/10.1016/j.freeradbiomed.2021.01.024.
[60.]
Marcheggiani F, Cirilli I, Orlando P et al. Modulation of Coenzyme Q(10) content and oxidative status in human dermal fibroblasts using HMG-CoA reductase inhibitor over a broad range of concentrations. From mitohormesis to mitochondrial dysfunction and accelerated aging. Aging. 2019; 11:2565-82. https://doi.org/10.18632/aging.101926.
[61.]
Bešlić I, Lugović-Mihić L, Vrtarić A et al. Melatonin in dermatologic allergic diseases and other skin conditions: current trends and reports. Int J Mol Sci. 2023;24:4039. https://doi.org/10.3390/ijms24044039.
[62.]
Dong K, Goyarts E, Rella A et al. Age associated decrease of MT-1 melatonin receptor in Human dermal skin fibroblasts impairs protection against UV-induced DNA damage. Int J Mol Sci. 2020;21:326. https://doi.org/10.3390/ijms21010326.
[63.]
Kleszczyński K, Tukaj S, Kruse N et al. Melatonin prevents ultraviolet radiation-induced alterations in plasma membrane potential and intracellular pH in human keratinocytes. J Pineal Res. 2013; 54:89-99. https://doi.org/10.1111/j.1600-079X.2012.01028.x.
[64.]
Mansouri A, Gaou I, De Kerguenec C et al. An alcoholic binge causes massive degradation of hepatic mitochondrial DNA in mice. Gastroenterology. 1999; 117:181-90. https://doi.org/10.1016/s0016-5085(99)70566-4.
[65.]
Díaz-Casado ME, Rusanova I, Aranda P et al. In vivo determination of mitochondrial respiration in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-treated zebrafish reveals the efficacy of melatonin in restoring mitochondrial normalcy. Zebrafish. 2018; 15:15-26. https://doi.org/10.1089/zeb.2017.1479.
[66.]
Pi H, Xu S, Reiter RJ et al. SIRT3-SOD2-mROS-dependent autophagy in cadmium-induced hepatotoxicity and salvage by melatonin. Autophagy. 2015; 11:1037-51. https://doi.org/10.1080/15548627.2015.1052208.
[67.]
Slominski AT, Zmijewski MA, Semak I et al. Melatonin, mitochondria, and the skin. Cell Mol Life Sci. 2017; 74:3913-25. https://doi.org/10.1007/s00018-017-2617-7.
[68.]
Venegas C, García JA, Escames G et al. Extrapineal melatonin: analysis of its subcellular distribution and daily fluctuations. J Pineal Res. 2012; 52:217-27. https://doi.org/10.1111/j.1600-079X.2011.00931.x.
[69.]
Slominski AT, Semak I, Fischer TW et al. Metabolism of melatonin in the skin: why is it important?. Exp Dermatol. 2017; 26:563-8. https://doi.org/10.1111/exd.13208.
[70.]
Lu TX, Rothenberg ME. MicroRNA. J Allergy Clin Immunol. 2018; 141:1202-7. https://doi.org/10.1016/j.jaci.2017.08.034.
[71.]
Ahmed MI, Pickup ME, Rimmer AG et al. Interplay of MicroRNA-21 and SATB1 in epidermal keratinocytes during skin aging. J Invest Dermatol. 2019; 139:2538-42. https://doi.org/10.1016/j.jid.2019.04.022.
[72.]
Srivastava A, Karlsson M, Marionnet C et al. Identification of chronological and photoageing-associated microRNAs in human skin. Sci Rep. 2018;8:12990. https://doi.org/10.1038/s41598-018-31217-8.
[73.]
Röck K, Tigges J, Sass S et al. miR-23a-3p causes cellular senescence by targeting hyaluronan synthase 2: possible implication for skin aging. J Invest Dermatol. 2015; 135:369-77. https://doi.org/10.1038/jid.2014.422.
[74.]
Salminen A, Kaarniranta K, Kauppinen A Photoaging: UV radiation-induced inflammation and immunosuppression accelerate the aging process in the skin. Inflamm Res. 2022; 71:817-31. https://doi.org/10.1007/s00011-022-01598-8.
[75.]
Lee YI, Choi S, Roh WS et al. Cellular senescence and inflammaging in the skin microenvironment. Int J Mol Sci. 2021;22:3849. https://doi.org/10.3390/ijms22083849.
[76.]
Pilkington SM, Bulfone-Paus S, Griffiths CEM et al. Inflammaging and the skin. J Invest Dermatol. 2021; 141:1087-95. https://doi.org/10.1016/j.jid.2020.11.006.
[77.]
