Study on impedance spectroscopy based on dynamic equivalent circuit of solar cell

Wenbo Xiao, Ao Li, Huaming Wu, Yongbo Li, Bangzhi Xiao

Optoelectronics Letters ›› 2024, Vol. 20 ›› Issue (8) : 449-453.

Optoelectronics Letters All Journals
Optoelectronics Letters ›› 2024, Vol. 20 ›› Issue (8) : 449-453. DOI: 10.1007/s11801-024-3194-2
Article

Study on impedance spectroscopy based on dynamic equivalent circuit of solar cell

Author information +
History +

Abstract

This paper investigates the impedance spectroscopy of monocrystalline silicon solar cells (MSSC) and dye-sensitized solar cells (DSSC) using solar cell dynamic equivalent resistor-capacitance (RC) and capacitor sum capacitor (CSC) circuits. Firstly, these circuits effectively represent the dynamic behavior of MSSC and DSSC. Secondly, the measurement method significantly impacts the accuracy of impedance measurements in the high-frequency region. Finally, the series resistance affects the distance between the left end of the impedance spectroscopy and the origin, while the parallel resistance influences the size of the impedance spectroscopy. In the CSC circuit, the relative magnitudes of dielectric relaxation capacitance and chemical capacitance affect the number and position of arc in the impedance spectroscopy. The value of the dielectric relaxation capacitor determines the number of impedance spectroscopy arcs. These conclusions provide guidelines for improving the accuracy of solar cell impedance measurements.

Cite this article

Download citation ▾
Wenbo Xiao, Ao Li, Huaming Wu, Yongbo Li, Bangzhi Xiao. Study on impedance spectroscopy based on dynamic equivalent circuit of solar cell. Optoelectronics Letters, 2024, 20(8): 449‒453 https://doi.org/10.1007/s11801-024-3194-2

