Aim: Mass casualty incidents (MCIs) are a devastating source of morbidity and mortality, testing the infrastructure of acute care management and challenging the ability to reconstruct limbs. Herein, we look to further a discussion on upper and lower limb reconstruction following MCIs.
Methods: Review of the literature, including our institute’s experience with the 2013 Boston Marathon Bombings, the 2015-2016 Terror Attacks in Ankara, and the 2010 earthquake in Haiti, pertaining to extremity reconstruction following MCIs.
Results: The three aforementioned case profiles highlight extremity wounds associated with MCIs and the subsequent reconstructive role of plastic surgeons. Surgical intervention or temporization of extremity wounds is a critical responsibility of plastic surgeons in this setting. Limb salvage is possible and often the preferred option following disasters.
Conclusion: Intentional or naturally occurring MCIs are a grim reality. Successful response to these events requires prompt mobilization of emergency medical staff and hospital activation. Plastic surgeons play a paramount role in multidisciplinary management of trauma with a particularly important involvement in limb reconstruction.
This review specifically addresses the use of homologous costal cartilage in rhinoplasty with a particular focus on the related complications that can be encountered. It is important to stress that autologous cartilage is probably the preferred material for grafting in rhinoplasty. However, concerns of donor-site morbidity and extensive surgery have motivated the development and use of homologous costal cartilage. Because homologous costal cartilage is readily available, it has been widely used as an alternative to autologous costal cartilage when restoring nasal contour. Both favorable and unfavorable reports can be found in the literature, however, controversy still exists regarding the complications that can occur with using homologous cartilage as a graft material in rhinoplasty. Therefore, the aim of this review is to summarize the current understanding of the usefulness and the problems related with the use of homologous costal cartilage in rhinoplasty.
Aim: To assess the safety profile and practice trend of autologous costal cartilage harvest by facial plastic surgeons in the United States (US).
Methods: A 10-question online survey was distributed by the American Academy of Facial Plastic and Reconstructive Surgery to its members.
Results: Of the 2,639 members, 2,379 received the survey with 137 (5.76%) members responded. The majority (33.6%) of the respondents were expert facial plastic surgeons. One hundred and nine (79.6%) of the respondents performed rib harvest with 49.6% of them performing the procedure at a hospital facility. Among them, 21.5% exclusively performed their surgery at an ambulatory surgical center not physically attached to a hospital while 6.67% of them at the in-office accredited operating room. When comparing techniques, 64.7% performed only full-thickness rib grafts vs. 12.0% harvesting partial-thickness rib grafts. Most used an incision length between 2.1 and 4 cm (64.4%) while 2 surgeons used < 1 cm incision. The occurrence of pneumothorax after autologous rib harvest remained low (< 1%) in most (73.1%). Regarding safety practices of the surgeons, only 24.6% would order a chest X-ray post-operatively while 54.5% would not. In addition, 58.7% of respondents never kept their patients overnight for observation after autologous rib grafting while 15.0% always would. For pain management, most respondents (50.4%) did not utilize any additional analgesia protocol besides oral pain medications.
Conclusion: Two thirds of the US facial plastic surgeons performed autologous costal cartilage harvest in a hospital setting. Routine chest imaging or overnight observation post-operatively was not warranted as the percentage of pneumothorax remained low and pain control was adequate.
Lower extremity injury and deformity can result from a number of etiologies. Regardless of the underlying cause, the decision to pursue amputation or reconstruction of a lower limb is challenging for both patients and practitioners. This decision is largely dependent on the patient’s premorbid health and function, functional goals and preferences, and characteristics and viability of the affected limb. The role of adaptive devices following surgery should never be underestimated. Advances in prostheses and orthoses have provided patients with a wider range of options to consider when deciding between limb reconstruction and amputation. The primary goals of any adaptive device are to improve function, prevent recurrence or ulceration of the defect, and allow for use of conventional footwear and/or clothing. When a lower extremity amputation is indicated, selection of the correct level is of critical importance in order to optimize healing potential and function. Each distinct level has certain inherent prosthetic and orthotic considerations. Likewise, the application of an adaptive device following reconstruction of the lower extremity also has demonstrable benefits and must be tailored to the specific defect and procedure performed. Knowledge of available prosthetic and orthotic options is of considerable importance for the reconstructive surgeon tasked with limb salvage or resurfacing an amputated extremity. This article reviews considerations of various types of lower extremity amputation and reconstruction, and provides a framework for the role of adaptive devices following surgery.
