The new insights of hyperbaric oxygen therapy: focus on inflammatory bowel disease

Leilei Chen, Yan Wang, Huihui Zhou, Yi Liang, Fengqin Zhu, Guangxi Zhou

PDF
Precision Clinical Medicine ›› 2024, Vol. 7 ›› Issue (1) : pbad001. DOI: 10.1093/pcmedi/pbae001

The new insights of hyperbaric oxygen therapy: focus on inflammatory bowel disease

Author information +
History +

Abstract

Inflammatory bowel diseases (IBD), with an increasing incidence, pose a significant health burden. Although there have been significant advances in the treatment of IBD, more progress is still needed. Hyperbaric oxygen therapy (HBOT) has been shown to treat a host of conditions such as carbon monoxide poisoning, decompression sickness, and gas gangrene. In the last few years, there has been an increase in research into the use of HBOT as an adjunct to conventional treatment for IBD. Related research has shown that HBOT may exert its therapeutic effects by decreasing oxidative stress, inhibiting mucosal inflammation, promoting ulcer healing, influencing gut microbes, and reducing the incidence of IBD complications. This paper aims to provide a comprehensive review of experimental and clinical trials exploring HBOT as a supplement to IBD treatment strategies.

Keywords

hyperbaric oxygen therapy / inflammatory bowel disease / mucosal inflammation

Cite this article

Download citation ▾
Leilei Chen, Yan Wang, Huihui Zhou, Yi Liang, Fengqin Zhu, Guangxi Zhou. The new insights of hyperbaric oxygen therapy: focus on inflammatory bowel disease. Precision Clinical Medicine, 2024, 7(1): pbad001 https://doi.org/10.1093/pcmedi/pbae001

