Model Properties and Clinical Application in the Finite Element Analysis of Knee Joint: A Review

Mingyue Yan, Ting Liang, Haibo Zhao, Yanchi Bi, Tianrui Wang, Tengbo Yu, Yingze Zhang

PDF
Orthopaedic Surgery ›› 2024, Vol. 16 ›› Issue (2) : 289-302. DOI: 10.1111/os.13980
REVIEW ARTICLE

Model Properties and Clinical Application in the Finite Element Analysis of Knee Joint: A Review

Author information +
History +

Abstract

The knee is the most complex joint in the human body, including bony structures like the femur, tibia, fibula, and patella, and soft tissues like menisci, ligaments, muscles, and tendons. Complex anatomical structures of the knee joint make it difficult to conduct precise biomechanical research and explore the mechanism of movement and injury. The finite element model (FEM), as an important engineering analysis technique, has been widely used in many fields of bioengineering research. The FEM has advantages in the biomechanical analysis of objects with complex structures. Researchers can use this technology to construct a human knee joint model and perform biomechanical analysis on it. At the same time, finite element analysis can effectively evaluate variables such as stress, strain, displacement, and rotation, helping to predict injury mechanisms and optimize surgical techniques, which make up for the shortcomings of traditional biomechanics experimental research. However, few papers introduce what material properties should be selected for each anatomic structure of knee FEM to meet different research purposes. Based on previous finite element studies of the knee joint, this paper summarizes various modeling strategies and applications, serving as a reference for constructing knee joint models and research design.

Keywords

biomechanics / clinical application / finite element model / knee joint / material properties

Cite this article

Download citation ▾
Mingyue Yan, Ting Liang, Haibo Zhao, Yanchi Bi, Tianrui Wang, Tengbo Yu, Yingze Zhang. Model Properties and Clinical Application in the Finite Element Analysis of Knee Joint: A Review. Orthopaedic Surgery, 2024, 16(2): 289‒302 https://doi.org/10.1111/os.13980

