Room-temperature nitrogen-rich niobium nitride photodetector for terahertz detection

Xuehui Lu, Binding Liu, Chengzhu Chi, Feng Liu, Wangzhou Shi

Optoelectronics Letters ›› , Vol. 20 ›› Issue (11) : 641-646. DOI: 10.1007/s11801-024-3236-9
Article

Room-temperature nitrogen-rich niobium nitride photodetector for terahertz detection

Author information +
History +

Abstract

A sensitive room-temperature metal-semiconductor-metal (MSM) structure is fabricated on high-resistivity silicon substrates (ρ>4 000 Ω·cm) for terahertz (THz) detection by utilizing the photoconductive effect. When radiation is absorbed by the nitrogen-rich niobium nitride, the number of free electrons and electrical conductivity increase. The detector without an attached antenna boasts a voltage responsivity of 7 058 V/W at a frequency of 310 GHz as well as small noise density of 3.5 nV/Hz0.5 for a noise equivalent power of about 0.5 pW/Hz0.5. The device fabricated by the standard silicon processing technology has large potential in high-sensitivity THz remote sensing, communication, and materials detection.

Cite this article

Download citation ▾
Xuehui Lu, Binding Liu, Chengzhu Chi, Feng Liu, Wangzhou Shi. Room-temperature nitrogen-rich niobium nitride photodetector for terahertz detection. Optoelectronics Letters, , 20(11): 641‒646 https://doi.org/10.1007/s11801-024-3236-9