References

[1.]
Wehkamp J, Götz M, Herrlinger K et al. Inflammatory bowel disease. Dtsch Arztebl Int. 2016; 113:72-82. https://doi.org/10.3238/arztebl.2016.0072.
[2.]
Alatab S, Sepanlou SG, Ikuta K et al. The global, regional, and national burden of inflammatory bowel disease in 195 countries and territories, 1990-2017: A systematic analysis for the global burden of disease study 2017. The Lancet Gastroenterology & Hepatology. 2020; 5:17-30. https://doi.org/10.1016/S2468-1253(19)30333-4.
[3.]
Shao B, Yang W, Cao Q Landscape and predictions of inflammatory bowel disease in China: China will enter the Compounding prevalence stage around 2030. Front Public Health. 2022;10:1032679. https://doi.org/10.3389/fpubh.2022.1032679.
[4.]
Baumgart DC, Carding SR Inflammatory bowel disease: cause and immunobiology. Lancet. 2007; 369:1627-40. https://doi.org/10.1016/S0140-6736(07)60750-8.
[5.]
Benchimol EI, Mack DR, Guttmann A et al. Inflammatory bowel disease in immigrants to Canada and their children: a population-based cohort study. Am J Gastroenterol. 2015; 110:553-63. https://doi.org/10.1038/ajg.2015.52.
[6.]
Glover LE, Colgan SP Hypoxia and metabolic factors that influence inflammatory bowel disease pathogenesis. Gastroenterology. 2011; 140:1748-55. https://doi.org/10.1053/j.gastro.2011.01.056.
[7.]
Ungaro R, Mehandru S, Allen PB et al. Ulcerative colitis. Lancet North Am Ed. 2017; 389:1756-70. https://doi.org/10.1016/S0140-6736(16)32126-2.
[8.]
Baumgart DC, Sandborn WJ Crohn's disease. Lancet. 2012; 380:1590-605. https://doi.org/10.1016/S0140-6736(12)60026-9.
[9.]
Xiao Y-D, Liu Y-Q, Li J-L et al. Hyperbaric oxygen preconditioning inhibits skin flap apoptosis in a rat ischemia-reperfusion model. J Surg Res. 2015; 199:732-9. https://doi.org/10.1016/j.jss.2015.06.038.
[10.]
Yan W, Fang Z, Yang Q et al. SirT1 mediates hyperbaric oxygen preconditioning-induced ischemic tolerance in rat brain. J Cereb Blood Flow Metab. 2013; 33:396-406. https://doi.org/10.1038/jcbfm.2012.179.
[11.]
Gill AL, Bell CNA Hyperbaric oxygen: its uses, mechanisms of action and outcomes. QJM. 2004; 97:385-95. https://doi.org/10.1093/qjmed/hch074.
[12.]
Saito K, Tanaka Y, Ota T et al. Suppressive effect of hyperbaric oxygenation on immune responses of normal and autoimmune mice. Clin Exp Immunol. 1991; 86:322-7. https://doi.org/10.1111/j.1365-2249.1991.tb05817.x.
[13.]
Brady CE, Cooley BJ, Davis JC Healing of severe perineal and cutaneous Crohn's disease with hyperbaric oxygen. Gastroenterology. 1989; 97:756-60. https://doi.org/10.1016/0016-5085(89)90649-5.
[14.]
Cummins EP,Crean D Hypoxia and inflammatory bowel disease. Microbes Infect. 2017; 19:210-21. https://doi.org/10.1016/j.micinf.2016.09.004.
[15.]
Eltzschig HK, Carmeliet P Hypoxia and inflammation. N Engl J Med. 2011; 364:656-65. https://doi.org/10.1056/NEJMra0910283.
[16.]
Bourgonje AR, Feelisch M, Faber KN et al. Oxidative stress and redox-modulating therapeutics in inflammatory bowel disease. Trends Mol Med. 2020; 26:1034-46. https://doi.org/10.1016/j.molmed.2020.06.006.
[17.]
Tian T, Wang Z, Zhang J Pathomechanisms of oxidative stress in inflammatory bowel disease and potential antioxidant therapies. Oxid Med Cell Longev. 2017;2017:4535194. https://doi.org/10.1155/2017/4535194.
[18.]
Guan G, Lan S Implications of antioxidant systems in inflammatory bowel disease. Biomed Res Int. 2018;2018:1290179. https://doi.org/10.1155/2018/1290179.
[19.]
Kang Q, Yang C Oxidative stress and diabetic retinopathy: molecular mechanisms, pathogenetic role and therapeutic implications. Redox Biol. 2020;37:101799 https://doi.org/10.1016/j.redox.2020.101799.
[20.]