References

[1]
Tapasvi S, Shekhar A, Patil S, Pandit H. Limb position influences component orientation in Oxford mobile bearin g unicompartmental knee arthroplasty: an experimental cadaveric study. Bone Joint Res. 2020;9(6):272–278.
[2]
Arauz P, Peng Y, Castillo T, Klemt C, Kwon YM. In vitro kinematic analysis of single axis radius posterior-substituting total knee arthroplasty. J Knee Surg. 2021;34(11):1253–1259.
[3]
Kono K, Tomita T, Yamazaki T, Iwamoto K, Tamaki M, D'Lima DD. Patellar resurfacing has minimal impact on in vitro tibiofemoral kinematics during deep knee flexion in total knee arthroplasty. Knee. 2021;30:163–169.
[4]
Naghibi H, Janssen D, van den Boogaard T, van Tienen T, Verdonschot N. The implications of non-anatomical positioning of a meniscus prosthesis on predicted human knee joint biomechanics. Med Biol Eng Comput. 2020;58(6):1341–1355.
[5]
Knowles NK, Whittier DE, Besler BA, Boyd SK. Proximal tibia bone stiffness and strength in HR-pQCT- and QCT-based finite element models. Ann Biomed Eng. 2021;49(9):2389–2398.
[6]
Beidokhti HN, Janssen D, van de Groes S, Verdonschot N. The peripheral soft tissues should not be ignored in the finite element models of the human knee joint. Med Biol Eng Comput. 2018;56(7):1189–1199.
[7]
Wang H, Zhang M, Cheng C-K. A novel protection liner to improve graft-tunnel interaction following anterior cruciate ligament reconstruction: a finite element analysis. J Orthop Surg Res. 2020;15(1):232.
[8]
Teng Y, Jia G, da L, Peng B, Liu Z, Han H, et al. The permissive safe angle of the tibial tunnel in transtibial posterio r cruciate ligament reconstruction: a three-dimensional simulation study. Orthopaedic Surg. 2022;14(6):1193–1202.
[9]
Cheng R, Wang H, Jiang Z, Dimitriou D, Cheng CK, Tsai TY. The femoral tunnel drilling angle at 45 degrees coronal and 45 degrees sagittal provided the lowest peak stress and strain on the bone tunnels and anterior cruciate ligament graft. Front Bioeng Biotechnol. 2021;9:797389.
[10]
Kachmar M, Piazza SJ, Bader DA. Comparison of growth plate violations for transtibial and anteromedial surgical techniques in simulated adolescent anterior cruciate ligament reconstruction. Am J Sports Med. 2016;44(2):417–424.
[11]
Gardiner JC, Weiss JA. Subject-specific finite element analysis of the human medial collatera l ligament during valgus knee loading. J Orthop Res. 2003;21(6):1098–1106.
[12]
Dong Y, Hu G, Dong Y, Hu Y, Xu Q. The effect of meniscal tears and resultant partial meniscectomies on the knee contact stresses: a finite element analysis. Comput Methods Biomech Biomed Engin. 2014;17(13):1452–1463.
[13]
Wang M. Medical imaging diagnosis of anterior cruciate ligament injury based on intelligent finite-element algorithm. J Healthc Eng. 2021;2021:6073757.
[14]
Yin XY, Park DY, Kim YJ, Ahn HJ, Yoo SH, Min BH. The effect of distance between holes on the structural stability of subchondral bone in microfracture surgery: a finite element model study. BMC Musculoskelet Disord. 2020;21(1):557.
[15]
Burton W, Myers C, Rullkoetter P. Semi-supervised learning for automatic segmentation of the knee from M. Comput Methods Programs Biomed. 2020;189:105328.
[16]
Yin Y, Zhang X, Williams R, Wu X, Anderson DD, Sonka M. LOGISMOS—layered optimal graph image segmentation of multiple objects and surfaces: cartilage segmentation in the knee joint. IEEE Trans Med Imaging. 2010;29(12):2023–2037.
[17]
Tanska P, Venäläinen MS, Erdemir A, Korhonen RK. A multiscale framework for evaluating three-dimensional cell mechanics in fibril-reinforced poroelastic tissues with anatomical cell distribution - analysis of chondrocyte deformation behavior in mechanically loaded articular cartilage. J Biomech. 2020;101:109648.
[18]
Lin W, Meng Q, Li J, Chen Z, Jin Z. The effect of highly inhomogeneous biphasic properties on mechanical behaviour of articular cartilage. Comput Methods Programs Biomed. 2021;206:106122.
[19]
Warnecke D, Balko J, Haas J, Bieger R, Leucht F, Wolf N, et al. Degeneration alters the biomechanical properties and structural composition of lateral human menisci. Osteoarthr Cartil. 2020;28(11):1482–1491.
[20]
Puetzer JL, Ma T, Sallent I, Gelmi A, Stevens MM. Driving hierarchical collagen fiber formation for functional tendon, ligament, and meniscus replacement. Biomaterials. 2021;269:120527.
[21]
Vlaic J, Josipovic M, Bohacek I, Pilipovic A, Skavic P, Schauperl Z, et al. Plantaris tendon is valuable graft for the medial patellofemoral ligament reconstruction: a biomechanical study. Knee. 2022;38:212–219.