The aim of this paper is to discuss an updated technique for dorsal augmentation during rhinoplasty using diced cartilage wrapped in fascia. The usage of diced cartilage has been variously described in the literature with consistently satisfactory results. Herein, we present our experience with patients undergoing dorsal augmentation during rhinoplasty using an updated method of diced cartilage wrapped in fascia. Diced cartilage fascia techniques have become the technique of choice for dorsal augmentation for an ever-increasing number of rhinoplasty surgeons. The term is broadly descriptive and there remains a wide-range of ways to execute. Updating and enhancing the technique with greater attention to precision, and creating an aesthetically optimal and predictable result, may result in even improved outcomes for future patients.
A considerable part of revision rhinoplasty in Asians is associated with problems arising from the use of alloplastic implants. Revising alloplast associated problems of the nose mostly requires the use pf autogenous grafting material to minimize complications and maximize favorable outcomes. Although remnant septal cartilage and/or conchal cartilage can be used, as the deformity becomes more severe, adequate revision requires more volume and strength of grafting materials. Autogenous rib cartilage may be the most practical choice in these circumstances. In this review, common causes of revision rhinoplasty in Asians are discussed together with operative techniques with emphasis on the use of autologous rib cartilage.
Rib cartilage is the most reliable material for structural support and dorsal augmentation in Asian rhinoplasty with its robust strength and bountiful amount. Its value is incomparable especially in complex, cartilage-depleted revision surgery or major reconstruction. There are many articles regarding harvesting and carving of rib cartilage in rhinoplasty, however, only few has focused on preoperative and postoperative issues. Preoperatively, evaluating cartilage availability, assessing quality and quantity of cartilage, and choosing the cartilage to harvest are necessary. Although easily overlooked, proper postoperative management of rib cartilage rhinoplasty patients is key to prevent infection and heighten patient satisfaction. Here in, I would like to introduce how I evaluate rib cartilage rhinoplasty patients preoperatively and manage them postoperatively to maximize the surgical results.
Asian rhinoplasty is a very common cosmetic procedure. Many Asians desire a higher nasal bridge, for which they undergo several procedures, including filler injections, implantations and insertion of threads. Surgeons encounter many patients who have had several procedures done on them previously. In this paper, we introduce the use of autologous grafts for Asian rhinoplasty (primary and secondary), and discuss the rib carving techniques and difficulties encountered during harvesting, carving and placements of grafts and how to overcome these problems and prevent complications.
Oblique split method is a technique used to carve the costal cartilage. Its main advantages are the high number of grafts that can be obtained, the ability to obtain grafts of various thicknesses and lengths, no risk of warping, less chance of desorption, preservation of the straight forms of grafts although they can be carved in different shapes.
Aim: Free tissue transfer is essential for extremity reconstruction following traumatic injuries, oncologic resection, and diabetic complications. However, given the circumferential shape of the arm and leg, a small amount of ongoing edema can prevent a tension-free closure. Additionally, intraoperative thrombosis, vascular disease can lead to proximal exposure of the pedicle or vein grafts. This study evaluates the outcomes of microvascular transfers that utilized a skin graft for closure over the pedicle, in comparison with a matched cohort with a tension-free primary closure.