Pereira C, Grácio D, Teixeira JP et al. Oxidative stress and DNA damage: implications in inflammatory bowel disease. Inflamm Bowel Dis. 2015; 21:2403-17. https://doi.org/10.1097/MIB.0000000000000506.
[21.]
Bourgonje AR, von Martels JZH, Bulthuis MLC et al. Crohn's disease in clinical remission is marked by systemic oxidative stress. Front Physiol. 2019;10:499. https://doi.org/10.3389/fphys.2019.00499.
[22.]
Moura FA, de Andrade KQ, Dos Santos JCF et al. Antioxidant therapy for treatment of inflammatory bowel disease: does it work?. Redox Biol. 2015; 6:617-39. https://doi.org/10.1016/j.redox.2015.10.006.
[23.]
Tanaka K-I, Shimoda M, Kubota M et al. Novel pharmacological effects of lecithinized superoxide dismutase on ischemia/reperfusion injury in the kidneys of mice. Life Sci. 2022;288:120164. https://doi.org/10.1016/j.lfs.2021.120164.
[24.]
Ishihara T, Tanaka K, Tasaka Y et al. Therapeutic effect of lecithinized superoxide dismutase against colitis. J Pharmacol Exp Ther. 2009; 328:152-64. https://doi.org/10.1124/jpet.108.144451.
[25.]
Zhang Q, Tao H, Lin Y et al. A superoxide dismutase/catalase mimetic nanomedicine for targeted therapy of inflammatory bowel disease. Biomaterials. 2016; 105:206-21. https://doi.org/10.1016/j.biomaterials.2016.08.010.
[26.]
Sengul Samanci N, Poturoglu S, Samanci C et al. The relationship between ocular vascular changes and the levels of malondialdehyde and vascular endothelial growth factor in patients with inflammatory bowel disease. Ocul Immunol Inflamm. 2021; 29:1459-63. https://doi.org/10.1080/09273948.2020.1740281.
[27.]
Gulec B, Yasar M, Yildiz S et al. Effect of hyperbaric oxygen on experimental acute distal colitis. Physiol Res. 2004; 53:493-9. https://doi.org/10.33549/physiolres.930416.
[28.]
Avraham-Lubin B-CR, Dratviman-Storobinsky O, El SD-B et al. Neuroprotective effect of hyperbaric oxygen therapy on anterior ischemic optic neuropathy. Front Neurol. 2011;2:23. https://doi.org/10.3389/fneur.2011.00023.
[29.]
Oscarsson N, Ny L, Mölne J et al. Hyperbaric oxygen treatment reverses radiation induced pro-fibrotic and oxidative stress responses in a rat model. Free Radical Biol Med. 2017; 103:248-55. https://doi.org/10.1016/j.freeradbiomed.2016.12.036.
[30.]
Tian X, Zhang L, Wang J et al. The protective effect of hyperbaric oxygen and ginkgo biloba extract on Aβ25-35-induced oxidative stress and neuronal apoptosis in rats. Behav Brain Res. 2013; 242:1-8. https://doi.org/10.1016/j.bbr.2012.12.026.
[31.]
Zhang L-D, Ma L, Zhang L et al. Hyperbaric oxygen and Ginkgo Biloba extract ameliorate cognitive and memory impairment via nuclear factor kappa-B pathway in rat model of Alzheimer's disease. Chin Med J (Engl). 2015; 128:3088-93. https://doi.org/10.4103/0366-6999.169105.
[32.]
Pan X, Chen C, Huang J et al. Neuroprotective effect of combined therapy with hyperbaric oxygen and madopar on 6-hydroxydopamine-induced Parkinson's disease in rats. Neurosci Lett. 2015; 600:220-5. https://doi.org/10.1016/j.neulet.2015.06.030.
[33.]
Tepić S, Petković A, Srejović I et al. Impact of hyperbaric oxygenation on oxidative stress in diabetic patients. Undersea Hyperb Med. 2018; 45:9-17. https://doi.org/10.22462/01.02.2018.2.
[34.]
Paprocki J, Pawłowska M, Sutkowy P et al. Evaluation of oxidative stress in patients with difficult-to-heal skin wounds treated with hyperbaric oxygen. Oxid Med Cell Longev. 2020;2020:1835352. https://doi.org/10.1155/2020/1835352.
[35.]
Atug O, Hamzaoglu H, Tahan V et al. Hyperbaric oxygen therapy is as effective as dexamethasone in the treatment of TNBS-E-induced experimental colitis. Dig Dis Sci. 2008; 53:481-5. https://doi.org/10.1007/s10620-007-9956-4.
[36.]