[22]
Uzuner S, Kuntze G, Li LP, Ronsky JL, Kucuk S. Creep behavior of human knee joint determined with high-speed biplanar video-radiography and finite element simulation. J Mech Behav Biomed Mater. 2022;125:104905.
[23]
Steineman BD, LaPrade RF, Haut Donahue TL. Loosening of posteromedial meniscal root repairs affects knee mechanics: a finite element study. J Biomech Eng. 2022;144(5):51003.
[24]
Liu W, Sun X, Liu W, Liu H, Zhai H, Zhang D, et al. Finite element study of a partial meniscectomy of a complete discoid lateral meniscus in adults. Med Eng Phys. 2022;107:103855.
[25]
Wu J, Mahfouz MR. Reconstruction of knee anatomy from single-plane fluoroscopic x-ray based on a nonlinear statistical shape model. J Med Imaging (Bellingham). 2021;8(1):16001.
[26]
Venalainen MS, Mononen ME, Väänänen SP, Jurvelin JS, Töyräs J, Virén T, et al. Effect of bone inhomogeneity on tibiofemoral contact mechanics during physiological loading. J Biomech. 2016;49(7):1111–1120.
[27]
Benos L, Stanev D, Spyrou L, Moustakas K, Tsaopoulos DE. A review on finite element modeling and simulation of the anterior cruciate ligament reconstruction. Front Bioeng Biotechnol. 2020;8:967.
[28]
Arab AZE, Merdji A, Benaissa A, Roy S, Bouiadjra B-AB, Layadi K, et al. Finite-element analysis of a lateral femoro-tibial impact on the total knee arthroplasty. Comput Methods Programs Biomed. 2020;192:105446.
[29]
Bori E, Armaroli F, Innocenti B. Biomechanical analysis of femoral stems in hinged total knee arthroplasty in physiological and osteoporotic bone. Comput Methods Programs Biomed. 2022;213:106499.
[30]
Kok J, Grassi L, Gustafsson A, Isaksson H. Femoral strength and strains in sideways fall: validation of finite element models against bilateral strain measurements. J Biomech. 2021;122:110445.
[31]
Gujar RA, Warhatkar HN. Estimation of mass apparent density and Young's modulus of femoral neck-head region. J Med Eng Technol. 2020;44(7):378–388.
[32]
Zanjani-Pour S, Giorgi M, Dall'Ara E. Development of subject specific finite element models of the mouse knee joint for preclinical applications. Front Bioeng Biotechnol. 2020;8:558815.
[33]
Lu XL, Wan LQ, Edward Guo X, Mow VC. A linearized formulation of triphasic mixture theory for articular cartilage, and its application to indentation analysis. J Biomech. 2010;43(4):673–679.
[34]
Beillas P, Lee SW, Tashman S, Yang KH. Sensitivity of the tibio-femoral response to finite element modeling p arameters. Comput Methods Biomech Biomed Engin. 2007;10(3):209–221.
[35]
Lampen N, Su H, Chan DD, Yan P. T2 mapping refined finite element modeling to predict knee osteoarthritis progression. Annu Int Conf IEEE Eng Med Biol Soc. 2021;2021:4592–4595.
[36]
Fell NLA, Lawless BM, Cox SC, Cooke ME, Eisenstein NM, Shepherd DET, et al. The role of subchondral bone, and its histomorphology, on the dynamic viscoelasticity of cartilage, bone and osteochondral cores. Osteoarthr Cartil. 2019;27(3):535–543.
[37]
Eskelinen ASA, Tanska P, Florea C, Orozco GA, Julkunen P, Grodzinsky AJ, et al. Mechanobiological model for simulation of injured cartilage degradation via pro-inflammatory cytokines and mechanical stimulus. PLoS Comput Biol. 2020;16(6):e1007998.
[38]
Huang X. Sports injury modeling of the anterior cruciate ligament based on the intelligent finite element algorithm. J Healthc Eng. 2021;2021:3606863.
[39]
Li L, Yang L, Zhang K, Zhu L, Wang X, Jiang Q. Three-dimensional finite-element analysis of aggravating medial menisc us tears on knee osteoarthritis. J Orthopaedic Trans. 2020;20:47–55.
[40]
Li L, Yang X, Yang L, Zhang K, Shi J, Zhu L, et al. Biomechanical analysis of the effect of medial meniscus degenerative a nd traumatic lesions on the knee joint. Am J Trans Res. 2019;11(2):542–556.
[41]
Mehrizi AA, Lin S, Sun L, Wang Y, Chen L. Penetration and ligament formation of viscoelastic droplets impacting on the superhydrophobic mesh. Sci Rep. 2022;12(1):11920.
[42]
Funk JR, Hall GW, Crandall JR, Pilkey WD. Linear and quasi-linear viscoelastic characterization of ankle ligamen ts. J Biomech Eng. 2000;122(1):15–22.
[43]
Naghibi Beidokhti H, Janssen D, van de Groes S, Hazrati J, van den Boogaard T, Verdonschot N. The influence of ligament modelling strategies on the predictive capability of finite element models of the human knee joint. J Biomech. 2017;65:1–11.
[44]