Methods: A retrospective review was completed of all patients that underwent free flap reconstruction of an extremity defect from January 2014 to December 2017 at a single academic institution. Flaps that utilized skin grafting for closure were compared to those closed primarily. Adjunct operative procedures, demographics, and complications were evaluated.
Results: A total of 71 patients fulfilled the inclusion criteria. The 11 flaps in 10 patients underwent skin grafting over the pedicle. The two cohorts were comparable in age, gender, BMI, and co-morbidities, excluding renal disease which was present in 40% (n = 4) of skin grafted group compared to 6.5% (n = 4) in the primary closure group. Flap area, operative time, and anastomosis technique were comparable between the two groups. There was no significant difference in the rates of post-operative complications including partial flap loss, complete flap loss, infection. Mean follow up time in the skin grafting group was 14.2 months and 20.2 months for the primary closure group.
Conclusion: As per the principal, a tension-free closure is paramount to preventing tissue complications including direct compression of a microvascular pedicle. However, with ongoing tissue edema skin grafting should be considered as a reliable technique to ensure both protection of the pedicle as well as prevention of direct compression without additional complications and comparable post-operative outcomes.
Aim: To analyse the epidemiology, aetiology, and surgical management of zygomatic complex (ZMC) fractures in our major trauma centre, and to compare the number and location of fixation points and surgical access in our patient cohort with the literature.
Methods: Retrospective analysis of all operative cases (Open Reduction and Internal Fixation) of zygomatic complex fractures over a one year period (2016).
Results: A greater proportion of patients in our cohort (54%) were treated with one-point fixation compared to the literature, with the zygomaticomaxillary (ZM) buttress being the most popular fixation point (90%). ZM buttress and frontozygomatic (FZ) suture were the commonest choices for two-point fixations (70%). Buccal sulcus incision was used for ZM access in all cases. For FZ access, upper blepharoplasty incision was the most common (56%). For infra-orbital margin access, transconjunctival incision was the most common (75%). There was no significant association between number of fixation points and presence of associated injuries, impact of injury, or time to operation. There were no post-operative complications.
Conclusion: A greater proportion of patients in our cohort were successfully treated with one point fixation compared to the literature, and fewer patients underwent orbital floor exploration and repair in our cohort compared to the literature. This study highlights the ongoing variation in the surgical management of ZMC fractures.
Aim: Composite tissue defects encompassing bone and/or isolated bony defects can pose a surgical challenge; however, their reconstruction is critical for successful functional limb salvage. These cases become increasingly problematic as secondary defects, following multiple nonvascularized grafting attempts resulting in complex bony nonunion. Herein, our experience utilizing fibula vascularized bone grafts (VBGs) for bone restoration will be presented to demonstrate their utility in a variety of reconstructions for limb salvage.
Methods: This is a case series describing a series of vascularized fibula grafts for extremity reconstruction performed by a single academic surgeon over multiple institutions in seven years.
Results: Twenty-seven (27) total VBGs met inclusion criteria and underwent reconstruction for traumatic (16), oncologic (6) and chronic degenerative (5) etiologies. Bony union was achieved in 26 of 27 cases.
Conclusion: The decision-making process for bony reconstruction in these scenarios is difficult and multivariable. Fibula VBGs can provide a single-stage solution for autologous bony and soft tissue replacement of large or complex bone defects and can often be superior options compared with non-vascularized bone grafts or non-bone internal fixation techniques. Their osteogenic potential is unmatched by allogenic or synthetic substitutions. These benefits are evident in a variety of clinical settings such as pediatrics, oncology and trauma.
Aim: This animal study aims to examine the efficacy and safety of poly-D,L-lactic acid (PDLLA) microspheres as subdermal fillers.
Methods: Thirty 2-week-old male Sprague Dawley rats were used as test animals, and 0.5 mL filler solutions were injected into the subdermal tissues on their backs. Groups of five rats were randomly selected and sacrificed for examination on the 2nd, 4th, 8th, 12th, 16th, and 20th weeks after injection. Clinical and histological examinations were performed via the hematoxyline-eosin and immunohistochemical (IHC) staining of injected sites after collecting the injected masses. The body weights of the rats were measured, and the presence of filler substance in other organs was determined.
