An all-dielectric chiral metasurface with circular dichroism and asymmetric transmission characteristics

Qihang Wu, Zhuolin Shi, Jinglin He, Jianfeng Dong

Optoelectronics Letters ›› 2024, Vol. 20 ›› Issue (9) : 537-542. DOI: 10.1007/s11801-024-3231-1
Article

An all-dielectric chiral metasurface with circular dichroism and asymmetric transmission characteristics

Author information +
History +

Abstract

This paper designs an all-dielectric metasurface with tunable chiral properties in the near-infrared range, whose working wavelength is 1 250–2 200 nm. The metasurface exhibits circular dichroism (CD) and asymmetric transmission (AT) characteristics for circularly polarized light. The metasurface is a double-layer structure composed of Ge2Sb2Se4Te1 (GSST). The CD values of amorphous GSST reach 0.83 and 0.82 at 1 570 nm and 1 640 nm, respectively. The AT values reach 0.65 and 0.77 at 1 570 nm and 1 640 nm, respectively, with a value of −0.62 at 1 680 nm. The CD value of crystalline GSST reaches 0.81 at 2 070 nm, with smaller AT. In addition, whether it is incident by linearly polarized waves or circularly polarized waves, this metasurface has low absorption in the working band, which gives it the potential to make adjustable integrated photonic devices.

Cite this article

Download citation ▾
Qihang Wu, Zhuolin Shi, Jinglin He, Jianfeng Dong. An all-dielectric chiral metasurface with circular dichroism and asymmetric transmission characteristics. Optoelectronics Letters, 2024, 20(9): 537‒542 https://doi.org/10.1007/s11801-024-3231-1