Pilkington SM, Ogden S, Eaton LH et al. Lower levels of interleukin-1beta gene expression are associated with impaired Langerhans' cell migration in aged human skin. Immunology. 2018; 153:60-70. https://doi.org/10.1111/imm.12810.
[78.]
Wang Y, Liu S, Li L et al. Peritoneal M2 macrophage-derived extracellular vesicles as natural multitarget nanotherapeutics to attenuate cytokine storms after severe infections. J Control Release. 2022; 349:118-32. https://doi.org/10.1016/j.jconrel.2022.06.063.
[79.]
Gather L, Nath N, Falckenhayn C et al. Macrophages are polarized toward an inflammatory phenotype by their aged microenvironment in the Human skin. J Invest Dermatol. 2022; 142:3136-45. https://doi.org/10.1016/j.jid.2022.06.023.
[80.]
Zhou Z, Liu J, Fu T et al. Phosphorylation regulates the binding of autophagy receptors to FIP 200 Claw domain for selective autophagy initiation. Nat Commun. 2021;12:1570. https://doi.org/10.1038/s41467-021-21874-1.
[81.]
Yin Z, Liu X, Ariosa A et al. Psp2, a novel regulator of autophagy that promotes autophagy-related protein translation. Cell Res. 2019; 29:994-1008. https://doi.org/10.1038/s41422-019-0246-4.
[82.]
Umar SA, Shahid NH, Nazir LA et al. Pharmacological activation of autophagy restores cellular homeostasis in ultraviolet-(B)-induced skin photodamage. Front Oncol. 2021;11:726066. https://doi.org/10.3389/fonc.2021.726066.
[83.]
Chen Q, Zhang H, Yang Y et al. Metformin attenuates UVA-induced skin photoaging by suppressing mitophagy and the PI3K/AKT/mTOR pathway. Int J Mol Sci. 2022;23:6960. https://doi.org/10.3390/ijms23136960.
[84.]
Khan A, Ikram M, Muhammad T et al. Caffeine modulates cadmium-induced oxidative stress, neuroinflammation, and cognitive impairments by regulating nrf-2/HO-1 In vivo and In vitro. J Clin Med. 2019;8:680. https://doi.org/10.3390/jcm8050680.
[85.]
Li Y-F, Ouyang S-H, Tu L-F et al. Caffeine protects skin from oxidative stress-induced senescence through the activation of autophagy. Theranostics. 2018; 8:5713-30. https://doi.org/10.7150/thno.28778.
[86.]
Kou X, Xu X, Chen C et al. The Fas/Fap-1/Cav-1 complex regulates IL-1RA secretion in mesenchymal stem cells to accelerate wound healing. Sci Transl Med. 2018;10:432. https://doi.org/10.1126/scitranslmed.aai8524.
[87.]
Zhou H, He Y, Xiong W et al. MSC based gene delivery methods and strategies improve the therapeutic efficacy of neurological diseases. Bioact Mater. 2023; 23:409-37. https://doi.org/10.1016/j.bioactmat.2022.11.007.
[88.]
Lv F-J, Tuan RS, Cheung KMC et al. Concise review: the surface markers and identity of human mesenchymal stem cells. Stem Cells. 2014; 32:1408-19. https://doi.org/10.1002/stem.1681.
[89.]
Kalluri R, Lebleu VS. The biology, function, and biomedical applications of exosomes. Science. 2020;367:eaau6977. https://doi.org/10.1126/science.aau6977.
[90.]
Trams EG, Lauter CJ, Norman Salem J et al. Exfoliation of membrane ecto-enzymes in the form of micro-vesicles. Biochim Biophys Acta. 1981; 645:63-70. https://doi.org/10.1016/0005-2736(81)90512-5.
[91.]
Meng W, Hao Y, He C et al. Exosome-orchestrated hypoxic tumor microenvironment. Mol Cancer. 2019;18:57. https://doi.org/10.1186/s12943-019-0982-6.
[92.]
Wang X, Wu R, Zhai P et al. Hypoxia promotes EV secretion by impairing lysosomal homeostasis in HNSCC through negative regulation of ATP6V1A by HIF-1α. J Extracell Vesicles. 2023;12: e12310. https://doi.org/10.1002/jev2.12310.
[93.]
Meldolesi J Exosomes and ectosomes in intercellular communication. Current biology: CB. 2018; 28: R435-44. https://doi.org/10.1016/j.cub.2018.01.059.
[94.]
Liang Y, Duan L, Lu J et al. Engineering exosomes for targeted drug delivery. Theranostics. 2021; 11:3183-95. https://doi.org/10.7150/thno.52570.
[95.]
