Room-temperature nitrogen-rich niobium nitride photodetector for terahertz detection

Xuehui Lu , Binding Liu , Chengzhu Chi , Feng Liu , Wangzhou Shi

Optoelectronics Letters ›› : 641 -646.

PDF
Optoelectronics Letters ›› : 641 -646. DOI: 10.1007/s11801-024-3236-9
Article

Room-temperature nitrogen-rich niobium nitride photodetector for terahertz detection

Author information +
History +
PDF

Abstract

A sensitive room-temperature metal-semiconductor-metal (MSM) structure is fabricated on high-resistivity silicon substrates (ρ>4 000 Ω·cm) for terahertz (THz) detection by utilizing the photoconductive effect. When radiation is absorbed by the nitrogen-rich niobium nitride, the number of free electrons and electrical conductivity increase. The detector without an attached antenna boasts a voltage responsivity of 7 058 V/W at a frequency of 310 GHz as well as small noise density of 3.5 nV/Hz0.5 for a noise equivalent power of about 0.5 pW/Hz0.5. The device fabricated by the standard silicon processing technology has large potential in high-sensitivity THz remote sensing, communication, and materials detection.

Cite this article

Download citation ▾
Xuehui Lu, Binding Liu, Chengzhu Chi, Feng Liu, Wangzhou Shi. Room-temperature nitrogen-rich niobium nitride photodetector for terahertz detection. Optoelectronics Letters 641-646 DOI:10.1007/s11801-024-3236-9

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Rayko I S, Yu X, Thierry B, et al. . Real-time terahertz imaging with a single-pixel etector[J]. Nature communication, 2020, 11: 225351-225358

[2]

Cocker T L, Jelic V, Hillenbrand R, et al. . Nanoscale terahertz scanning probe microscopy[J]. Nature photonics, 2021, 15: 558-569. Bibcode: ,

[3]

Jin M H, Wang Y X, Chai M Q, et al. . Terahertz detectors based on carbon nanomaterials[J]. Advanced functional materials, 2022, 32: 1-16. 2107499

[4]

Maeng I H, Chen S, Lee S J, et al. . Predicted THz-wave absorption properties observed in all-inorganic perovskite CsPbI3 thin films: integrity at the grain boundary[J]. Materials today physics, 2023, 30: 1009601-7.

[5]

Li M Y, Xu H, Wang S L, et al. . Ion-bolometric effect in grain boundaries enabled high photovoltage response for NIR to terahertz photodetection[J]. Advanced functional materials, 2023, 33: 1-9 2213970

[6]

Zheng Z P, Zhao S Y, Liu Y H, et al. . Discrimination of maleic hydrazide polymorphs using terahertz spectroscopy and density functional theory[J]. Optoelectronics letters, 2023, 19(8): 493-497. Bibcode: ,

[7]

Bai Y K, Li S. Terahertz dual-beam leaky-wave antenna based on composite spoof surface plasmon wave-guide[J]. Optoelectronics letters, 2023, 19(2): 72-76. Bibcode: ,

[8]

Welp U, Kadowaki K, Kleiner R. Superconducting emitters of THz radiation[J]. Nature photonics, 2013, 7: 702-710. Bibcode: ,

[9]

Yang H H, Rebeiz G M. Sub-10 pW/Hz0.5 room temperature Ni nano-bolometer[J]. Applied physics letters, 2016, 108: 053096. Bibcode: ,

[10]

Dyakonov M I, Shur M S. Shallow water analogy for a ballistic field effect transistor: new mechanism of plasma wave generation by DC current[J]. Physical review letters, 1993, 71: 2465. Bibcode: ,

[11]

Vicarelli L, Vitiello M S, Coquillat D, et al. . Graphene field-effect transistors as room-temperature terahertz detectors[J]. Nature materials, 2012, 11: 865. Bibcode: ,

[12]

Knap W, Dyakonov M, Coquillat D, et al. . Field effect transistors for terahertz detection: physics and first imaging applications[J]. International journal of infrared and millimeter waves, 2009, 30: 1319-1337

[13]

Schuster F, Coquillat D, Videlier H, et al. . Broadband terahertz imaging with highly sensitive silicon CMOS detectors[J]. Optics express, 2011, 19: 7827-7832. Bibcode: ,

[14]

Tauk R, Teppe F, Boubanga S, et al. . Plasma wave detection of terahertz radiation by silicon field effects transistors: responsivity and noise equivalent power[J]. Applied physics letters, 2006, 89: 253511. Bibcode: ,

[15]

Huang Z M, Tong J C, Huang J G, et al. . Room-temperature photoconductivity far below the semiconductor bandgap[J]. Advanced materials, 2014, 26: 6594-6598.