Gorgulu S, Yagci G, Kaymakcioglu N et al. Hyperbaric oxygen enhances the efficiency of 5-aminosalicylic acid in acetic acid-induced colitis in rats. Dig Dis Sci. 2006; 51:480-7. https://doi.org/10.1007/s10620-006-3159-2.
[37.]
Rossignol DA Hyperbaric oxygen treatment for inflammatory bowel disease: a systematic review and analysis. Med Gas Res. 2012;2:6. https://doi.org/10.1186/2045-9912-2-6.
[38.]
Parra RS, Lopes AH, Carreira EU et al. Hyperbaric oxygen therapy ameliorates TNBS-induced acute distal colitis in rats. Med Gas Res. 2015;5:6. https://doi.org/10.1186/s13618-015-0026-2.
[39.]
Novak S, Drenjancevic I, Vukovic R et al. Anti-inflammatory effects of hyperbaric oxygenation during DSS-induced colitis in BALB/c mice include changes in gene expression of HIF-1α proinflammatory cytokines, and antioxidative enzymes. Mediat Inflamm. 2016;2016:7141430. https://doi.org/10.1155/2016/7141430.
[40.]
Chen P, Li Y, Zhang X et al. Systematic review with meta-analysis: effectiveness of hyperbaric oxygenation therapy for ulcerative colitis. Therap Adv Gastroenterol. 2021;14:17562848211023394. https://doi.org/10.1177/17562848211023394.
[41.]
Zhao X, Zhao X, Wang Z Synergistic neuroprotective effects of hyperbaric oxygen and N-acetylcysteine against traumatic spinal cord injury in rat. J Chem Neuroanat. 2021;118:102037. https://doi.org/10.1016/j.jchemneu.2021.102037.
[42.]
Tai P-A, Chang C-K, Niu K-C et al. Attenuating experimental spinal cord injury by hyperbaric oxygen: stimulating production of vasculoendothelial and glial cell line-derived neurotrophic growth factors and interleukin-10. J Neurotrauma. 2010; 27:1121-7. https://doi.org/10.1089/neu.2009.1162.
[43.]
Shapira R, Solomon B, Efrati S et al. Hyperbaric oxygen therapy ameliorates pathophysiology of 3xTg-AD mouse model by attenuating neuroinflammation. Neurobiol Aging. 2018; 62:105-19. https://doi.org/10.1016/j.neurobiolaging.2017.10.007.
[44.]
Kudchodkar B, Jones H, Simecka J et al. Hyperbaric oxygen treatment attenuates the pro-inflammatory and immune responses in apolipoprotein E knockout mice. Clin Immunol. 2008; 128:435-41. https://doi.org/10.1016/j.clim.2008.05.004.
[45.]
Arıcıgil M, Dündar MA, Yücel A et al. Anti-inflammatory effects of hyperbaric oxygen on irradiated laryngeal tissues. Braz J Otorhinolar. 2018; 84:206-11. https://doi.org/10.1016/j.bjorl.2017.02.001.
[46.]
Chen L-F, Tian Y-F, Lin C-H et al. Repetitive hyperbaric oxygen therapy provides better effects on brain inflammation and oxidative damage in rats with focal cerebral ischemia. J Formos Med Assoc. 2014; 113:620-8. https://doi.org/10.1016/j.jfma.2014.03.012.
[47.]
Chen X, Duan X-S, Xu L-J et al. Interleukin-10 mediates the neuroprotection of hyperbaric oxygen therapy against traumatic brain injury in mice. Neuroscience. 2014; 266:235-43. https://doi.org/10.1016/j.neuroscience.2013.11.036.
[48.]
Lin K-C, Niu K-C, Tsai K-J et al. Attenuating inflammation but stimulating both angiogenesis and neurogenesis using hyperbaric oxygen in rats with traumatic brain injury. J Trauma Acute Care Surg. 2012; 72:650-9. https://doi.org/10.1097/TA.0b013e31823c575f.
[49.]
Lodge KM, Cowburn AS, Li W et al. The impact of hypoxia on neutrophil degranulation and consequences for the host. Int J Mol Sci. 2020;21:1183. https://doi.org/10.3390/ijms21041183.
[50.]
Johnson JL, Ramadass M, Haimovich A et al. Increased neutrophil secretion induced by NLRP 3 mutation links the inflammasome to azurophilic granule exocytosis. Front Cell Infect Microbiol. 2017;7:507. https://doi.org/10.3389/fcimb.2017.00507.
[51.]
Furuya MY, Asano T, Sumichika Y et al. Tofacitinib inhibits granulocyte-macrophage colony-stimulating factor-induced NLRP 3 inflammasome activation in human neutrophils. Arthritis Res Ther. 2018;20:196. https://doi.org/10.1186/s13075-018-1685-x.