Liang G, Zhu Y, Ali DJ et al. Engineered exosomes for targeted co-delivery of miR-21 inhibitor and chemotherapeutics to reverse drug resistance in colon cancer. J Nanobiotechnology. 2020;18:10. https://doi.org/10.1186/s12951-019-0563-2.
[96.]
Yeo RWY, Lai RC, Zhang B et al. Mesenchymal stem cell: an efficient mass producer of exosomes for drug delivery. Adv Drug Deliv Rev. 2013; 65:336-41. https://doi.org/10.1016/j.addr.2012.07.001.
[97.]
Jadczyk T, Faulkner A, Madeddu P Stem cell therapy for cardiovascular disease: the demise of alchemy and rise of pharmacology. Br J Pharmacol. 2013; 169:247-68. https://doi.org/10.1111/j.1476-5381.2012.01965.x.
[98.]
Chan AML, Sampasivam Y, Lokanathan Y Biodistribution of mesenchymal stem cells (MSCs) in animal models and implied role of exosomes following systemic delivery of MSCs: a systematic review. Am J Transl Res. 2022;14:2147-61.
[99.]
Furlani D, Ugurlucan M, Ong L et al. Is the intravascular administration of mesenchymal stem cells safe? Mesenchymal stem cells and intravital microscopy. Microvasc Res. 2009; 77:370-6. https://doi.org/10.1016/j.mvr.2009.02.001.
[100.]
Merino-González C, Zuñiga FA, Escudero C et al. Mesenchymal stem cell-derived extracellular vesicles promote angiogenesis: potencial clinical application. Front Physiol. 2016;7:24. https://doi.org/10.3389/fphys.2016.00024.
[101.]
Santos AC, Morais F, Simões A et al. Nanotechnology for the development of new cosmetic formulations. Expert Opin Drug Deliv. 2019; 16:313-30. https://doi.org/10.1080/17425247.2019.1585426.
[102.]
Kaul S, Gulati N, Verma D et al. Role of nanotechnology in cosmeceuticals: A review of recent advances. J Pharm (Cairo). 2018;2018:3420204. https://doi.org/10.1155/2018/3420204.
[103.]
Aziz ZAA, Mohd-Nasir H, Ahmad A et al. Role of nanotechnology for design and development of Cosmeceutical: application in makeup and skin care. Front Chem. 2019;7:739. https://doi.org/10.3389/fchem.2019.00739.
[104.]
Sharma A, Madhunapantula SV, Robertson GP Toxicological considerations when creating nanoparticle-based drugs and drug delivery systems. Expert Opin Drug Metab Toxicol. 2012; 8:47-69. https://doi.org/10.1517/17425255.2012.637916.
[105.]
Guo S-C, Tao S-C, Yin W-J et al. Exosomes derived from platelet-rich plasma promote the re-epithelization of chronic cutaneous wounds via activation of YAP in a diabetic rat model. Theranostics. 2017; 7:81-96. https://doi.org/10.7150/thno.16803.
[106.]
Chi B, Zou A, Mao L et al. Empagliflozin-pretreated mesenchymal stem cell-derived small extracellular vesicles attenuated heart injury. Oxid Med Cell Longev. 2023;2023:7747727. https://doi.org/10.1155/2023/7747727.
[107.]
Magny R, Regazzetti A, Kessal K et al. Lipid annotation by combination of UHPLC-HRMS (MS), molecular networking, and retention time prediction: application to a lipidomic study of In vitro models of dry eye disease. Metabolites. 2020;10: 225 https://doi.org/10.3390/metabo10060225.
[108.]
Kong L, Zhang D, Huang S et al. Extracellular vesicles in mental disorders: A state-of-art review. Int J Biol Sci. 2023; 19:1094-109. https://doi.org/10.7150/ijbs.79666.
[109.]
Yin X, Jiang L-H Extracellular vesicles: targeting the heart. Front Cardiovasc Med. 2022;9:1041481. https://doi.org/10.3389/fcvm.2022.1041481.
[110.]
Lőrincz ÁM, Timár CI, Marosvári KA et al. Effect of storage on physical and functional properties of extracellular vesicles derived from neutrophilic granulocytes. J Extracell Vesicles. 2014;3:25465. https://doi.org/10.3402/jev.v3.25465.
[111.]
Zhou H, Yuen PST, Pisitkun T et al. Collection, storage, preservation, and normalization of human urinary exosomes for biomarker discovery. Kidney Int. 2006; 69:1471-6. https://doi.org/10.1038/sj.ki.5000273.
[112.]