Baldwin MA, Laz PJ, Stowe JQ, Rullkoetter PJ. Efficient probabilistic representation of tibiofemoral soft tissue constraint. Comput Methods Biomech Biomed Engin. 2009;12(6):651–659.
[45]
Shu L, Yamamoto K, Yoshizaki R, Yao J, Sato T, Sugita N. Multiscale finite element musculoskeletal model for intact knee dynami cs. Comput Biol Med. 2022;141:105023.
[46]
Peters AE, Geraghty B, Bates KT, Akhtar R, Readioff R, Comerford E. Ligament mechanics of ageing and osteoarthritic human knees. Front Bioeng Biotechnol. 2022;10:954837.
[47]
Woo SL, Gomez MA, Akeson WH. The time and history-dependent viscoelastic properties of the canine m edical collateral ligament. J Biomech Eng. 1981;103(4):293–298.
[48]
Esrafilian A, Stenroth L, Mononen ME, Tanska P, Avela J, Korhonen RK. EMG-assisted muscle force driven finite element model of the knee joint with fibril-reinforced poroelastic cartilages and menisci. Sci Rep. 2020;10(1):3026.
[49]
Adouni M, Faisal TR, Dhaher YY. Computational frame of ligament in situ strain in a full knee model. Comput Biol Med. 2020;126:104012.
[50]
Abbadessa A, Crecente-Campo J, Alonso MJ. Engineering anisotropic meniscus: zonal functionality and spatiotemporal drug delivery. Tissue Eng Part B Rev. 2021;27(2):133–154.
[51]
Bansal S, Peloquin JM, Keah NM, O'Reilly OC, Elliott DM, Mauck RL, et al. Structure, function, and defect tolerance with maturation of the radia l tie fiber network in the knee meniscus. J Orthopaedic Res. 2020;38(12):2709–2720.
[52]
Schwer J, Rahman MM, Stumpf K, Rasche V, Ignatius A, Dürselen L, et al. Degeneration affects three-dimensional strains in human menisci: in situ MRI acquisition combined with image registration. Front Bioeng Biotechnol. 2020;8:582055.
[53]
Orozco GA, Bolcos P, Mohammadi A, Tanaka MS, Yang M, Link TM, et al. Prediction of local fixed charge density loss in cartilage following A. J Orthopaedic Res. 2021;39(5):1064–1081.
[54]
Párraga Quiroga JM, Emans P, Wilson W, Ito K, van Donkelaar CC. Should a native depth-dependent distribution of human meniscus constitutive components be considered in FEA-models of the knee joint? J Mech Behav Biomed Mater. 2014;38:242–250.
[55]
Berni M, Marchiori G, Cassiolas G, Grassi A, Zaffagnini S, Fini M, et al. Anisotropy and inhomogeneity of permeability and fibrous network response in the pars intermedia of the human lateral meniscus. Acta Biomater. 2021;135:393–402.
[56]
Long T, Shende S, Lin CY, Vemaganti K. Experiments and hyperelastic modeling of porcine meniscus show heterogeneity at high strains. Biomech Model Mechanobiol. 2022;21(6):1641–1658.
[57]
Meakin JR, Shrive NG, Frank CB, Hart DA. Finite element analysis of the meniscus: the influence of geometry and material properties on its behaviour. Knee. 2003;10(1):33–41.
[58]
Esrafilian A, Stenroth L, Mononen ME, Vartiainen P, Tanska P, Karjalainen PA, et al. Toward tailored rehabilitation by implementation of a novel musculoskeletal finite element analysis pipeline. IEEE Trans Neural Syst Rehabil Eng. 2022;30:789–802.
[59]
Shu L, Yao J, Yamamoto K, Sato T, Sugita N. In vivo kinematical validated knee model for preclinical testing of total knee replacement. Comput Biol Med. 2021;132:104311.
[60]
Berton A, Salvatore G, Nazarian A, Longo UG, Orsi A, Egan J, et al. Combined MPFL reconstruction and tibial tuberosity transfer avoid focal patella overload in the setting of elevated TT-TG distances. Knee Surg Sports Traumatol Arthrosc. 2022;31:1771–1780.
[61]
Funaro A, Shim V, Crouzier M, Mylle I, Vanwanseele B. Subject-specific 3D models to investigate the influence of rehabilitat ion exercises and the twisted structure on Achilles tendon strains. Front Bioeng Biotechnol. 2022;10:914137.
[62]
Wang K, Hosseinnejad SH, Jabran A, Baltzopoulos V, Ren L, Qian Z. A biomechanical analysis of 3D stress and strain patterns in patellar tendon during knee flexion. Int J Numer Method Biomed Eng. 2020;36(9):e3379.
[63]
Seth A, Hicks JL, Uchida TK, Habib A, Dembia CL, Dunne JJ, et al. OpenSim: simulating musculoskeletal dynamics and neuromuscular control to study human and animal movement. PLoS Comput Biol. 2018;14(7):e1006223.
[64]
Hume DR, Rullkoetter PJ, Shelburne KB. ReadySim: a computational framework for building explicit finite eleme nt musculoskeletal simulations directly from motion laboratory data. Int J Numer Method Biomed Eng. 2020;36(11):e3396.
[65]
Delp SL, Anderson FC, Arnold AS, Loan P, Habib A, John CT, et al. OpenSim: open-source software to create and analyze dynamic simulation s of movement. IEEE Trans Biomed Eng. 2007;54(11):1940–1950.
[66]