Results: Injected volumes were stable from the 2nd to the 20th week after injection, and no abnormalities were observed around the injection sites. The injected substance did not migrate to the surrounding tissues. In IHC staining experiments, myofibroblasts were observed from the 2nd week, and collagen was detected from the 4th week. Myofibroblast was observed in the spaces between and inside the microspheres in the 8th week after injection, whereas type I collagen was found between and inside the microspheres at 8th and 12th weeks, respectively.
Conclusion: The animal experiments confirm the efficacy and safety of injectable PDLLA as a subdermal filler.
We describe the endoscopic-assisted rib harvesting technique for secondary rhinoplasty as minimum - invasive and safe harvesting method. Endoscopic-assisted rib harvesting was performed on 52 patients for revision rhinoplasty in last two years (2017-2019). Adequate amount of cartilage was obtained through 1-2 cm incision. The 30 degrees angled endoscope was used for vision control. Fifty-two patients underwent rhinoplasty with costal cartilage harvested using endoscopic-assisted method. The length of the harvested cartilage blocks from the rib was 5 ± 1.5 cm in average. There were no associated intraoperative complications. Postoperative complications were less than by the conventional rib harvesting technique: in all cases, no signs of pneumothorax or excessive bleeding were detected after surgery. The wound healed without significant scarring in 50 (96%) cases. Two patients (4%) showed hypertrophic scar formation. Postoperative pain was evaluated by using Visual Pain Analog Scale retrospectively. Forty-eight patients (92%) scored 1.43 ± 0.7 experienced no significant postoperative pain. Only 4 patients (8%) scored 4.1 ± 0.8 and complained of slight postoperative pain. This technique provides an effective and less-invasive alternative for conventional costal cartilage harvesting with reduced complications risk and extended visualization. Patients benefit from an inconspicuous scar and reduced postoperative pain. Technique can be applied for revision and primary rhinoplasty and allows achieving reproducible aesthetically and functionally successful results with minimized risks.
Aim: The management of complex dorsal hand wounds with extensor tendon loss is controversial. Treatment has focused on soft tissue coverage, but there is limited evidence comparing immediate vs. staged tendon reconstruction. This review evaluates existing literature to determine the optimal management of composite hand defects.
Methods: A MEDLINE database review was performed including objective measurements such as number of operations, total active motion, grip strength, days to maximum range of motion (ROM), and return to work. Data extraction included demographics, surgical techniques, complications, and relative outcome. We compared primary and secondary staged reconstruction to correlate any significant differences in outcome and determine optimal timing and technique for extensor tendon reconstruction. We extracted information on flap types including regional and free tissue transfer with tendinous components vs. staged tendon grafts.
Results: Comparison of outcomes showed that patients with immediate reconstruction had fewer operations, faster return to maximum ROM, and greater chance of returning to work. The most successful single stage flaps include the radial forearm, suitable for reconstructing one to three tendons and the dorsalis pedis for three or four tendons; however, there were significantly more complications in immediate reconstruction particularly regarding donor site morbidity. Pedicled flaps had better total active motion. The two-stage approach resulted in acceptable functional outcomes without significant complications.
Conclusion: Immediate cutaneous tendinous flaps have clear advantages over staged approaches for reconstruction of composite dorsal hand wounds. Benefits include less operations, faster time to maximum ROM, and higher percent of patients returning to work; however, significantly more flap related complications were seen. Immediate pedicled radial forearm provided the best total active motion with least complications. When patient circumstances dictate, a fascial perforator free flap offers a suitable environment for staged tendon grafts with good functional outcomes reported albeit longer time to achieve them.