Mahanty S, Dakappa SS, Shariff R et al. Keratinocyte differentiation promotes ER stress-dependent lysosome biogenesis. Cell Death Dis. 2019;10:269. https://doi.org/10.1038/s41419-019-1478-4.
[113.]
Lee S, Choi YJ, Lee S et al. Protective effects of withagenin A diglucoside from indian Ginseng (Withania somnifera) against Human dermal fibroblast damaged by TNF-α stimulation. Antioxidants (Basel, Switzerland). 2022;11:2248. https://doi.org/10.3390/antiox11112248.
[114.]
Zou Z, Long X, Zhao Q et al. A single-cell transcriptomic atlas of Human skin aging. Dev Cell. 2021; 56:383-97. https://doi.org/10.1016/j.devcel.2020.11.002.
[115.]
Chang H, Chen J, Ding K et al. Highly-expressed lncRNA FOXD2-AS1 in adipose mesenchymal stem cell derived exosomes affects HaCaT cells via regulating miR-185-5p/ROCK2 axis. Adipocyte. 2023;12:2173513. https://doi.org/10.1080/21623945.2023.2173513.
[116.]
Zhao G, Liu F, Liu Z et al. MSC-derived exosomes attenuate cell death through suppressing AIF nucleus translocation and enhance cutaneous wound healing. Stem Cell Res Ther. 2020;11:174. https://doi.org/10.1186/s13287-020-01616-8.
[117.]
Zhang W, Bai X, Zhao B et al. Cell-free therapy based on adipose tissue stem cell-derived exosomes promotes wound healing via the PI3K/Akt signaling pathway. Exp Cell Res. 2018; 370:333-42. https://doi.org/10.1016/j.yexcr.2018.06.035.
[118.]
Jiang T, Wang Z, Sun J Human bone marrow mesenchymal stem cell-derived exosomes stimulate cutaneous wound healing mediates through TGF-β/smad signaling pathway. Stem Cell Res Ther. 2020;11:198. https://doi.org/10.1186/s13287-020-01723-6.
[119.]
Cui N, Hu M, Khalil RA Biochemical and biological attributes of matrix metalloproteinases. Prog Mol Biol Transl Sci. 2017; 147:1-73. https://doi.org/10.1016/bs.pmbts.2017.02.005.
[120.]
Szilágyi Z, Németh Z, Bakos J et al. Assessment of inflammation in 3D reconstructed Human skin exposed to combined exposure to ultraviolet and Wi-fi radiation. Int J Mol Sci. 2023;24:2853. https://doi.org/10.3390/ijms24032853.
[121.]
Kim H, Jang J, Song MJ et al. Inhibition of matrix metalloproteinase expression by selective clearing of senescent dermal fibroblasts attenuates ultraviolet-induced photoaging. Biomed Pharmacother. 2022;150:113034. https://doi.org/10.1016/j.biopha.2022.113034.
[122.]
Park J-Y, Lee JY, Kim Y et al. Latilactobacillus sakei Wikim 0066 protects skin through MMP regulation on UVB-irradiated In vitro and In vivo model. Nutrients. 2023;15:726. https://doi.org/10.3390/nu15030726.
[123.]
Deng M, Yu TZ, Li D et al. Human umbilical cord mesenchymal stem cell-derived and dermal fibroblast-derived extracellular vesicles protect dermal fibroblasts from ultraviolet radiation-induced photoaging in vitro. Photochem Photobiol Sci. 2020; 19:406-14. https://doi.org/10.1039/c9pp00421a.
[124.]
Gao W, Yuan L-M, Zhang Y et al. miR-1246-overexpressing exosomes suppress UVB-induced photoaging via regulation of TGF-β/smad and attenuation of MAPK/AP-1 pathway. Photochem Photobiol Sci. 2023; 22:135-46. https://doi.org/10.1007/s43630-022-00304-1.
[125.]
Zhang Y, Zhang M, Yao A et al. Circ_0011129 encapsulated by the small extracellular vesicles derived from Human stem cells ameliorate skin photoaging. Int J Mol Sci. 2022;23:15390. https://doi.org/10.3390/ijms232315390.
[126.]
Yen C-A, Curran SP. Incomplete proline catabolism drives premature sperm aging. Aging Cell. 2021;20: e13308. https://doi.org/10.1111/acel.13308.
[127.]
Liu X, Xing Y, Yuen M et al. Anti-aging effect and mechanism of proanthocyanidins extracted from sea buckthorn on hydrogen peroxide-induced aging Human skin fibroblasts. Antioxidants (Basel, Switzerland). 2022; 11:1900. https://doi.org/10.3390/antiox11101900.
[128.]