Esrafilian A, Stenroth L, Mononen ME, Tanska P, van Rossom S, Lloyd DG, et al. 12 degrees of freedom muscle force driven fibril-reinforced poroviscoelastic finite element model of the knee joint. IEEE Trans Neural Syst Rehabil Eng. 2021;29:123–133.
[67]
Esrafilian A, Stenroth L, Mononen ME, Vartiainen P, Tanska P, Karjalainen PA, et al. An EMG-assisted muscle-force driven finite element analysis pipeline to investigate joint- and tissue-level mechanical responses in functional activities: towards a rapid assessment toolbox. IEEE Trans Biomed Eng. 2022;69(9):2860–2871.
[68]
Orozco GA, Bolcos P, Mohammadi A, Tanaka MS, Yang M, Link TM, et al. Prediction of local fixed charge density loss in cartilage following ACL injury and reconstruction: a computational proof-of-concept study with MRI follow-up. J Orthop Res. 2021;39(5):1064–1081.
[69]
Kedgley AE, Saw TH, Segal NA, Hansen UN, Bull AMJ, Masouros SD. Predicting meniscal tear stability across knee-joint flexion using finite-element analysis. Knee Surg Sports Traumatol Arthrosc. 2019;27(1):206–214.
[70]
Twitchell C, Walimbe T, Liu JC, Panitch A. Peptide-modified chondroitin sulfate reduces coefficient of friction a t articular cartilage surface. Curr Res Biotechnol. 2020;2:16–21.
[71]
Mahmood H, Eckold D, Stead I, Shepherd DET, Espino DM, Dearn KD. A method for the assessment of the coefficient of friction of articula r cartilage and a replacement biomaterial. J Mech Behav Biomed Mater. 2020;103:103580.
[72]
Estell EG, Murphy LA, Gangi LR, Shah RP, Ateshian GA, Hung CT. Attachment of cartilage wear particles to the synovium negatively impacts friction properties. J Biomech. 2021;127:110668.
[73]
Radin EL, Paul IL. A consolidated concept of joint lubrication. J Bone Joint Surg Am. 1972;54(3):607–613.
[74]
Farrokhi S, Keyak JH, Powers CM. Individuals with patellofemoral pain exhibit greater patellofemoral joint stress: a finite element analysis study. Osteoarthr Cartil. 2011;19(3):287–294.
[75]
Behrens BA, Dröder K, Hürkamp A, Droß M, Wester H, Stockburger E. Finite element and finite volume modelling of friction drilling HSLA steel under experimental comparison. Materials (Basel). 2021;14(20):5997.
[76]
Ateshian GA, Maas S, Weiss JA. Finite element algorithm for frictionless contact of porous permeable media under finite deformation and sliding. J Biomech Eng. 2010;132(6):61006.
[77]
Navacchia A, Hume DR, Rullkoetter PJ, Shelburne KB. A computationally efficient strategy to estimate muscle forces in a finite element musculoskeletal model of the lower limb. J Biomech. 2019;84:94–102.
[78]
Henninger HB, Reese SP, Anderson AE, Weiss JA. Validation of computational models in biomechanics. Proc Inst Mech Eng H. 2010;224(7):801–812.
[79]
Salvatore G, Berton A, Orsi A, Egan J, Walley KC, Johns WL, et al. Lateral release with tibial tuberosity transfer alters patellofemoral biomechanics promoting multidirectional patellar instability. Art Ther. 2022;38(3):953–964.
[80]
Wang JY, Qi YS, Bao HRC, Xu YS, Wei BG, Wang YX, et al. The effects of different repair methods for a posterior root tear of the lateral meniscus on the biomechanics of the knee: a finite element analysis. J Orthop Surg Res. 2021;16(1):296.
[81]
Ren S, Shi H, Liu Z, Zhang J, Li H, Huang H, et al. Finite element analysis and experimental validation of the anterior cruciate ligament and implications for the injury mechanism. Bioengineering (Basel). 2022;9(10):590.
[82]
Sabatini L, Bosco F, Barberis L, Camazzola D, Bistolfi A, Risitano S, et al. Kinetic sensors for ligament balance and kinematic evaluation in anatomic bi-cruciate stabilized total knee arthroplasty. Sensors (Basel). 2021;21(16):5427.
[83]
Grassi L, Schileo E, Taddei F, Zani L, Juszczyk M, Cristofolini L, et al. Accuracy of finite element predictions in sideways load configurations for the proximal human femur. J Biomech. 2012;45(2):394–399.
[84]
Zhang J, Liu Y, Han Q, Zhang A, Chen H, Ma M, et al. Biomechanical comparison between porous Ti6Al4V block and tumor prosthesis UHMWPE block for the treatment of distal femur bone defects. Front Bioeng Biotechnol. 2022;10:939371.
[85]
Totoribe K, Chosa E, Yamako G, Hamada H, Ouchi K, Yamashita S, et al. Finite element analysis of the tibial bone graft in cementless total knee arthroplasty. J Orthop Surg Res. 2018;13(1):113.
[86]
Liu Y, Zhang A, Wang C, Yin W, Wu N, Chen H, et al. Biomechanical comparison between metal block and cement-screw techniques for the treatment of tibial bone defects in total knee arthroplasty based on finite element analysis. Comput Biol Med. 2020;125:104006.