[52.]
Grimberg-Peters D, Büren C, Windolf J et al. Hyperbaric oxygen reduces production of reactive oxygen species in neutrophils from polytraumatized patients yielding in the inhibition of p 38 MAP kinase and downstream pathways. PLoS One. 2016;11:e0161343. https://doi.org/10.1371/journal.pone.0161343.
[53.]
Selvendiran K, Kuppusamy ML, Ahmed S et al. Oxygenation inhibits ovarian tumor growth by downregulating STAT3 and cyclin-D1 expressions. Cancer Biol Ther. 2010; 10:386-90. https://doi.org/10.4161/cbt.10.4.12448.
[54.]
Qian H, Li Q, Shi W Hyperbaric oxygen alleviates the activation of NLRP-3-inflammasomes in traumatic brain injury. Mol Med Rep. 2017; 16:3922-8. https://doi.org/10.3892/mmr.2017.7079.
[55.]
Gonzalez CG, Mills RH, Kordahi MC et al. The host-microbiome response to hyperbaric oxygen therapy in ulcerative colitis patients. Cell Mol Gastroenterol Hepatol. 2022; 14:35-53. https://doi.org/10.1016/j.jcmgh.2022.03.008.
[56.]
Dölling M, Eckstein M, Singh J et al. Hypoxia promotes neutrophil survival after acute myocardial infarction. Front Immunol. 2022;13:726153 https://doi.org/10.3389/fimmu.2022.726153.
[57.]
Almzaiel AJ, Billington R, Smerdon G et al. Effects of hyperbaric oxygen treatment on antimicrobial function and apoptosis of differentiated HL-60 (neutrophil-like) cells. Life Sci. 2013; 93:125-31. https://doi.org/10.1016/j.lfs.2013.06.003.
[58.]
Almzaiel AJ, Billington R, Smerdon G et al. Hyperbaric oxygen enhances neutrophil apoptosis and their clearance by monocyte-derived macrophages. Biochem Cell Biol. 2015; 93:405-16. https://doi.org/10.1139/bcb-2014-0157.
[59.]
Vlodavsky E, Palzur E, Feinsod M et al. Evaluation of the apoptosis-related proteins of the BCL-2 family in the traumatic penumbra area of the rat model of cerebral contusion, treated by hyperbaric oxygen therapy: a quantitative immunohistochemical study. Acta Neuropathol (Berl). 2005; 110:120-6. https://doi.org/10.1007/s00401-004-0946-8.
[60.]
Andina N, Conus S, Schneider EM et al. Induction of Bim limits cytokine-mediated prolonged survival of neutrophils. Cell Death Differ. 2009; 16:1248-55. https://doi.org/10.1038/cdd.2009.50.
[61.]
Vince JE, De Nardo D, Gao W et al. The mitochondrial apoptotic effectors BAX/BAK activate Caspase-3 and -7 to trigger NLRP3 inflammasome and caspase-8 driven IL-1β activation. Cell Rep. 2018; 25:2339-53. https://doi.org/10.1016/j.celrep.2018.10.103.
[62.]
Liang F, Kang N, Li P et al. Effect of hyperbaric oxygen therapy on polarization phenotype of rat microglia after traumatic brain injury. Front Neurol. 2021;12:640816. https://doi.org/10.3389/fneur.2021.640816.
[63.]
Oyaizu T, Enomoto M, Yamamoto N et al. Hyperbaric oxygen reduces inflammation, oxygenates injured muscle, and regenerates skeletal muscle via macrophage and satellite cell activation. Sci Rep. 2018;8:1288. https://doi.org/10.1038/s41598-018-19670-x.
[64.]
Geng C-K, Cao H-H, Ying X et al. The effects of hyperbaric oxygen on macrophage polarization after rat spinal cord injury. Brain Res. 2015; 1606:68-76. https://doi.org/10.1016/j.brainres.2015.01.029.
[65.]
Buras JA, Holt D, Orlow D et al. Hyperbaric oxygen protects from sepsis mortality via an interleukin-10-dependent mechanism. Crit Care Med. 2006; 34:2624-9. https://doi.org/10.1097/01.CCM.0000239438.22758.E0.
[66.]
Lima FL, Joazeiro PP, Lancellotti M et al. Effects of hyperbaric oxygen on Pseudomonas aeruginosa susceptibility to imipenem and macrophages. Future Microbiol. 2015; 10:179-89. https://doi.org/10.2217/fmb.14.111.
[67.]