Feng W, Han X, Hu H et al. 2D vanadium carbide MXenzyme to alleviate ROS-mediated inflammatory and neurodegenerative diseases. Nat Commun. 2021; 12:2203. https://doi.org/10.1038/s41467-021-22278-x.
[129.]
Jiang Q, Yin J, Chen J et al. Mitochondria-targeted antioxidants: A step towards disease treatment. Oxid Med Cell Longev. 2020;2020:8837893. https://doi.org/10.1155/2020/8837893.
[130.]
Wang T, Jian Z, Baskys A et al. MSC-derived exosomes protect against oxidative stress-induced skin injury via adaptive regulation of the NRF 2 defense system. Biomaterials. 2020;257:120264. https://doi.org/10.1016/j.biomaterials.2020.120264.
[131.]
Shiekh PA, Singh A, Kumar A Exosome laden oxygen releasing antioxidant and antibacterial cryogel wound dressing OxOBand alleviate diabetic and infectious wound healing. Biomaterials. 2020;249:120020. https://doi.org/10.1016/j.biomaterials.2020.120020.
[132.]
Li X, Xie X, Lian W et al. Exosomes from adipose-derived stem cells overexpressing Nrf2 accelerate cutaneous wound healing by promoting vascularization in a diabetic foot ulcer rat model. Exp Mol Med. 2018; 50:1-14. https://doi.org/10.1038/s12276-018-0058-5.
[133.]
Wu P, Zhang B, Han X et al. HucMSC exosome-delivered 14-3-3ζ alleviates ultraviolet radiation-induced photodamage via SIRT1 pathway modulation. Aging. 2021; 13:11542-63. https://doi.org/10.18632/aging.202851.
[134.]
Miró L, Garcia-Just A, Amat C et al. Dietary animal plasma proteins improve the intestinal immune response in senescent mice. Nutrients. 2017;9:1346. https://doi.org/10.3390/nu9121346.
[135.]
Qin Z-Y, Gu X, Chen Y-L et al. Toll-like receptor 4 activates the NLRP3 inflammasome pathway and periodontal inflammaging by inhibiting bmi-1 expression. Int J Mol Med. 2021; 47:137-50. https://doi.org/10.3892/ijmm.2020.4787.
[136.]
Agrawal A, Agrawal S, Gupta S Role of dendritic cells in inflammation and loss of tolerance in the elderly. Front Immunol. 2017;8:896. https://doi.org/10.3389/fimmu.2017.00896.
[137.]
Rodrigues LP, Teixeira VR, Alencar-Silva T et al. Hallmarks of aging and immunosenescence: connecting the dots. Cytokine Growth Factor Rev. 2021; 59:9-21. https://doi.org/10.1016/j.cytogfr.2021.01.006.
[138.]
Pilkington SM, Bulfone-Paus S, Griffiths CEM et al. Inflammaging and the skin. J Invest Dermatol. 2021; 141:1087-95. https://doi.org/10.1016/j.jid.2020.11.006.
[139.]
Hasegawa T, Nakashima M, Suzuki Y Nuclear DNA damage-triggered NLRP3 inflammasome activation promotes UVB-induced inflammatory responses in human keratinocytes. Biochem Biophys Res Commun. 2016; 477:329-35. https://doi.org/10.1016/j.bbrc.2016.06.106.
[140.]
Xiao T, Chen Y, Song C et al. Possible treatment for UVB-induced skin injury: anti-inflammatory and cytoprotective role of metformin in UVB-irradiated keratinocytes. J Dermatol Sci. 2021; 102:25-35., https://doi.org/10.1016/j.jdermsci.2021.02.002.
[141.]
Shi Y, Wang Y, Li Q et al. Immunoregulatory mechanisms of mesenchymal stem and stromal cells in inflammatory diseases. Nat Rev Nephrol. 2018; 14:493-507. https://doi.org/10.1038/s41581-018-0023-5.
[142.]
Zhang B, Lai RC, Sim WK et al. Topical application of mesenchymal stem cell exosomes alleviates the imiquimod induced psoriasis-like inflammation. Int J Mol Sci. 2021;22:720. https://doi.org/10.3390/ijms22020720.
[143.]
Cho BS, Kim JO, Ha DH et al. Exosomes derived from human adipose tissue-derived mesenchymal stem cells alleviate atopic dermatitis. Stem Cell Res Ther. 2018;9:187. https://doi.org/10.1186/s13287-018-0939-5.
[144.]
Patel RS, Impreso S, Lui A et al. Long noncoding RNA GAS 5 contained in exosomes derived from Human adipose stem cells promotes repair and modulates inflammation in a chronic dermal wound healing model. Biology. 2022;11:426. https://doi.org/10.3390/biology11030426.