Aim: There are limited reports in the United States demonstrating outcomes of primarily thinned fasciocutaneous flaps in the setting of critical limb ischemia, Charcot collapse and osteomyelitis. We hope to determine patient and flap related outcomes in advanced lower extremity disease.
Methods: The authors conducted a retrospective review of fasciocutaneous free flaps of variable thickness for lower extremity salvage. Osteomyelitis and non-osteomyelitis patients were compared according to our primary outcome measures: functional ambulation, bone healing and complications to flap and patient. Subgroups with critical limb ischemia, Charcot collapse and diabetic foot were analyzed separately.
Results: Fifty-nine patients underwent free flap reconstruction: osteomyelitis (n = 20, 34%), Charcot collapse (n = 22, 37%), and/or critical limb ischemia (n = 12, 20%). All patients underwent anterolateral thigh flaps tailored for defect-specific thicknesses: 17 superthin, 25 suprafascial, 17 subfascial. There were no significant differences between groups in terms of partial and complete flap loss (P = 1.000 and P = 0.108). Ninety-one percent of patients were ambulatory at follow up. Eighty-five percent of individuals with osteomyelitis cleared their infection demonstrating radiographic bone healing. Two patients developed recalcitrant deep space infections ultimately requiring amputation. Subgroup analysis did not show any differences in flap related complications within the diabetic Charcot population. In multivariate regression, preoperative revascularization was independently associated with failure of limb salvage.
Conclusion: Primarily thinned perforator flaps performed well in the setting of lower extremity limb salvage, critical limb ischemia, osteomyelitis, and the Charcot foot - expanding their role in the armamentarium for lower extremity care.
Currently, the gold standard for aesthetic and functional reconstruction of critical mandibular defects is an autologous fibular flap; however, this carries risk of donor site morbidity, and is not a promising option in patients with depleted donor sites due to previous surgeries. Tissue engineering presents a potential solution in the design of a biomimetic scaffold that must be osteoconductive, osteoinductive, and support osseointegration. These osteogenesis-inducing scaffolds are most successful when they mimic and interact with the surrounding native macro- and micro-environment of the mandible. This is accomplished via the regeneration triad: (1) a biomimetic, bioactive osteointegrative scaffold, most likely a resorbable composite of collagen or a synthetic polymer with collagen-like properties combined with beta-tri calcium phosphate that is 3D printed according to defect morphology; (2) growth factor, most frequently bone morphogenic protein 2 (BMP-2); and (3) stem cells, most commonly bone marrow mesenchymal stem cells. Novel techniques for scaffold modification include the use of nano-hydroxyapatite, or combining a vector with a biomaterial to create a gene activated matrix that produces proteins of interest (typically BMP-2) to support osteogenesis. Here, we review the current literature in tissue engineering in order to discuss the success of varying use and combinations of scaffolding materials (i.e., ceramics, biological polymers, and synthetic polymers) with stem cells and growth factors, and will examine their success in vitro and in vivo to induce and guide osteogenesis in mandibular defects.
In the recent decades, microsurgical reconstruction has evolved from simple survival of the affected extremity to the improvement of functional and aesthetic outcome. This review retraces the main contributions to the advances of microsurgery for reconstruction of upper and lower extremities and limb preservation. In the upper extremity, it is important to restore fine motility, together with allowing prompt mobilization. In the lower limb, care must be taken in the reconstruction of weight-bearing areas and the aim must be proper ambulation and shoe wearing. Local perforator flaps can be considered for medium size defects. They provide thin coverage and can be performed in short operating time. Their use, though, is often limited by tissue availability. Free flaps allow to overcome this problem and, thanks to the recent development in the study of perforator vessels, the microsurgeon can choose the flap with the most appropriate characteristics. Chimeric flaps can accomplish simultaneous reconstruction of different tissue components and large bone defects often require vascularized bone reconstruction. When dealing with limb preservation it is very important to consider residual functionality. Functioning muscle transfer and targeted muscle re-innervation can be performed in these cases. A useful reconstructive tool in severely damaged limbs with limited blood supply is the use of cross-leg free flaps. In conclusion, extremity reconstruction and limb preservation are reaching new heights thanks, not only to the work of plastic surgeons, but also to the new developments in other fields of study such as oncology, traumatology, radiology and medical engineering.