Wang C-H, Shan M-J, Liu H et al. Hyperbaric oxygen treatment on keloid tumor immune gene expression. Chin Med J (Engl). 2021; 134:2205-13. https://doi.org/10.1097/CM9.0000000000001780.
[68.]
Chiou H-YC, Huang S-H, Hung C-H et al. Hyperbaric oxygen therapy alleviates the autoimmune encephalomyelitis via the reduction of IL-17a and GM-csf production of autoreactive T cells as well as boosting the immunosuppressive IL-10 in the Central nervous system tissue lesions. Biomedicines. 2021;9:943. https://doi.org/10.3390/biomedicines9080943.
[69.]
Guggino G, Schinocca C, Lo Pizzo M et al. Thelper 1 response is correlated with widespread pain, fatigue, sleeping disorders and the quality of life in patients with fibromyalgia and is modulated by hyperbaric oxygen therapy. Clin Exp Rheumatol. 2019;37Suppl 116:81-9.
[70.]
Moon B-I, Kim H-R, Choi E-J et al. Attenuation of collagen-induced arthritis by hyperbaric oxygen therapy through altering immune balance in favor of regulatory T cells. Undersea Hyperb Med. 2017; 44:321-30. https://doi.org/10.22462/7.8.2017.4.
[71.]
Harnanik T, Soeroso J, Suryokusumo MG et al. Effects of hyperbaric oxygen on T helper 17/regulatory T polarization in antigen and collagen-induced arthritis: hypoxia-inducible factor-1α as a target. Oman Med J. 2020;35:e90. https://doi.org/10.5001/omj.2020.08.
[72.]
Liu X, Ye N, Liu S et al. Hyperbaric oxygen boosts PD-1 antibody delivery and T cell infiltration for augmented immune responses against solid tumors. Adv Sci (Weinh). 2021;8:e2100233. https://doi.org/10.1002/advs.202100233.
[73.]
Mahapatro M, Erkert L, Becker C Cytokine-mediated crosstalk between immune cells and epithelial cells in the gut. Cells. 2021;10:111. https://doi.org/10.3390/cells10010111.
[74.]
van der Post S, Jabbar KS, Birchenough G et al. Structural weakening of the colonic mucus barrier is an early event in ulcerative colitis pathogenesis. Gut. 2019; 68:2142-51. https://doi.org/10.1136/gutjnl-2018-317571.
[75.]
Liu X, Liang F, Song W et al. Effect of Nrf2 signaling pathway on the improvement of intestinal epithelial barrier dysfunction by hyperbaric oxygen treatment after spinal cord injury. Cell Stress Chaperon. 2021; 26:433-41. https://doi.org/10.1007/s12192-020-01190-1.
[76.]
Liu X, Liang F, Zhang J et al. Hyperbaric oxygen treatment improves intestinal barrier function after spinal cord injury in rats. Front Neurol. 2020;11:563281. https://doi.org/10.3389/fneur.2020.563281.
[77.]
Sakoda M, Ueno S, Kihara K et al. A potential role of hyperbaric oxygen exposure through intestinal nuclear factor-kappaB. Crit Care Med. 2004; 32:1722-9. https://doi.org/10.1097/01.ccm.0000132898.27101.6c.
[78.]
Villablanca EJ, Selin K, Hedin CRH Mechanisms of mucosal healing: treating inflammatory bowel disease without immunosuppression?. Nat Rev Gastroenterol Hepatol. 2022; 19:493-507. https://doi.org/10.1038/s41575-022-00604-y.
[79.]
Peña-Villalobos I, Casanova-Maldonado I, Lois P et al. Hyperbaric oxygen increases stem cell proliferation, angiogenesis and wound-healing ability of WJ-MSCs in diabetic mice. Front Physiol. 2018;9:995. https://doi.org/10.3389/fphys.2018.00995.
[80.]
Bekheit M, Baddour N, Katri K et al. Hyperbaric oxygen therapy stimulates colonic stem cells and induces mucosal healing in patients with refractory ulcerative colitis: a prospective case series. BMJ Open Gastroenterol. 2016;3:e000082. https://doi.org/10.1136/bmjgast-2016-000082.
[81.]
Shandley S, Wolf EG, Schubert-Kappan CM et al. Increased circulating stem cells and better cognitive performance in traumatic brain injury subjects following hyperbaric oxygen therapy. Undersea Hyperb Med. 2017; 44:257-69. https://doi.org/10.22462/5.6.2017.6.
[82.]