[145.]
Liu W, Yu M, Xie D et al. Melatonin-stimulated MSC-derived exosomes improve diabetic wound healing through regulating macrophage M1 and M2 polarization by targeting the PTEN/AKT pathway. Stem Cell Res Ther. 2020;11:259. https://doi.org/10.1186/s13287-020-01756-x.
[146.]
Heo JS Selenium-stimulated exosomes enhance wound healing by modulating inflammation and angiogenesis. Int J Mol Sci. 2022;23:11543. https://doi.org/10.3390/ijms231911543.
[147.]
Park G-H, Kwon HH, Seok J et al. Efficacy of combined treatment with human adipose tissue stem cell-derived exosome-containing solution and microneedling for facial skin aging: A 12-week prospective, randomized, split-face study. J Cosmet Dermatol. 2023; 22:3418-26. https://doi.org/10.1111/jocd.15872.
[148.]
Rohde E, Pachler K, Gimona M Manufacturing and characterization of extracellular vesicles from umbilical cord-derived mesenchymal stromal cells for clinical testing. Cytotherapy. 2019; 21:581-92. https://doi.org/10.1016/j.jcyt.2018.12.006.
[149.]
Imai T, Takahashi Y, Nishikawa M et al. Macrophage-dependent clearance of systemically administered B16BL6-derived exosomes from the blood circulation in mice. J Extracell Vesicles. 2015;4:26238. https://doi.org/10.3402/jev.v4.26238.
[150.]
Cao H, Duan L, Zhang Y et al. Current hydrogel advances in physicochemical and biological response-driven biomedical application diversity. Signal Transduct Target Ther. 2021;6:426. https://doi.org/10.1038/s41392-021-00830-x.
[151.]
Lai W-F, He Z-D Design and fabrication of hydrogel-based nanoparticulate systems for in vivo drug delivery. J Control Release. 2016; 243:269-82. https://doi.org/10.1016/j.jconrel.2016.10.013.
[152.]
Teixeira MO, Antunes JC, Felgueiras HP Recent advances in Fiber-hydrogel composites for wound healing and drug delivery systems. Antibiotics (Basel). 2021;10:248. https://doi.org/10.3390/antibiotics10030248.
[153.]
Wang Q, Qu Y, Zhang Z et al. Injectable DNA hydrogel-based local drug delivery and immunotherapy. Gels. 2022;8:400. https://doi.org/10.3390/gels8070400.
[154.]
Mol EA, Lei Z, Roefs MT et al. Injectable supramolecular ureidopyrimidinone hydrogels provide sustained release of extracellular vesicle therapeutics. Adv Healthc Mater. 2019;8: e1900847. https://doi.org/10.1002/adhm.201900847.
[155.]
Zhang K, Chen X, Li H et al. A nitric oxide-releasing hydrogel for enhancing the therapeutic effects of mesenchymal stem cell therapy for hindlimb ischemia. Acta Biomater. 2020; 113:289-304. https://doi.org/10.1016/j.actbio.2020.07.011.
[156.]
Zhang S, Liu Y, Zhang X et al. Prostaglandin E(2) hydrogel improves cutaneous wound healing via M2 macrophages polarization. Theranostics. 2018; 8:5348-61. https://doi.org/10.7150/thno.27385.
[157.]
Zhao X, Liu Y, Jia P et al. Chitosan hydrogel-loaded MSC-derived extracellular vesicles promote skin rejuvenation by ameliorating the senescence of dermal fibroblasts. Stem Cell Res Ther. 2021;12:196. https://doi.org/10.1186/s13287-021-02262-4.
[158.]
You DG, An JY, Um W et al. Stem cell-derived extracellular vesicle-bearing dermal filler ameliorates the dermis microenvironment by supporting CD301b-expressing macrophages. ACS Nano. 2022; 16:251-60. https://doi.org/10.1021/acsnano.1c06096.
[159.]
Ma G, Wu C. Microneedle, bio-microneedle and bio-inspired microneedle: A review. J Control Release. 2017; 251:11-23. https://doi.org/10.1016/j.jconrel.2017.02.011.
[160.]
Hong JY, Kwon T-R, Kim JH et al. Prospective, preclinical comparison of the performance between radiofrequency microneedling and microneedling alone in reversing photoaged skin. J Cosmet Dermatol. 2020; 19:1105-9. https://doi.org/10.1111/jocd.13116.
[161.]
Cao Z, Jin S, Wang P et al. Microneedle based adipose derived stem cells-derived extracellular vesicles therapy ameliorates UV-induced photoaging in SKH-1 mice. J Biomed Mater Res A. 2021; 109:1849-57. https://doi.org/10.1002/jbm.a.37177.