References

[1]
RajuV N, PremalathaM, SivaK R K D. A novel constant power management controller for hybrid PV-battery system[J]. Journal of circuits, systems and computers, 2020, 29(08):2050119
CrossRef Google scholar
[2]
Contreras-BernalL, Ramos-TerrónS, RiquelmeA, et al.. Impedance analysis of perovskite solar cells: a case study[J]. Journal of materials chemistry A, 2019, 7(19): 12191-12200
CrossRef Google scholar
[3]
OmarA, AliM S, Abd RahimN. Electron transport properties analysis of titanium dioxide dyesensitized solar cells (TiO2-DSSCs) based natural dyes using electrochemical impedance spectroscopy concept: a review[J]. Solar energy, 2020, 207: 1088-1121
CrossRef Google scholar
[4]
CotfasD, CotfasP, KaplanisS. Methods and techniques to determine the dynamic parameters of solar cells[J]. Renewable and sustainable energy reviews, 2016, 61: 213-221
CrossRef Google scholar
[5]
KimH S, Mora-SeroI, Gonzalez-PedroV, et al.. Mechanism of carrier accumulation in perovskite thin-absorber solar cells[J]. Nature communications, 2013, 4(1):1-7
CrossRef Google scholar
[6]
Gonzalez-PedroV, Juarez-PerezE J, ArsyadW S, et al.. General working principles of CH3NH3PbX3 perovskite solar cells[J]. Nano letters, 2014, 14(2):888-893
CrossRef Google scholar
[7]
SanchezR S, Gonzalez-PedroV, LeeJ W, et al.. Slow dynamic processes in lead halide perovskite solar cells. Characteristic times and hysteresis[J]. The journal of physical chemistry letters, 2014, 5(13):2357-2363
CrossRef Google scholar
[8]
SrivastavaV, AlexanderA, AnithaB, et al.. Impedance spectroscopy study of defect/ion mediated electric field and its effect on the photovoltaic performance of perovskite solar cells based on different active layers[J]. Solar energy materials and solar cells, 2022, 237: 111548
CrossRef Google scholar
[9]
PascoeA R, DuffyN W, ScullyA D, et al.. Insights into planar CH3NH3PbI3 perovskite solar cells using impedance spectroscopy[J]. The journal of physical chemistry C, 2015, 119(9):4444-4453
CrossRef Google scholar
[10]
CotfasP A, CotfasD T, BorzaP N, et al.. Solar cell capacitance determination based on an RLC resonant circuit[J]. Energies, 2018, 11(3):672
CrossRef Google scholar
[11]
BisquertJ, BertoluzziL, Mora-SeroI, et al.. Theory of impedance and capacitance spectroscopy of solar cells with dielectric relaxation, drift-diffusion transport, and recombination[J]. The journal of physical chemistry C, 2014, 118(33): 18983-18991
CrossRef Google scholar
[12]
ABDULRAHIM S M, AHMAD Z, BAHADRA J, et al. Electrochemical impedance spectroscopy analysis of hole transporting material free mesoporous and planar perovskite solar cells[J]. Nanomaterials, 2020, 10(9).
[13]
KumarD K, SwamiS K, DuttaV, et al.. Scalable screen-printing manufacturing process for graphene oxide platinum free alternative counter electrodes in efficient dye sensitized solar cells[J]. FlatChem, 2019, 15: 100105
CrossRef Google scholar
[14]
KatayamaN, OsawaS, MatsumotoS, et al.. Degradation and fault diagnosis of photovoltaic cells using impedance spectroscopy[J]. Solar energy materials and solar cells, 2019, 194: 130-136
CrossRef Google scholar
[15]
MoA Q, CaoD P, WangW Y, et al.. Comprehensive study of efficient dye-sensitized solar cells based on the binary ionic liquid electrolyte by modifying with additives and iodine[J]. Optoelectronics letters, 2017, 13(4):263-267
CrossRef Google scholar
[16]
RenG, HanW, ZhangQ, et al.. Overcoming perovskite corrosion and de-doping through chemical binding of halogen bonds toward efficient and stable perovskite solar cells[J]. Nano-micro letters, 2022, 14(11):68-80
CrossRef Google scholar
[17]
ZhangZ, LiangJ, WangJ, et al.. Resolving mixed intermediate phases in methylammonium-free Sn-Pb alloyed perovskites for high-performance solar cells[J]. Nano-micro letters, 2022, 14(1):1-19
CrossRef Google scholar
[18]
SuiM R, LiS P, GuX Q. Improved performance of perovskite solar cells through using (FA)x(MA)(1−x)PbI3 optical absorber layer[J]. Optoelectronics letters, 2019, 15(02):117-121
CrossRef Google scholar
[19]
GuoQ, WuH, JinH, et al.. Remote sensing inversion of suspended matter concentration using a neural network model optimized by the partial least squares and particle swarm optimization algorithms[J]. Sustainability, 2022, 14(4):2221
CrossRef Google scholar
[20]
JwoD J, ChangW Y, WuI H. Windowing techniques, the welch method for improvement of power spectrum estimation[J]. Computers, materials & continua, 2021, 6: 3983-4003
CrossRef Google scholar
[21]
BuT, LiJ, LiH, et al.. Lead halide-templated crystallization of methylamine-free perovskite for efficient photovoltaic modules[J]. Science, 2021, 372(6548):1327-1332
CrossRef Google scholar
[22]
MehmoodU, AslamH Z, Al-SulaimanF A, et al.. Electrochemical impedance spectroscopy and photovoltaic analyses of dye-sensitized solar cells based on carbon/TiO2 composite counter electrode[J]. Journal of the electrochemical society, 2016, 163(5):H339
CrossRef Google scholar
[23]
BeckerM, BertramsM S, ConstableE C, et al.. How reproducible are electrochemical impedance spectroscopic data for dye-sensitized solar cells?[J]. Materials, 2020, 13(7): 1547
CrossRef Google scholar
[24]
YooS M, YoonS J, AntaJ A, et al.. An equivalent circuit for perovskite solar cell bridging sensitized to thin film architectures[J]. Joule, 2019, 3(10): 2535-2549
CrossRef Google scholar
[25]
OzakiM, IshikuraY, TruongM A, et al.. Iodine-rich mixed composition perovskites optimised for tin(iv) oxide transport layers: the influence of halide ion ratio, annealing time, and ambient air aging on solar cell performance[J]. Journal of materials chemistry A, 2019, 7(28):16947-16953
CrossRef Google scholar

59

Accesses

0

Citations

Detail

Sections
Recommended

/