Thom SR, Milovanova TN, Yang M et al. Vasculogenic stem cell mobilization and wound recruitment in diabetic patients: increased cell number and intracellular regulatory protein content associated with hyperbaric oxygen therapy. Wound Repair Regen. 2011; 19:149-61. https://doi.org/10.1111/j.1524-475X.2010.00660.x.
[83.]
Khan M, Meduru S, Gogna R et al. Oxygen cycling in conjunction with stem cell transplantation induces NOS3 expression leading to attenuation of fibrosis and improved cardiac function. Cardiovasc Res. 2012; 93:89-99. https://doi.org/10.1093/cvr/cvr277.
[84.]
Tejada S, Batle JM, Ferrer MD et al. Therapeutic effects of hyperbaric oxygen in the process of wound healing. Curr Pharm Des. 2019; 25:1682-93. https://doi.org/10.2174/1381612825666190703162648.
[85.]
Guan Y, Niu H, Liu Z et al. Sustained oxygenation accelerates diabetic wound healing by promoting epithelialization and angiogenesis and decreasing inflammation. Sci Adv. 2021;7:eabj0153. https://doi.org/10.1126/sciadv.abj0153.
[86.]
Lui N-L, Thumboo J, Fong K-Y A case of refractory vasculitic ulcers in a systemic lupus erythematosus patient responding to rituximab and hyperbaric oxygen therapy. Int J Rheum Dis. 2009; 12:366-9. https://doi.org/10.1111/j.1756-185X.2009.01438.x.
[87.]
Boersema GSA, Wu Z, Kroese LF et al. Hyperbaric oxygen therapy improves colorectal anastomotic healing. Int J Colorectal Dis. 2016; 31:1031-8. https://doi.org/10.1007/s00384-016-2573-y.
[88.]
Sheikh AY Effect of hyperoxia on vascular endothelial growth factor levels in a wound model. Arch Surg. 2000; 135:1293-7. https://doi.org/10.1001/archsurg.135.11.1293.
[89.]
Huang X, Liang P, Jiang B et al. Hyperbaric oxygen potentiates diabetic wound healing by promoting fibroblast cell proliferation and endothelial cell angiogenesis. Life Sci. 2020;259:118246. https://doi.org/10.1016/j.lfs.2020.118246.
[90.]
Ijichi H, Taketomi A, Yoshizumi T et al. Hyperbaric oxygen induces vascular endothelial growth factor and reduces liver injury in regenerating rat liver after partial hepatectomy. J Hepatol. 2006; 45:28-34. https://doi.org/10.1016/j.jhep.2005.12.021.
[91.]
Holmberg FEO, Pedersen J, Jørgensen P et al. Intestinal barrier integrity and inflammatory bowel disease: stem cell-based approaches to regenerate the barrier. J Tissue Eng Regen Med. 2018; 12:923-35. https://doi.org/10.1002/term.2506.
[92.]
Yui S, Nakamura T, Sato T et al. Functional engraftment of colon epithelium expanded in vitro from a single adult Lgr5+ stem cell. Nat Med. 2012; 18:618-23. https://doi.org/10.1038/nm.2695.
[93.]
Veith AP, Henderson K, Spencer A et al. Therapeutic strategies for enhancing angiogenesis in wound healing. Adv Drug Deliv Rev. 2019; 146:97-125. https://doi.org/10.1016/j.addr.2018.09.010.
[94.]
Morgan XC, Tickle TL, Sokol H et al. Dysfunction of the intestinal microbiome in inflammatory bowel disease and treatment. Genome Biol. 2012;13:R79. https://doi.org/10.1186/gb-2012-13-9-r79.
[95.]
Zhang Z-J, Qu H-L, Zhao N et al. Assessment of causal direction between gut microbiota and inflammatory bowel disease: A mendelian randomization analysis. Front Genet. 2021;12:631061. https://doi.org/10.3389/fgene.2021.631061.
[96.]
Albenberg L, Esipova TV, Judge CP et al. Correlation between intraluminal oxygen gradient and radial partitioning of intestinal microbiota. Gastroenterology. 2014; 147:1055-63. https://doi.org/10.1053/j.gastro.2014.07.020.
[97.]
Liso M, De Santis S, Verna G et al. A specific mutation in Muc2 determines early dysbiosis in colitis-prone winnie mice. Inflamm Bowel Dis. 2020; 26:546-56. https://doi.org/10.1093/ibd/izz279.
[98.]