[162.]
You Y, Tian Y, Yang Z et al. Intradermally delivered mRNA-encapsulating extracellular vesicles for collagen-replacement therapy. Nat Biomed Eng. 2023; 7:887-900. https://doi.org/10.1038/s41551-022-00989-w.
[163.]
Zhang S, Ou H, Liu C et al. Skin delivery of hydrophilic biomacromolecules using marine sponge spicules. Mol Pharm. 2017; 14:3188-200. https://doi.org/10.1021/acs.molpharmaceut.7b00468.
[164.]
Zhang K, Yu L, Li F-R et al. Topical application of exosomes derived from Human umbilical cord mesenchymal stem cells in combination with sponge spicules for treatment of photoaging. Int J Nanomedicine. 2020; 15:2859-72. https://doi.org/10.2147/IJN.S249751.
[165.]
Nkosi D, Howell LA, Cheerathodi MR et al. Transmembrane domains mediate intra- and extracellular trafficking of Epstein-Barr Virus latent membrane protein 1. J Virol. 2018; 92:e00280-18. https://doi.org/10.1128/jvi.00280-18.
[166.]
Fang Y, Wu N, Gan X et al. Higher-order oligomerization targets plasma membrane proteins and HIV gag to exosomes. PLoS Biol. 2007;5: e158. https://doi.org/10.1371/journal.pbio.0050158.
[167.]
Gan X, Gould SJ Identification of an inhibitory budding signal that blocks the release of HIV particles and exosome/microvesicle proteins. Mol Biol Cell. 2011; 22:817-30. https://doi.org/10.1091/mbc.E10-07-0625.
[168.]
Hu CMJ, Zhang L Nanoparticle-based combination therapy toward overcoming drug resistance in cancer. Biochem Pharmacol. 2012; 83:1104-11. https://doi.org/10.1016/j.bcp.2012.01.008.
[169.]
Gibis M, Rahn N, Weiss J Physical and oxidative stability of uncoated and chitosan-coated liposomes containing grape seed extract. Pharmaceutics. 2013; 5:421-33. https://doi.org/10.3390/pharmaceutics5030421.
[170.]
Hu CMJ, Zhang L, Aryal S et al. Erythrocyte membrane-camouflaged polymeric nanoparticles as a biomimetic delivery platform. Proc Natl Acad Sci USA. 2011; 108:10980-5. https://doi.org/10.1073/pnas.1106634108.
[171.]
Hu CMJ, Fang RH, Wang K-C et al. Nanoparticle biointerfacing by platelet membrane cloaking. Nature. 2015; 526:118-21. https://doi.org/10.1038/nature15373.
[172.]
Boada C, Zinger A, Tsao C et al. Rapamycin-loaded biomimetic nanoparticles reverse vascular inflammation. Circ Res. 2020; 126:25-37. https://doi.org/10.1161/CIRCRESAHA.119.315185. Epub 2019 Oct 24. Erratum in: Circ Res. 2020 Jul 3;127(2):e77. PMID: 31647755.
[173.]
Evers MJW, Van De Wakker SI, De Groot EM et al. Functional siRNA delivery by extracellular vesicle-liposome hybrid nanoparticles. Adv Healthc Mater. 2022;11: e2101202. https://doi.org/10.1002/adhm.202101202.
[174.]
Zhou X, Miao Y, Wang Y et al. Tumour-derived extracellular vesicle membrane hybrid lipid nanovesicles enhance siRNA delivery by tumour-homing and intracellular freeway transportation. J Extracell Vesicles. 2022;11: e12198. https://doi.org/10.1002/jev2.12198.
[175.]
Belhadj Z, He B, Deng H et al. A combined “eat me/don't eat me” strategy based on extracellular vesicles for anticancer nanomedicine. J Extracell Vesicles. 2020;9:1806444. https://doi.org/10.1080/20013078.2020.1806444.
[176.]
Delcayre A, Estelles A, Sperinde J et al. Exosome display technology: applications to the development of new diagnostics and therapeutics. Blood Cells Mol Dis. 2005; 35:158-68. https://doi.org/10.1016/j.bcmd.2005.07.003.
[177.]
Hartman ZC, Wei J, Glass OK et al. Increasing vaccine potency through exosome antigen targeting. Vaccine. 2011; 29:9361-7. https://doi.org/10.1016/j.vaccine.2011.09.133.
[178.]
Wang J-H, Forterre AV, Zhao J et al. Anti-HER2 scFv-directed extracellular vesicle-mediated mRNA-based gene delivery inhibits growth of HER2-positive Human breast tumor xenografts by prodrug activation. Mol Cancer Ther. 2018; 17:1133-42. https://doi.org/10.1158/1535-7163.Mct-17-0827.