References

[[1]]
Rayko I S, Yu X, Thierry B, et al. . Real-time terahertz imaging with a single-pixel etector[J]. Nature communication, 2020, 11: 225351-225358
[[2]]
Cocker T L, Jelic V, Hillenbrand R, et al. . Nanoscale terahertz scanning probe microscopy[J]. Nature photonics, 2021, 15: 558-569. Bibcode: ,
CrossRef Google scholar
[[3]]
Jin M H, Wang Y X, Chai M Q, et al. . Terahertz detectors based on carbon nanomaterials[J]. Advanced functional materials, 2022, 32: 1-16. 2107499
CrossRef Google scholar
[[4]]
Maeng I H, Chen S, Lee S J, et al. . Predicted THz-wave absorption properties observed in all-inorganic perovskite CsPbI3 thin films: integrity at the grain boundary[J]. Materials today physics, 2023, 30: 1009601-7.
CrossRef Google scholar
[[5]]
Li M Y, Xu H, Wang S L, et al. . Ion-bolometric effect in grain boundaries enabled high photovoltage response for NIR to terahertz photodetection[J]. Advanced functional materials, 2023, 33: 1-9 2213970
[[6]]
Zheng Z P, Zhao S Y, Liu Y H, et al. . Discrimination of maleic hydrazide polymorphs using terahertz spectroscopy and density functional theory[J]. Optoelectronics letters, 2023, 19(8): 493-497. Bibcode: ,
CrossRef Google scholar
[[7]]
Bai Y K, Li S. Terahertz dual-beam leaky-wave antenna based on composite spoof surface plasmon wave-guide[J]. Optoelectronics letters, 2023, 19(2): 72-76. Bibcode: ,
CrossRef Google scholar
[[8]]
Welp U, Kadowaki K, Kleiner R. Superconducting emitters of THz radiation[J]. Nature photonics, 2013, 7: 702-710. Bibcode: ,
CrossRef Google scholar
[[9]]
Yang H H, Rebeiz G M. Sub-10 pW/Hz0.5 room temperature Ni nano-bolometer[J]. Applied physics letters, 2016, 108: 053096. Bibcode: ,
CrossRef Google scholar
[[10]]
Dyakonov M I, Shur M S. Shallow water analogy for a ballistic field effect transistor: new mechanism of plasma wave generation by DC current[J]. Physical review letters, 1993, 71: 2465. Bibcode: ,
CrossRef Google scholar
[[11]]
Vicarelli L, Vitiello M S, Coquillat D, et al. . Graphene field-effect transistors as room-temperature terahertz detectors[J]. Nature materials, 2012, 11: 865. Bibcode: ,
CrossRef Google scholar
[[12]]
Knap W, Dyakonov M, Coquillat D, et al. . Field effect transistors for terahertz detection: physics and first imaging applications[J]. International journal of infrared and millimeter waves, 2009, 30: 1319-1337
[[13]]
Schuster F, Coquillat D, Videlier H, et al. . Broadband terahertz imaging with highly sensitive silicon CMOS detectors[J]. Optics express, 2011, 19: 7827-7832. Bibcode: ,
CrossRef Google scholar
[[14]]
Tauk R, Teppe F, Boubanga S, et al. . Plasma wave detection of terahertz radiation by silicon field effects transistors: responsivity and noise equivalent power[J]. Applied physics letters, 2006, 89: 253511. Bibcode: ,
CrossRef Google scholar
[[15]]
Huang Z M, Tong J C, Huang J G, et al. . Room-temperature photoconductivity far below the semiconductor bandgap[J]. Advanced materials, 2014, 26: 6594-6598.
CrossRef Google scholar
[[16]]
Huang Z M, Zhou W, Tong J C, et al. . Extreme sensitivity of room-temperature photoelectric effect for terahertz detection[J]. Advanced materials, 2016, 28: 112-117.
CrossRef Google scholar
[[17]]
Lu X H, Jing C B, Wang L W, et al. . Improved room-temperature silicon terahertz photodetector on sapphire substrate[J]. Chinese physics letters, 2019, 36: 098501. Bibcode: ,
CrossRef Google scholar
[[18]]
Siegel P H. Terahertz technology[J]. IEEE transactions on microwave theory and techniques, 2002, 50: 910. Bibcode: ,
CrossRef Google scholar
[[19]]
Hubers H W. Terahertz heterodyne receivers[J]. IEEE journal of selected topics in quantum electronics, 2008, 14: 378. Bibcode: ,
CrossRef Google scholar
[[20]]
Ahmad Z, Lisauskas A, Roskos H G, et al. . 9.74-THz electronic far-infrared detection using Schottky barrier diodes in CMOS[J]. IEEE international electron devices meeting, 2014, 14: 92-95
[[21]]
Westlund A, Sangare P, Ducournau G, et al. . Terahertz detection in zero-bias InAs self-switching diodes at room temperature[J]. Applied physics letters, 2013, 103: 133504. Bibcode: ,
CrossRef Google scholar
[[22]]
Vicarelli L, Vitiello M, Coquillat D, et al. . Graphene field-effect transistors as room-temperature terahertz detectors[J]. Nature materials, 2012, 11: 865. Bibcode: ,
CrossRef Google scholar
[[23]]
Tong J Y, Muthee M, Chen S Y, et al. . Antenna enhanced graphene THz emitter and detector[J]. Nano letters, 2015, 15: 5295. Bibcode: ,
CrossRef Google scholar
[[24]]
Generalov A A, Andersson M A, Yang X X, et al. . A 400-GHz graphene FET detector[J]. IEEE transactions on terahertz science and technology, 2017, 7: 614. Bibcode: ,
CrossRef Google scholar
[[25]]
Guo W L, Wang L, Chen X S, et al. . Graphene based broadband terahertz detector integrated with a square-spiral antenna[J]. Optics letters, 2018, 43: 1647-1650. Bibcode: ,
CrossRef Google scholar
[[26]]
Vitiello M S, Coquillat D, Viti L, et al. . Room-temperature terahertz detectors based on semiconductor nanowire field-effect transistors[J]. Nano letters, 2012, 12: 96-101. Bibcode: ,
CrossRef Google scholar
[[27]]
Middleton C, Zummo G, Weeks A, et al. . Passive millimeter wave focal plane array[J]. Proc. SPIE, 2014, 5410: 745
[[28]]
Miller A, Luukanen A, Grossman E N. Micromachined antenna-coupled uncooled microbolometers for terahertz imaging arrays[J]. Proc. SPIE, 2004, 5411: 18. Bibcode: ,
CrossRef Google scholar
[[29]]
Tu X C, Kang L, Wan C, et al. . Diffractive microlens integrated into Nb5N6 microbolometers for THz detection[J]. Optics express, 2015, 23: 13794. Bibcode: ,
CrossRef Google scholar
[[30]]
Lu X H, Kang L, Zhou L, et al. . Growth and characterization of a kind of nitrogen-rich niobium nitride for bolometer applications at terahertz frequencies[J]. Chinese physics letters, 2008, 25: 098501
[[31]]
[[32]]
Tang W W, Liu C L, Wang L, et al. . MoS2 nanosheet photodetectors with ultrafast response[J]. Applied physics letters, 2017, 111: 153502. Bibcode: ,
CrossRef Google scholar
[[33]]
Ojefors E, Pfeiffer U, Lisauskas A, et al. . A 0.65 THz focal-plane array in a quarter micron CMOS process technology[J]. IEEE journal of solid-state circuits, 2009, 44(7): 1968-1976. Bibcode: ,
CrossRef Google scholar
[[34]]
Hesler J L, Crowe T W Responsivity and noise measurements of zero-bias Schottky diode detectors[C], 2007 89-92
[[35]]
Eminoglu S, Tanrikulu M, Akin T. A low-cost 128 × 128 uncooled infrared detector array in CMOS process[J]. Journal of microelectromechanical systems, 2008, 17: 20-30.
CrossRef Google scholar
[[36]]
QMC Instruments Ltd. OAD-7 Golay detector operating manual[M], 2005

This work has been supported by the Innovation Program for Quantum Science and Technology (No.2021ZD0303401), the Program of Shanghai Academic Research Leader (No.22XD1422100), and the National Natural Science Foundation of China (Nos.12141303, 12073018 and U1931205).

Accesses

Citations

Detail

Sections
Recommended

/