Lymphedema is a chronic and progressive pathological state of tissue swelling caused by congenital or acquired lymphatic abnormality. History, physical and laboratory examinations could help to diagnosis > 90% lymphedema patients. Early stage lymphedema could be challenging to diagnose. The aim of this review is to provide an objective appraisal of current diagnostic methods, such as lymphoscintigraphy, lympho-fluoroscopies, lymphangiography and etc. focusing on their respective advantages and weaknesses, and hopefully shed some lights on developing a practical diagnosis modality beneficial to early detection and clinical decision making of lymphedema.
The management of extremity soft tissue sarcoma is constantly evolving, and, in recent decades, limb salvage has been the main goal. More commonly, this is being achieved with a combination of neo-adjuvant radiotherapy, followed by wide excision and soft tissue reconstruction in the form of vascularised soft tissue transfer. Although limb salvage is now readily achievable, the resultant functional disabilities following excision of major musculotendinous and neurovascular structures can be life changing. In recent years, there has been a move towards functional limb reconstruction in the form of free functioning muscle transfer. This paper reviews the advances in functional limb reconstruction in the setting of preoperative radiation and reports our experience in this challenging reconstructive field.
The Rives-Stoppa technique for ventral hernia repair is commonly utilized due to well-proven outcomes with low overall morbidity. However, this approach is limited by the amount of myofascial advancement and sublay space available for a wide mesh overlap. Thus, anterior component separation was developed to allow further myofascial advancement. Some limitations were noted, which led to the subsequent study, utilization, and refinement of the posterior component separation (PCS) technique. PCS continues to demonstrate low hernia recurrence, surgical site occurrences, and improvement in rectus muscle function. Continued adoption of this technique has expanded to minimally invasive approaches for hernia repair. This paper is a comprehensive review of the evolution of PCS, technique, and outcomes.
Hernia repair is the most common general surgical procedure performed in the United States; however, historically, there has been a surprising lack of consensus regarding hernia complications and their management. The development of international, prospectively-collected databases such as the Americas Hernia Society Quality Collaborative has introduced a new era of evidence-based practice around the prevention and management of these complications. This review seeks to equip surgeons with evidence-based techniques for prevention and management of the most common complications of open ventral hernia repair.
Perforator-pedicled propeller flaps, which base their blood supply on isolated perforators, have been gaining popularity among plastic surgeons over the past two decades. They have proven to be of great value in the reconstruction of soft tissue defects in different areas of the body but are, thanks to their maximal mobility, mostly used in the reconstruction of extremities. In this article, we focus on perforator-pedicled propeller flaps in lower limb reconstruction, where they can be implemented in the coverage of primary as well as secondary soft tissue defects. Firstly, a brief literature review on evolution of propeller flap use in lower extremity is provided. Moreover, we present our surgical technique including the use of indocyanine green real-time angiography for reliable flap transfer. In addition, we report 3 cases of patients in whom we used a local propeller flap for the closure of skin defects in different parts of the leg.
Lower extremity reconstruction is challenging for a variety of reasons. New techniques for soft tissue coverage continue to evolve. While free flaps are always an option, free flaps require significant microsurgical expertise, a proficient staff, advanced equipment, and a patient with a somewhat healthy baseline. However, as microsurgery has evolved, so has the identification of new anatomy and new techniques - namely, perforator based pedicled flaps. These flaps have expanded options for lower extremity reconstruction, and continue to advance the field of microsurgery. The purpose of this article is to review the evolution of perforator based pedicled flaps in the lower extremity, review the anatomy, and offer examples of design and indications.