[179.]
Longatti A, Schindler C, Collinson A et al. High affinity single-chain variable fragments are specific and versatile targeting motifs for extracellular vesicles. Nanoscale. 2018; 10:14230-44. https://doi.org/10.1039/c8nr03970d.
[180.]
Alvarez-Erviti L, Seow Y, Yin H et al. Delivery of siRNA to the mouse brain by systemic injection of targeted exosomes. Nat Biotechnol. 2011; 29:341-5. https://doi.org/10.1038/nbt.1807.
[181.]
Antes TJ, Middleton RC, Luther KM et al. Targeting extracellular vesicles to injured tissue using membrane cloaking and surface display. J Nanobiotechnology. 2018;16:61. https://doi.org/10.1186/s12951-018-0388-4.
[182.]
Cao Y, Wu T, Zhang K et al. Engineered exosome-mediated Near-Infrared-II region V(2)C quantum dot delivery for nucleus-target low-temperature photothermal therapy. ACS Nano. 2019; 13:1499-510. https://doi.org/10.1021/acsnano.8b07224.
[183.]
Qi H, Liu C, Long L et al. Blood exosomes endowed with magnetic and targeting properties for cancer therapy. ACS Nano. 2016; 10:3323-33. https://doi.org/10.1021/acsnano.5b06939.
[184.]
Vyas KS, Kaufman J, Munavalli GS et al. Exosomes: the latest in regenerative aesthetics. Regen Med. 2023; 18:181-94. https://doi.org/10.2217/rme-2022-0134.
[185.]
Wu H, Zhang Z, Zhang Y et al. Extracellular vesicle: A magic lamp to treat skin aging, refractory wound, and pigmented dermatosis?. Front Bioeng Biotechnol. 2022;10:1043320. https://doi.org/10.3389/fbioe.2022.1043320.
[186.]
Kamerkar S, Lebleu VS, Sugimoto H et al. Exosomes facilitate therapeutic targeting of oncogenic KRAS in pancreatic cancer. Nature. 2017; 546:498-503. https://doi.org/10.1038/nature22341.
[187.]
Yang Z, Shi J, Xie J et al. Large-scale generation of functional mRNA-encapsulating exosomes via cellular nanoporation. Nat Biomed Eng. 2020; 4:69-83. https://doi.org/10.1038/s41551-019-0485-1.
[188.]
Ravi A, Sadhna D, Nagpaal D et al. Needle free injection technology: A complete insight. Int J Pharm Investig. 2015; 5:192-9. https://doi.org/10.4103/2230-973x.167662.
[189.]
Hu S, Li Z, Cores J et al. Needle-free injection of exosomes derived from human dermal fibroblast spheroids ameliorates skin photoaging. ACS Nano. 2019; 13:11273-82. https://doi.org/10.1021/acsnano.9b04384.
[190.]
Zheng G, Huang R, Qiu G et al. Mesenchymal stromal cell-derived extracellular vesicles: regenerative and immunomodulatory effects and potential applications in sepsis. Cell Tissue Res. 2018; 374:1-15. https://doi.org/10.1007/s00441-018-2871-5.
[191.]
Cully M Exosome-based candidates move into the clinic. Nat Rev Drug Discov. 2021; 20:6-7. https://doi.org/10.1038/d41573-020-00220-y.
[192.]
Görgens A, Corso G, Hagey DW et al. Identification of storage conditions stabilizing extracellular vesicles preparations. J Extracell Vesicles. 2022;11: e12238. https://doi.org/10.1002/jev2.12238.
[193.]
Zhang K, Cheng K Stem cell-derived exosome versus stem cell therapy. Nat Rev Bioeng. 2023; 12:1-2. https://doi.org/10.1038/s44222-023-00064-2.
[194.]
Elsharkasy OM, Nordin JZ, Hagey DW et al. Extracellular vesicles as drug delivery systems: why and how?. Adv Drug Deliv Rev. 2020; 159:332-43. https://doi.org/10.1016/j.addr.2020.04.004.
[195.]
Meng W, He C, Hao Y et al. Prospects and challenges of extracellular vesicle-based drug delivery system: considering cell source. Drug Deliv. 2020; 27:585-98. https://doi.org/10.1080/10717544.2020.1748758.
[196.]
Ng K Penetration enhancement of topical formulations. Pharmaceutics. 2018;10:51. https://doi.org/10.3390/pharmaceutics10020051.
PDF

Accesses

Citations

Detail

Sections
Recommended

/