[87]
Liu Y, Chen B, Wang C, Chen H, Zhang A, Yin W, et al. Design of Porous Metal Block Augmentation to treat tibial bone defects in total knee arthroplasty based on topology optimization. Front Bioeng Biotechnol. 2021;9:765438.
[88]
Quevedo Gonzalez FJ, Meyers KN, Schraut N, Mehrotra KG, Lipman JD, Wright TM, et al. Do metaphyseal cones and stems provide any biomechanical advantage for moderate contained tibial defects in revision TKA? A finite-element analysis based on a cadaver model. Clin Orthop Relat Res. 2021;479(11):2534–2546.
[89]
Zhao X-W, Fan ZR, Ma JX, Ma XL, Wang Y, Bai HH, et al. Reinforcement strategy for medial open-wedge high tibial osteotomy: a finite element evaluation of the additional opposite screw technique a nd bone grafts. Comput Methods Programs Biomed. 2022;213:106523.
[90]
Kilicaslan OF, Levent A, Çelik HK, Tokgöz MA, Köse Ö, Rennie AEW, et al. Effect of cartilage thickness mismatch in osteochondral grafting from knee to talus on articular contact pressures: a finite element analysis. Jt Dis Relat Surg. 2021;32(2):355–362.
[91]
MacLeod AR, Serrancoli G, Fregly BJ, Toms AD, Gill HS. The effect of plate design, bridging span, and fracture healing on the performance of high tibial osteotomy plates: an experimental and finite element study. Bone Joint Res. 2018;7(12):639–649.
[92]
Ren W, Zhang W, Jiang S, Peng J, She C, Li L, et al. The study of biomechanics and clinical anatomy on a novel plate design ed for posterolateral tibial plateau fractures via Anterolatera l approach. Front Bioeng Biotechnol. 2022;10:818610.
[93]
Du B, Ma T, Bai H, Lu Y, Xu Y, Yang Y, et al. Efficacy comparison of Kirschner-wire tension band combined with patellar cerclage and anchor-loop plate in treatment of inferior patellar pole fracture. Front Bioeng Biotechnol. 2022;10:1010508.
[94]
Keinan-Adamsky K, Shinar H, Navon G. The effect of detachment of the articular cartilage from its calcified zone on the cartilage microstructure, assessed by 2H-spectroscopic double quantum filtered MRI. J Orthop Res. 2005;23(1):109–117.
[95]
Anwar A, Hu Z, Zhang Y, Gao Y, Tian C, Wang X, et al. Multiple subchondral bone cysts cause deterioration of articular Carti Lage in medial OA of knee: a 3D simulation study. Front Bioeng Biotechnol. 2020;8:573938.
[96]
Al Khatib F, Gouissem A, Mbarki R, Adouni M. Biomechanical characteristics of the knee joint during gait in obese versus normal subjects. Int J Environ Res Public Health. 2022;19(2):989.
[97]
Arjmand H, Nazemi M, Kontulainen SA, McLennan CE, Hunter DJ, Wilson DR, et al. Mechanical metrics of the proximal tibia are precise and differentiate osteoarthritic and normal knees: a finite element study. Sci Rep. 2018;8(1):11478.
[98]
Stamos PA, Berthaume MA. The effects of femoral metaphyseal morphology on growth plate biomechanics in juvenile chimpanzees and humans. Interface Focus. 2021;11(5):20200092.
[99]
Zhang G, Smith BP, Plate JF, Casanova R, Hsu FC, Li J, et al. A systematic approach to predicting the risk of unicompartmental knee arthroplasty revision. Osteoarthr Cartil. 2016;24(6):991–999.
[100]
Nakayama H, Schröter S, Yamamoto C, Iseki T, Kanto R, Kurosaka K, et al. Large correction in opening wedge high tibial osteotomy with resultant joint-line obliquity induces excessive shear stress on the articular cartilage. Knee Surg Sports Traumatol Arthrosc. 2018;26(6):1873–1878.
[101]
Curreli C, di Puccio F, Davico G, Modenese L, Viceconti M. Using musculoskeletal models to estimate in vivo total knee rep lacement kinematics and loads: effect of differences between models. Front Bioeng Biotechnol. 2021;9:703508.
[102]
Quevedo González FJ, Sculco PK, Kahlenberg CA, Mayman DJ, Lipman JD, Wright TM, et al. Undersizing the tibial baseplate in cementless total knee arthroplasty has only a small impact on bone-implant interaction: a finite element biomechanical study. J Arthroplasty. 2022;38:757–762.
[103]
Koh YG, Lee JA, Lee HY, Kim HJ, Chung HS, Kang KT. Reduction in tibiofemoral conformity in lateral unicompartmental knee arthroplasty is more representative of normal knee kinematics. Bone Joint Res. 2019;8(12):593–600.
[104]
Apostolopoulos V, Tomáš T, Boháč P, Marcián P, Mahdal M, Valoušek T, et al. Biomechanical analysis of all-polyethylene total knee arthroplasty on periprosthetic tibia using the finite element method. Comput Methods Programs Biomed. 2022;220:106834.