Zhang B, Dong W, Ma Z et al. Hyperbaric oxygen improves depression-like behaviors in chronic stress model mice by remodeling gut microbiota and regulating host metabolism. CNS Neurosci Ther. 2022; 29: 239-55. https://doi.org/10.1111/cns.13999.
[99.]
Ashley SL, Sjoding MW, Popova AP et al. Lung and gut microbiota are altered by hyperoxia and contribute to oxygen-induced lung injury in mice. Sci Transl Med. 2020;12:eaau9959. https://doi.org/10.1126/scitranslmed.aau9959.
[100.]
Feitosa MR, Parra RS, Machado VF et al. Adjunctive hyperbaric oxygen therapy in refractory Crohn's Disease: an observational study. Gastroent Res Pract. 2021;2021:6628142. https://doi.org/10.1155/2021/6628142.
[101.]
Hasan B, Yim Y, Ur Rashid M et al. Hyperbaric oxygen therapy in chronic inflammatory conditions of the pouch. Inflamm Bowel Dis. 2021; 27:965-70. https://doi.org/10.1093/ibd/izaa245.
[102.]
de Sousa Magalhães R, Moreira MJ, Rosa B et al. Hyperbaric oxygen therapy for refractory pyoderma gangrenosum: a salvage treatment. BMJ Case Rep. 2021;14:e238638. https://doi.org/10.1136/bcr-2020-238638.
[103.]
Seo HI, Lee H-J, Han KH Hyperbaric oxygen therapy for pyoderma gangrenosum associated with ulcerative colitis. Intest Res. 2018; 16:155-7. https://doi.org/10.5217/ir.2018.16.1.155.
[104.]
Lansdorp CA, Gecse KB, Buskens CJ et al. Hyperbaric oxygen therapy for the treatment of perianal fistulas in 20 patients with Crohn's disease. Aliment Pharm Ther. 2021; 53:587-97. https://doi.org/10.1111/apt.16228.
[105.]
Lansdorp CA, Buskens CJ, Gecse KB et al. Hyperbaric oxygen therapy for the treatment of perianal fistulas in 20 patients with Crohn's disease: results of the HOT-TOPIC trial after 1-year follow-up. United European Gastroenterol J. 2022; 10:160-8. https://doi.org/10.1002/ueg2.12189.
[106.]
Agrawal G, Borody T, Turner R et al. Combining infliximab, anti-MAP and hyperbaric oxygen therapy for resistant fistulizing Crohn's disease. Future Sci OA. 2015;1:FSO77. https://doi.org/10.4155/fso.15.77.
[107.]
Chan XHS, Koh CE, Glover M et al. Healing under pressure: hyperbaric oxygen and myocutaneous flap repair for extreme persistent perineal sinus after proctectomy for inflammatory bowel disease. Colorectal Dis. 2014; 16:186-90. https://doi.org/10.1111/codi.12500.
[108.]
Lansdorp CA, Buskens CJ, Gecse KB et al. Wound healing of metastatic perineal Crohn's disease using hyperbaric oxygen therapy: A case series. United European Gastroenterol J. 2020; 8:820-7. https://doi.org/10.1177/2050640620934915.
[109.]
Dulai PS, Raffals LE, Hudesman D et al. A phase 2B randomised trial of hyperbaric oxygen therapy for ulcerative colitis patients hospitalised for moderate to severe flares. Aliment Pharm Ther. 2020; 52:955-63. https://doi.org/10.1111/apt.15984.
[110.]
Jairath V Hyperbaric oxygen for hospitalized patients with ulcerative colitis. Am J Gastroenterol. 2018; 113:1432-4. https://doi.org/10.1038/s41395-018-0224-3.
[111.]
Dulai PS, Buckey JC, Raffals LE et al. Hyperbaric oxygen therapy is well tolerated and effective for ulcerative colitis patients hospitalized for moderate-severe flares: a phase 2A pilot multi-center, randomized, double-blind, sham-controlled trial. Am J Gastroenterol. 2018; 113:1516-23. https://doi.org/10.1038/s41395-018-0005-z.
[112.]
Iezzi LE, Feitosa MR, Medeiros BA et al. Crohn's disease and hyperbaric oxygen therapy. Acta Cir Bras. 2011; 26:129-32. https://doi.org/10.1590/S0102-86502011000800024.
[113.]
Dulai PS, Gleeson MW, Taylor D et al. Systematic review: the safety and efficacy of hyperbaric oxygen therapy for inflammatory bowel disease. Aliment Pharm Ther. 2014; 39:1266-75. https://doi.org/10.1111/apt.12753.
PDF

Accesses

Citations

Detail

Sections
Recommended

/