[16]

Huang Z M, Zhou W, Tong J C, et al. . Extreme sensitivity of room-temperature photoelectric effect for terahertz detection[J]. Advanced materials, 2016, 28: 112-117.

[17]

Lu X H, Jing C B, Wang L W, et al. . Improved room-temperature silicon terahertz photodetector on sapphire substrate[J]. Chinese physics letters, 2019, 36: 098501. Bibcode: ,

[18]

Siegel P H. Terahertz technology[J]. IEEE transactions on microwave theory and techniques, 2002, 50: 910. Bibcode: ,

[19]

Hubers H W. Terahertz heterodyne receivers[J]. IEEE journal of selected topics in quantum electronics, 2008, 14: 378. Bibcode: ,

[20]

Ahmad Z, Lisauskas A, Roskos H G, et al. . 9.74-THz electronic far-infrared detection using Schottky barrier diodes in CMOS[J]. IEEE international electron devices meeting, 2014, 14: 92-95

[21]

Westlund A, Sangare P, Ducournau G, et al. . Terahertz detection in zero-bias InAs self-switching diodes at room temperature[J]. Applied physics letters, 2013, 103: 133504. Bibcode: ,

[22]

Vicarelli L, Vitiello M, Coquillat D, et al. . Graphene field-effect transistors as room-temperature terahertz detectors[J]. Nature materials, 2012, 11: 865. Bibcode: ,

[23]

Tong J Y, Muthee M, Chen S Y, et al. . Antenna enhanced graphene THz emitter and detector[J]. Nano letters, 2015, 15: 5295. Bibcode: ,

[24]

Generalov A A, Andersson M A, Yang X X, et al. . A 400-GHz graphene FET detector[J]. IEEE transactions on terahertz science and technology, 2017, 7: 614. Bibcode: ,

[25]

Guo W L, Wang L, Chen X S, et al. . Graphene based broadband terahertz detector integrated with a square-spiral antenna[J]. Optics letters, 2018, 43: 1647-1650. Bibcode: ,

[26]

Vitiello M S, Coquillat D, Viti L, et al. . Room-temperature terahertz detectors based on semiconductor nanowire field-effect transistors[J]. Nano letters, 2012, 12: 96-101. Bibcode: ,

[27]

Middleton C, Zummo G, Weeks A, et al. . Passive millimeter wave focal plane array[J]. Proc. SPIE, 2014, 5410: 745

[28]

Miller A, Luukanen A, Grossman E N. Micromachined antenna-coupled uncooled microbolometers for terahertz imaging arrays[J]. Proc. SPIE, 2004, 5411: 18. Bibcode: ,

[29]

Tu X C, Kang L, Wan C, et al. . Diffractive microlens integrated into Nb5N6 microbolometers for THz detection[J]. Optics express, 2015, 23: 13794. Bibcode: ,

[30]

Lu X H, Kang L, Zhou L, et al. . Growth and characterization of a kind of nitrogen-rich niobium nitride for bolometer applications at terahertz frequencies[J]. Chinese physics letters, 2008, 25: 098501

[31]

https://www.vadiodes.com/en/.

[32]

Tang W W, Liu C L, Wang L, et al. . MoS2 nanosheet photodetectors with ultrafast response[J]. Applied physics letters, 2017, 111: 153502. Bibcode: ,

[33]

Ojefors E, Pfeiffer U, Lisauskas A, et al. . A 0.65 THz focal-plane array in a quarter micron CMOS process technology[J]. IEEE journal of solid-state circuits, 2009, 44(7): 1968-1976. Bibcode: ,

[34]

Hesler J L, Crowe T W Responsivity and noise measurements of zero-bias Schottky diode detectors[C], 2007 89-92

[35]

Eminoglu S, Tanrikulu M, Akin T. A low-cost 128 × 128 uncooled infrared detector array in CMOS process[J]. Journal of microelectromechanical systems, 2008, 17: 20-30.

[36]

QMC Instruments Ltd. OAD-7 Golay detector operating manual[M], 2005

AI Summary AI Mindmap
PDF

182

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/