References

[[1]]
Kadic M, Milton G W, Hecke M, et al.. 3D meta-materials. Nature reviews physics, 2019, 1(3): 198-210, J]
CrossRef Google scholar
[[2]]
Sun S L, He Q, Hao J M, et al.. Electromagnetic metasurfaces: physics and applications. Advances in optics and photonics, 2019, 11(2): 380-479, J]
CrossRef Google scholar
[[3]]
Kruk S S, Kivshar Y S. Functional meta-optics and nanophotonics govern by Mie resonances. ACS photonics, 2017, 4(11): 2638-2649, J]
CrossRef Google scholar
[[4]]
Khorasaninejad M, Chen W T, Devlin R C, et al.. Metalenses at visible wavelengths: diffraction-limited focusing and subwavelength resolution imaging. Science, 2016, 352(6290): 1190-1194, J]
CrossRef Google scholar
[[5]]
Ding F, Zhong S, Bozhevolnyi S I. Vanadium dioxide integrated metasurfaces with switchable functionalities at terahertz frequencies. Advanced optical materials, 2018, 6(9): 1701204, J]
CrossRef Google scholar
[[6]]
Zhao J X, Song J L, Zhou Y, et al.. Switching between the functions of half-wave plate and quarter-wave plate simply by using a vanadium dioxide film in a terahertz metamaterial. Chinese physics letters, 2020, 37(6): 064204, J]
CrossRef Google scholar
[[7]]
Carrillo S G C, Nash G R, Hayat H, et al.. Design of practicable phase-change metadevices for near-infrared absorber and modulator applications. Optics express, 2016, 24(12): 13563-13573, J]
CrossRef Google scholar
[[8]]
Pogrebnyakov A V, Bossard J A, Turpin J P. Reconfigurable near-IR metasurface based on Ge2Sb2Te5 phase-change material. Optical materials express, 2018, 8(8): 2264-2275, J]
CrossRef Google scholar
[[9]]
Li Y R, Luo J, Li X, et al.. Switchable quarter-wave plate and half-wave plate based on phase-change metasurface. IEEE photonics journal, 2020, 12(2): 4600410, J]
CrossRef Google scholar
[[10]]
Zhang Y, Chou J B, Li J, et al.. Broadband transparent optical phase change materials for high-performance nonvolatile photonics. Nature communications, 2019, 10(1): 4279, J]
CrossRef Google scholar
[[11]]
Zhang Q H, Zhang Y F, Li J Y, et al.. Broadband nonvolatile photonic switching based on optical phase change materials: beyond the classical figure-of-merit. Optics letters, 2018, 43(1): 94-97, J]
CrossRef Google scholar
[[12]]
Michel A K U, Wuttig M, Taubner T. Design parameters for phase-change materials for nanostructure resonance tuning. Advanced optical materials, 2017, 5(18): 1700261, J]
CrossRef Google scholar
[[13]]
Zamani N, Hatef A, Nadgaran H. Temporal analysis of photo-thermally induced reconfigurability in a 1D gold grating filled with a phase change material. Advanced theory and simulations, 2021, 5(2): 2100240, J]
CrossRef Google scholar
[[14]]
Kang Q L, Li D K, Guo K, et al.. Tunable thermal camouflage based on GST plasmonic metamaterial. Nanomaterials, 2021, 11(2): 260, J]
CrossRef Google scholar
[[15]]
Ding F, Yang Y Q, Bozhevolnyi S I. Dynamic metasurfaces using phase-change chalcogenides. Advanced optical materials, 2019, 7(14): 1801709.1-1801709.15, J]
CrossRef Google scholar
[[16]]
Hao X R, Zheng C L, Li J, et al.. Optically tunable extrinsic chirality of single-layer metal metasurface for terahertz wave. Optics communications, 2022, 512: 127554, J]
CrossRef Google scholar
[[17]]
Liu D J, Xiao Z Y, Ma X L, et al.. Asymmetric transmission of linearly and circularly polarized waves in metamaterial due to symmetry-breaking. Applied physics express, 2015, 8(5): 052001, J]
CrossRef Google scholar
[[18]]
Liu J Y, Li Z C, Liu W W, et al.. High-efficiency mutual dual-band asymmetric transmission of circularly polarized waves with few-layer anisotropic metasurfaces. Advanced optical materials, 2016, 4(12): 2028-2034, J]
CrossRef Google scholar
[[19]]
Li X F, Feng R, Ding W Q. Extremely high contrast asymmetric transmission with linear tunability in chiral metamaterials. Journal of physics, D-applied physics, 2018, 51(14): 145304, J]
CrossRef Google scholar
[[20]]
Li Y X, Dong G H, Zhao R Q, et al.. Dual-band asymmetric transmission and circular dichroism in hybrid coupled plasmonic metamaterials. Journal of physics, D-applied physics, 2018, 51(28): 021903, J]
CrossRef Google scholar
[[21]]
Ma Z J, Li Y, Li Y, et al.. All-dielectric planar chiral metasurface with gradient geometric phase. Optics express, 2018, 26(5): 6067-6078, J]
CrossRef Google scholar
[[22]]
Zhou L, Peng Y H, Wang Y K, et al.. Coexistence of circular dichroism and asymmetric transmission in a stretchable chiral metamaterial. Journal of the optical society of America, B-optical physics, 2020, 37(12): 3763-3768, J]
CrossRef Google scholar
[[23]]
Liu C J, Huang Y Y, Hu F R, et al.. Giant asymmetric transmission and circular dichroism with angular tunability in chiral terahertz metamaterials. Annalen der physik, 2020, 532(3): 1900398, J]
CrossRef Google scholar
[[24]]
Han B W, Li S J, Li Z Y, et al.. Asymmetric transmission for dual-circularly and linearly polarized waves based on a chiral metasurface. Optics express, 2021, 29(13): 19643-19654, J]
CrossRef Google scholar
[[25]]
Khaliq H S, Kim I, Zahid A, et al.. Giant chiro-optical responses in multipolar-resonances-based single-layer dielectric metasurfaces. Photonics research, 2021, 9(9): 1667-1674, J]
CrossRef Google scholar
[[26]]
Tao X, Qi L M, Fu T, et al.. A tunable dual-band asymmetric transmission metasurface with strong circular dichroism in the terahertz communication band. Optics & laser technology, 2022, 150: 107932, J]
CrossRef Google scholar
[[27]]
Hussain S, Ji R N, Wang S W. High-performance circular polarization modulation using a dielectric metasurface. Applied optics, 2023, 62(18): 4860-4865, J]
CrossRef Google scholar
[[28]]
Wang L L, Huang X J, Li M H, et al.. Chirality selective metamaterial absorber with dual bands. Optics express, 2019, 27(18): 25983-25993, J]
CrossRef Google scholar

Accesses

Citations

Detail

Sections
Recommended

/