Physical layer security of FSO communication system based on G-G correlation channel

Ruijing Zhong, Jianhua Ji, Zhenhong Wang, Ke Wang, Yufeng Song

Optoelectronics Letters ›› , Vol. 20 ›› Issue (11) : 658-662. DOI: 10.1007/s11801-024-4016-2
Article

Physical layer security of FSO communication system based on G-G correlation channel

Author information +
History +

Abstract

In this paper, the eavesdropping model based on eavesdroppers near legitimate users, and the effect of atmospheric channel correlation on the physical layer security (PLS) of the free-space optical (FSO) link are analyzed. According to the joint probability density function (PDF) and cumulative distribution function (CDF) of Gamma-Gamma (G-G) distribution, a new closed-form expression of interception probability is derived. Numerical results show that the interception probability of the FSO system depends on turbulence intensity, channel correlation and radial displacement attenuation of eavesdroppers.

Cite this article

Download citation ▾
Ruijing Zhong, Jianhua Ji, Zhenhong Wang, Ke Wang, Yufeng Song. Physical layer security of FSO communication system based on G-G correlation channel. Optoelectronics Letters, , 20(11): 658‒662 https://doi.org/10.1007/s11801-024-4016-2

References

[[1]]
KAUR R, BANSAL B, MAJHI S, et al. A survey on reconfigurable intelligent surface for physical layer security of next-generation wireless communications[J]. IEEE open journal of vehicular technology, 2024.
[[2]]
Wu H, Kang D, Ding J, et al. . Secrecy performance analysis in the FSO communication system considering different eavesdropping scenarios[J]. Optics express, 2022, 30(23): 41028-41047. Bibcode: ,
CrossRef Google scholar
[[3]]
Djordjevic I B. Physical-layer security for wireless and optical channels[M]. Advanced optical and wireless communications systems, 2022 Cham Springer International Publishing 713-760.
CrossRef Google scholar
[[4]]
Lee J W, Choi J Y, Hyun Y J, et al. . Solar background noise mitigation using the orbital angular momentum mode in vertical FSO downlink transmissions[J]. Optics express, 2021, 29(21): 33312-33321. Bibcode: ,
CrossRef Google scholar
[[5]]
Lopez-Martinez F J, Gomez G, Garrido-Balsells J M. Physical-layer security in free-space optical communications[J]. IEEE photonics journal, 2015, 7(2): 1-14.
CrossRef Google scholar
[[6]]
Yang G, Khalighi M A, Bourennane S, et al. . Approximation to the sum of two correlated Gamma-Gamma variates and its applications in free-space optical communications[J]. IEEE wireless communications letters, 2012, 1(6): 621-624.
CrossRef Google scholar
[[7]]
Yang G, Khalighi M A, Bourennane S Performance of receive diversity FSO systems under realistic beam propagation conditions[C], 2012 New York IEEE 1-5
[[8]]
Pham T V, Thang T C, Pham A T. Average achievable rate of spatial diversity MIMO-FSO over correlated Gamma-Gamma fading channels[J]. Journal of optical communications and networking, 2018, 10(8): 662-674.
CrossRef Google scholar
[[9]]
Yang G, Khalighi M A, Ghassemlooy Z, et al. . Performance evaluation of receive-diversity free-space optical communications over correlated Gamma-Gamma fading channels[J]. Applied optics, 2013, 52(24): 5903-5911. Bibcode: ,
CrossRef Google scholar
[[10]]
Zou D, Xu Z. Information security risks outside the laser beam in terrestrial free-space optical communication[J]. IEEE photonics journal, 2016, 8(5): 1-9
[[11]]
Endo H, Han T S, Aoki T, et al. . Numerical study on secrecy capacity and code length dependence of the performances in optical wiretap channels[J]. IEEE photonics journal, 2015, 7(5): 1-18.
CrossRef Google scholar
[[12]]
Tang X, Wang Z, Xu Z, et al. . Multihop free-space optical communications over turbulence channels with pointing errors using heterodyne detection[J]. Journal of lightwave technology, 2014, 32(15): 2597-2604.
CrossRef Google scholar
[[13]]
Garrido-Balsells J M, Lopez-Martinez F J, Castillo-Vázquez M, et al. . Performance analysis of FSO communications under LOS blockage[J]. Optics express, 2017, 25(21): 25278-25294. Bibcode: ,
CrossRef Google scholar
[[14]]
Trinh P V, Dang N T, Pham A T. All-optical relaying FSO systems using EDFA combined with optical hard-limiter over atmospheric turbulence channels[J]. Journal of lightwave technology, 2015, 33(19): 4132-4144. Bibcode: ,
CrossRef Google scholar
[[15]]
Adamchik V S, Marichev O I The algorithm for calculating integrals of hypergeometric type functions and its realization in REDUCE system[C], 1990 New York ACM 212-224
[[16]]
Andrews L C, Phillips R L, Hopen C Y Laser beam scintillation with applications[M], 2001 Washington SPIE press,
CrossRef Google scholar
[[17]]
Smith O E, Adelfang S I, Tubbs J D A bivariate Gamma probability distribution with application to gust modeling[R], 1982 Washington NASA
[[18]]
Holm H, Alouini M S. Sum and difference of two squared correlated Nakagami variates in connection with the McKay distribution[J]. IEEE transactions on communications, 2004, 52(8): 1367-1376.
CrossRef Google scholar
[[19]]
Mancinelli M, Trenti A, Piccione S, et al. . Mid-infrared coincidence measurements on twin photons at room temperature[J]. Nature communications, 2017, 8(1): 15184. Bibcode: ,
CrossRef Google scholar
[[20]]
Chen Z, Yu S, Wang T, et al. . Channel correlation in aperture receiver diversity systems for free-space optical communication[J]. Journal of optics, 2012, 14(12): 125710. Bibcode: ,
CrossRef Google scholar

Accesses

Citations

Detail

Sections
Recommended

/