Research on visual sensitivity characteristics of amorphous silicon photocells

Yan Wang, Nuo Cai, Xiaodi Zhou, Yabin Lu, Chunyan Wang, Xinmin Fan

Optoelectronics Letters ›› 2024, Vol. 20 ›› Issue (7) : 385-392.

Optoelectronics Letters ›› 2024, Vol. 20 ›› Issue (7) : 385-392. DOI: 10.1007/s11801-024-3185-3
Article

Research on visual sensitivity characteristics of amorphous silicon photocells

Author information +
History +

Abstract

This study delves into the feasibility of using amorphous silicon photocells as photosensitive units for retinal prostheses. Firstly, theoretical simulations coupled with experimental results demonstrated its strong light absorption and quantum efficiency within the 300–800 nm range. Subsequently, measurements on its visual sensitivity properties were conducted. The findings revealed that under photopic vision conditions, the photocells could provide the stimulating current required for the human retinal nerve cells. Finally, the visual spectral sensitivity curve of the amorphous silicon photocells was assessed, and the results indicated that the spectral sensitivity curve of the amorphous silicon photocells closely mirrors the visual function curve of the human eye under photopic conditions, demonstrating a response to light across various wavelengths.

Cite this article

Download citation ▾
Yan Wang, Nuo Cai, Xiaodi Zhou, Yabin Lu, Chunyan Wang, Xinmin Fan. Research on visual sensitivity characteristics of amorphous silicon photocells. Optoelectronics Letters, 2024, 20(7): 385‒392 https://doi.org/10.1007/s11801-024-3185-3

References

[1]
BaekC, SeoJ M. Encapsulation material for retinal prosthesis with photodetectors or photovoltaics[J]. IEEE sensors journal, 2021, 22(2):1767-1774
CrossRef Google scholar
[2]
DagnelieG. Psychophysical evaluation for visual prosthesis[J]. Annual review of biomedical engineering, 2008, 10(1):339-368
CrossRef Google scholar
[3]
YamashitaK, MitsuiM, MatsuoT, et al.. Clarification of degradation mechanism on retinal prosthesis using photoelectric dyes coupled to polyethylene film by mass spectrometry[J]. Materials letters, 2022, 307: 130978
CrossRef Google scholar
[4]
SakaieK E, KubanB, FleischmanA, et al.. Towards safe operation of an active retinal prosthesis during functional MRI and diffusion tensor imaging[J]. Magnetic resonance imaging, 2020, 72: 14-18
CrossRef Google scholar
[5]
YanaiD, WeilandJ D, MahadevappaM, et al.. Visual performance using a retinal prosthesis in three subjects with retinitis pigmentosa[J]. American journal of ophthalmology, 2007, 143(5):820-827
CrossRef Google scholar
[6]
HumayunM S. Intraocular retinal prosthesis[J]. Transactions of the American ophthalmological society, 2001, 99: 271-300
[7]
ZrennerE. Will retinal implants restore vision?[J]. Science, 2002, 295(5557):1022-1025
CrossRef Google scholar
[8]
ZrennerE, StettA, WeissS, et al.. Can subretinal microphotodiodes successfully replace degenerated photoreceptors?[J]. Vision research, 1999, 39(15):2555-2567
CrossRef Google scholar
[9]
WyattJ, RizzoJ. Ocular implants for the blind[J]. IEEE spectrum, 1996, 33(5):47-53
CrossRef Google scholar
[10]
PottsA M, InoueJ, BuffumD. The electrically evoked response of the visual system (EER)[J]. Investigative ophthalmology, 1968, 7(3):269-278
[11]
HesseL, SchanzeT, WilmsM, et al.. Implantation of retina stimulation electrodes and recording of electrical stimulation responses in the visual cortex of the cat[J]. Graefe’s archive for clinical and experimental ophthalmology, 2000, 238(10):840-845
CrossRef Google scholar
[12]
GüvenD, WeilandJ D, FujiiG, et al.. Long-term stimulation by active epiretinal implants in normal and RCD1 dogs[J]. Journal of neural engineering, 2005, 2(1):S65-S73
CrossRef Google scholar
[13]
MajjiA B, HumayunM S, WeilandJ D, et al.. Long-term histological and electrophysiological results of an inactive epiretinal electrode array implantation in dogs[J]. Investigative ophthalmology & visual science, 1999, 40(9):2073-2081
[14]
ZhangX, XiongT, ChiouP Y, et al.. Characterization of a light switchable microelectrode array for retinal prosthesis[J]. Applied physics letters, 2011, 99(25):253702
CrossRef Google scholar
[15]
KimE T, KimC, LeeS W, et al.. Feasibility of microelectrode array (MEA) based on silicone-polyimide hybrid for retina prosthesis[J]. Investigative ophthalmology & visual science, 2009, 50(9): 4337-4341
CrossRef Google scholar
[16]
SeoH W, KimN, AhnJ, et al.. A 3D flexible microelectrode array for subretinal stimulation[J]. Journal of neural engineering, 2019, 16(5):056016
CrossRef Google scholar
[17]
SadeghiM, HosseinzadehZ, ZrennerE, et al.. Multi-electrode-recording for classification of retinal ganglion cells for bionic vision: comparison with calcium imaging responses[J]. Investigative ophthalmology & visual science, 2019, 60(9): 5283-5283
[18]
GuoF, YangY, XiaoY, et al.. Recognition of moving object in high dynamic scene for visual prosthesis[J]. IEICE transactions on information and systems, 2019, 102(7):1321-1331
CrossRef Google scholar
[19]
AngellC A, NgaiK L, MckennaG B, et al.. Relaxation in glass forming liquids and amorphous solids[J]. Journal of applied physics, 2000, 88(6):3113-3157
CrossRef Google scholar
[20]
ZhangH, ZhouY, XuM, et al.. Interface engineering on amorphous/crystalline hydroxides/sulfides heterostructure nanoarrays for enhanced solar water split-ting[J]. ACS nano, 2022, 17(1):636-647
CrossRef Google scholar
[21]
SeoH, KimB, LeeK H, et al.. Local disordering in the amorphous network of a solution-processed indium tin oxide thin film[J]. ACS applied materials & interfaces, 2022, 14(22):25620-25628
CrossRef Google scholar
[22]
LiaoJ, LiuQ, HongR, et al.. Laser direct patterning induced the tunable optical properties of indium tin oxide micro-hole arrays films[J]. Current applied physics, 2022, 36: 171-175
CrossRef Google scholar
[23]
ZhangF, ChenP, LiX, et al.. Further localization of optical field for flower-like silver particles under laser radiation[J]. Laser physics letters, 2013, 10(4):045901
CrossRef Google scholar
[24]
GovardovskiiV I, FyhrquistN, ReuterT O M, et al.. In search of the visual pigment template[J]. Visual neuroscience, 2000, 17(4): 509-528
CrossRef Google scholar
[25]
HolopainenJ M, ChengC L, MoldayL L, et al.. Interaction and localization of the retinitis pigmentosa protein RP2 and NSF in retinal photoreceptor cells[J]. Biochemistry, 2010, 49(35):7439-7447
CrossRef Google scholar
[26]
HumayunM S, WeilandJ D, FujiiG Y, et al.. Visual perception in a blind subject with a chronic microelectronic retinal prosthesis[J]. Vision research, 2003, 43(24):2573-2581
CrossRef Google scholar

Accesses

Citations

Detail

Sections
Recommended

/