[105]
Shu L, Yamamoto K, Kai S, Inagaki J, Sugita N. Symmetrical cruciate-retaining versus medial pivot prostheses: the eff ect of intercondylar sagittal conformity on knee kinematics and contac t mechanics. Comput Biol Med. 2019;108:101–110.
[106]
Nikkhoo M, Hassani K, Tavakoli Golpaygani A, Karimi A. Biomechanical role of posterior cruciate ligament in total knee arthroplasty: a finite element analysis. Comput Methods Programs Biomed. 2020;183:105109.
[107]
Koh YG, Hong HT, Kang KT. Biomechanical effect of UHMWPE and CFR-PEEK insert on tibial component in unicompartmental knee replacement in different varus and valgus alignments. Materials (Basel). 2019;12(20):3345.
[108]
Innocenti B, Bellemans J, Catani F. Deviations from optimal alignment in TKA: is there a biomechanical difference between femoral or tibial component alignment? J Arthroplasty. 2016;31(1):295–301.
[109]
Innocenti B, Pianigiani S, Ramundo G, Thienpont E. Biomechanical effects of different varus and valgus alignments in medial unicompartmental knee arthroplasty. J Arthroplasty. 2016;31(12):2685–2691.
[110]
Zhu GD, Guo WS, Zhang QD, Liu ZH, Cheng LM. Finite element analysis of mobile-bearing unicompartmental knee arthroplasty: the influence of tibial component coronal alignment. Chin Med J (Engl). 2015;128(21):2873–2878.
[111]
Danese I, Pankaj P, Scott CEH. The effect of malalignment on proximal tibial strain in fixed-bearing unicompartmental knee arthroplasty: a comparison between metal-backed and all-polyethylene components using a validated finite element model. Bone Joint Res. 2019;8(2):55–64.
[112]
Kang KT, Koh YG, Son J, Kwon OR, Lee JS, Kwon SK. Influence of increased posterior tibial slope in total knee arthroplasty on knee joint biomechanics: a computational simulation study. J Arthroplasty. 2018;33(2):572–579.
[113]
Kwon HM, Lee JA, Koh YG, Park KK, Kang KT. Computational analysis of tibial slope adjustment with fixed-bearing medial unicompartmental knee arthroplasty in ACL- and PCL-deficient models. Bone Joint Res. 2022;11(7):494–502.
[114]
Kang KT, Koh YG, Son J, Kwon OR, Lee JS, Kwon SK. A computational simulation study to determine the biomechanical influence of posterior condylar offset and tibial slope in cruciate retaining total knee arthroplasty. Bone Joint Res. 2018;7(1):69–78.
[115]
Koh YG, Park KM, Lee HY, Kang KT. Influence of tibiofemoral congruency design on the wear of patient-specific unicompartmental knee arthroplasty using finite element analysis. Bone Joint Res. 2019;8(3):156–164.
[116]
Kang KT, Son J, Suh DS, Kwon SK, Kwon OR, Koh YG. Patient-specific medial unicompartmental knee arthroplasty has a greater protective effect on articular cartilage in the lateral compartment: a finite element analysis. Bone Joint Res. 2018;7(1):20–27.
[117]
Sun H, Zhang H, Wang T, Zheng K, Zhang W, Li W, et al. Biomechanical and finite-element analysis of femoral pin-site fractures following navigation-assisted total knee arthroplasty. J Bone Joint Surg Am. 2022;104(19):1738–1749.
[118]
Inoue S, Akagi M, Asada S, Mori S, Zaima H, Hashida M. The valgus inclination of the tibial component increases the risk of medial tibial condylar fractures in unicompartmental knee arthroplasty. J Arthroplasty. 2016;31(9):2025–2030.
[119]
Stoddart JC, Garner A, Tuncer M, Cobb JP, van Arkel RJ. The risk of tibial eminence avulsion fracture with bi-unicondylar knee arthroplasty: a finite element analysis. Bone Joint Res. 2022;11(8):575–584.
[120]
De Rosa M, Filippone G, Best TM, Jackson AR, Travascio F, et al. Mechanical properties of meniscal circumferential fibers using an inve rse finite element analysis approach. J Mech Behav Biomed Mater. 2022;126:105073.
[121]
Danso EK, Mäkelä JTA, Tanska P, Mononen ME, Honkanen JTJ, Jurvelin JS, et al. Characterization of site-specific biomechanical properties of human meniscus-importance of collagen and fluid on mechanical nonlinearities. J Biomech. 2015;48(8):1499–1507.
[122]
Zellmann P, Ribitsch I, Handschuh S, Peham C. Finite element modelling simulated meniscus translocation and deformation during locomotion of the equine stifle. Animals (Basel). 2019;9(8):502.
[123]
Zhang K, Li L, Yang L, Shi J, Zhu L, Liang H, et al. Effect of degenerative and radial tears of the meniscus and resultant meniscectomy on the knee joint: a finite element analysis. J Orthop Translat. 2019;18:20–31.
[124]