Aim: The versatile application of perforator free flaps for coverage of any extremity has been well proven. Often, a “free-style”-like approach is used to design these flaps, as conventional imaging techniques for perforator identification may be too expensive or unavailable. As will be demonstrated, the recent application of a thermal imaging camera using a smartphone is a cheaper and therefore more universal means to better identify the requisite perforators upon which a free flap can be designed and then monitored.
Methods: Smartphone thermography can be used on any patient preoperatively to identify preferable perforators or vascular network “hot spots” within the desired donor site territory. Intraoperative management of the choice of perforators and subsequent flap dissection can be similarly facilitated. Intermittent postoperative monitoring based on changes of the thermal image color palette will provide a comparison that can be used to determine if perfusion across the microanastomosis is sustained.
Results: An overview of how to use a smartphone in concert with a thermal imaging camera is outlined. Dynamic infrared thermography represents a thermal stress necessary with a smartphone to better identify donor site “hot spots”.
Conclusion: Smartphone thermography is an inexpensive and expeditious means for identification of “hot spots” that correlate with perforators that would suffice to insure perfusion to a free perforator flap. However, since perforator caliber and course cannot be determined, this should be considered to be only a complementary adjunct for conventional methods. Nevertheless, its simplicity will overall improve the safer design, harvest, and subsequent monitoring of free flaps.
The salvage of mangled lower-extremities after severe injury remains a daunting operative dilemma, but one that continues to evolve with advances in microsurgical and orthopedic techniques. Specifically, trends in clinical practice including the decision to salvage and timing of soft-tissue coverage are changing in concordance with improvements in wound care, flap selection for soft-tissue provision, and preoperative imaging. Due to these improvements, more complex wounds are increasingly eligible for reconstruction. It remains unclear, however, whether success in limb salvage confers improved functional patient outcomes. We present a review of the literature tracing recent advances in the salvage of mangled extremities following traumatic injury, with a focus on practice trends regarding timing of reconstruction, operative approaches, and preoperative imaging.
Aim: Quadriceps strength and knee extension, the most important factors limiting the ability to rise from a chair, are crucial for walking at an appropriate speed, ascending and descending stairs, and performing activities such as running, dancing, and jumping. Resection of the anterior compartment of the thigh, including all four quadriceps muscles, for the treatment of a sarcoma is uncommon; however, when necessary, it is very debilitating and adversely affects a patient’s quality of life without functional reconstruction. Currently, there are a limited number of complex and difficult reconstructions to restore quadriceps function that have been described with variable outcomes. We describe a simple technique that employs a single gracilis functional muscle transfer to replace essential quadriceps function.
Methods: This is a case series describing the use of either a free or pedicled single gracilis muscle to restore quadriceps function following sarcoma resection.
Results: Four patients underwent an anterior compartment sarcoma resection that resulted in a large segmental defect and/or denervation of all four quadriceps muscles such that no quadriceps function would remain without reconstruction. All four patients underwent a functional reconstruction using a single gracilis. Three of the living patients achieved British Medical Research Counsel Grade 4 strength, can achieve full knee extension, are able to navigate stairs, and are able to ambulate without a brace. The fourth patient unfortunately was deceased in under three months following his tumor resection.
Conclusion: Despite its small size in comparison to the quadriceps muscles, with physiotherapy and training, the gracilis muscle demonstrates the capacity to hypertrophy and replace quadriceps function following limb salvage surgery.
The lymphatic system is the area least investigated in the field of anatomical science. The major reason for this is the technical difficulty in identifying the lymphatics in the surrounding tissue in post-mortem specimens. As a result, the medical illustration masterpieces crafted by pioneer anatomists on the basis of cadaver dissections remain a vital component of current anatomical textbooks. Several innovative techniques were developed in the past to allow anatomists to distinguish the transparent lymphatic structures from their surroundings and enable thorough investigation of the lymphatic system in a cadaver model. This paper focuses on these techniques, including the current technique developed by the authors themselves.