Wang S, Hase K, Kita S, Ogaya S. Biomechanical effects of medial meniscus radial tears on the knee joint during gait: a concurrent finite element musculoskeletal framework investigation. Front Bioeng Biotechnol. 2022;10:957435.
[125]
Pena E, Calvo B, Martínez MA, Palanca D, Doblaré M. Finite element analysis of the effect of meniscal tears and meniscectomies on human knee biomechanics. Clin Biomech (Bristol, Avon). 2005;20(5):498–507.
[126]
Mononen ME, Jurvelin JS, Korhonen RK. Implementation of a gait cycle loading into healthy and meniscectomised knee joint models with fibril-reinforced articular cartilage. Comput Methods Biomech Biomed Engin. 2015;18(2):141–152.
[127]
Kim YS, Kang KT, Son J, Kwon OR, Choi YJ, Jo SB, et al. Graft extrusion related to the position of allograft in lateral meniscal allograft transplantation: biomechanical comparison between parapatellar and transpatellar approaches using finite element analysis. Art Ther. 2015;31(12):2380–2391.
[128]
Zhu LY, Li L, Li ZA, Shi JP, Tang WL, Yang JQ, et al. Design and biomechanical characteristics of porous meniscal implant structures using triply periodic minimal surfaces. J Transl Med. 2019;17(1):89.
[129]
Knapp A, Williams LN. Predicting the effect of localized ACL damage on neighbor ligament mechanics via finite element modeling. Bioengineering (Basel). 2022;9(2):54.
[130]
Moglo KE, Shirazi-Adl A. On the coupling between anterior and posterior cruciate ligaments, and knee joint response under anterior femoral drawer in flexion: a finit e element study. Clin Biomech (Bristol, Avon). 2003;18(8):751–759.
[131]
Kang KT, Koh YG, Jung M, Nam JH, Son J, Lee YH, et al. The effects of posterior cruciate ligament deficiency on posterolateral corner structures under gait- and squat-loading conditions: a computational knee model. Bone Joint Res. 2017;6(1):31–42.
[132]
Innocenti B, Bilgen ÖF, Labey L, van Lenthe GH, Sloten JV, Catani F. Load sharing and ligament strains in balanced, overstuffed and understuffed UKA. A validated finite element analysis. J Arthroplasty. 2014;29(7):1491–1498.
[133]
Bartolin PB, Boixadera R, Hudetz D. Experimental testing and finite element method analysis of the anterior cruciate ligament primary repair with internal brace augmentation. Med Eng Phys. 2021;95:76–83.
[134]
Tampere T, Devriendt W, Cromheecke M, Luyckx T, Verstraete M, Victor J. Tunnel placement in ACL reconstruction surgery: smaller inter-tunnel a ngles and higher peak forces at the femoral tunnel using anteromedial portal femoral drilling-a 3D and finite element analysis. Knee Surg Sports Traumatol Arthrosc. 2019;27(8):2568–2576.
[135]
Saltzman BM, Wang S, Habet NA, Hong IS, Trofa DP, Meade JD, et al. The hybrid transtibial technique for femoral tunnel drilling in anterior cruciate ligament reconstruction: a finite element analysis model of graft bending angles and peak graft stresses in comparison with transtibial and anteromedial portal techniques. J Am Acad Orthop Surg. 2022;30(18):e1195–e1206.
[136]
Shu L, Abe N, Li S, Sugita N. Importance of posterior tibial slope in joint kinematics with an anterior cruciate ligament-deficient knee. Bone Joint Res. 2022;11(10):739–750.
[137]
Wang H, Zhang B, Cheng C-K. Stiffness and shape of the ACL graft affects tunnel enlargement and gr aft wear. Knee Surg Sports Traumatol Arthrosc. 2020;28(7):2184–2193.
[138]
Risvas K, Stanev D, Benos L, Filip K, Tsaopoulos D, Moustakas K. Evaluation of anterior cruciate ligament surgical reconstruction through finite element analysis. Sci Rep. 2022;12(1):8044.
[139]
Wierer G, Winkler PW, Pomwenger W, Plachel F, Moroder P, Seitlinger G. Transpatellar bone tunnels perforating the lateral or anterior cortex increase the risk of patellar fracture in MPFL reconstruction: a finit e element analysis and survey of the international patellofemoral study group. Knee Surg Sports Traumatol Arthrosc. 2022;30(5):1620–1628.
[140]
Sanchis-Alfonso V, Ginovart G, Alastruey-López D, Montesinos-Berry E, Monllau JC, Alberich-Bayarri A, et al. Evaluation of patellar contact pressure changes after static versus dynamic medial patellofemoral ligament reconstructions using a finite element model. J Clin Med. 2019;8(12):2093.
[141]
Yu L, Mei Q, Mohamad NI, Gu Y, Fernandez J. An exploratory investigation of patellofemoral joint loadings during directional lunges in badminton. Comput Biol Med. 2021;132:104302.

RIGHTS & PERMISSIONS

2024 2024 The Authors. Orthopaedic Surgery published by Tianjin Hospital and John Wiley & Sons Australia, Ltd.
PDF

Accesses

Citations

Detail

Sections
Recommended

/