Learning background restoration and local sparse dictionary for infrared small target detection

Yue He, Rui Zhang, Chunmei Xi, Hu Zhu

Optoelectronics Letters ›› 2024, Vol. 20 ›› Issue (7) : 437-448. DOI: 10.1007/s11801-024-3155-9
Article

Learning background restoration and local sparse dictionary for infrared small target detection

Author information +
History +

Abstract

This paper proposes a method for learning background restoration for infrared small target detection, employing a local sparse dictionary alongside an equalized structural texture representation. The method is specifically designed for the detection of small infrared targets, accommodating various levels of brightness, spatial size, and intensity. Our proposed model intelligently combines global low-rankness and local sparsity to estimate the rank of the background tensor, leveraging spatial and structural information to overcome the limitations posed by insufficient detailed texture knowledge. Subsequently, a structural texture representation, combining local gradient maps and local intensity maps, is applied to emphasize small objects. By comparing our method with nine advanced and representative approaches and quantifying the comparison using various metrics, the experimental results indicate that our proposed method has achieved favorable outcomes in both quantitative assessments and visual results.

Cite this article

Download citation ▾
Yue He, Rui Zhang, Chunmei Xi, Hu Zhu. Learning background restoration and local sparse dictionary for infrared small target detection. Optoelectronics Letters, 2024, 20(7): 437‒448 https://doi.org/10.1007/s11801-024-3155-9

References

[[1]]
Renke K, Chunping W, Zhenming P, et al.. Infrared small target segmentation networks: a survey[J]. Pattern recognition, 2023, 143: 109788,
CrossRef Google scholar
[[2]]
Hu J, Zhang C, Xu S, et al.. . An invasive target detection and localization strategy using pan-tilt-zoom cameras for security applications[C], 2021 New York IEEE 1236-1241
[[3]]
Wang Z, Zheng L, Liu Y, et al.. . Towards real-time multi-object tracking[C], 2020 Cham Springer International Publishing 107-122
[[4]]
Zhu H, Liu S, Deng L, et al.. Infrared small target detection via low-rank tensor completion with top-hat regularization[J]. IEEE transactions on geoscience and remote sensing, 2019, 58(2): 1004-1016,
CrossRef Google scholar
[[5]]
Li H, Wang Q, Wang H, et al.. Infrared small target detection using tensor based least mean square[J]. Computers & electrical engineering, 2021, 91: 106994,
CrossRef Google scholar
[[6]]
Zhao M, Li W, Li L, et al.. Single-frame infrared small-target detection: a survey[J]. IEEE geoscience and remote sensing magazine, 2022, 10(2): 87-119,
CrossRef Google scholar
[[7]]
Fan X, Wu A, Chen H, et al.. Infrared dim and small target detection based on the improved tensor nuclear norm[J]. Applied sciences, 2022, 12(11): 5570,
CrossRef Google scholar
[[8]]
Wang C, Qin S. Adaptive detection method of infrared small target based on target-background separation via robust principal component analysis[J]. Infrared physics & technology, 2015, 69: 123-135,
CrossRef Google scholar
[[9]]
Guo J, Wu Y, Dai Y. Small target detection based on reweighted infrared patch-image model[J]. IET image processing, 2018, 12(1): 70-79,
CrossRef Google scholar
[[10]]
Han J, Liang K, Zhou B, et al.. Infrared small target detection utilizing the multiscale relative local contrast measure[J]. IEEE geoscience and remote sensing letters, 2018, 15(4): 612-616,
CrossRef Google scholar
[[11]]
Deng H, Sun X, Liu M, et al.. Infrared small-target detection using multiscale gray difference weighted image entropy[J]. IEEE transactions on aerospace and electronic systems, 2016, 52(1): 60-72,
CrossRef Google scholar
[[12]]
He C, Wang X, Deng L, et al.. . Image threshold segmentation based on GLLE histogram[C], 2019 New York IEEE 410-415
[[13]]
He C, Xu L, Lu G, et al.. GLLE entropic threshold segmentation based on fuzzy entropy[J]. Nanjing Xinxi Gongcheng Daxue Xuebao, 2019, 11(6): 757-763 (in Chinese)
[[14]]
Xu G, He C, Wang H, et al.. DM-fusion: deep model-driven network for heterogeneous image fusion[J]. IEEE transactions on neural networks and learning systems, 2023, 26: 1-15,
CrossRef Google scholar
[[15]]
Deng L, He C, Xu G, et al.. PcGAN: a noise robust conditional generative adversarial network for one shot learning[J]. IEEE transactions on intelligent transportation systems, 2022, 23(12): 25249-25258,
CrossRef Google scholar
[[16]]
Gao C, Meng D, Yang Y, et al.. Infrared patch-image model for small target detection in a single image[J]. IEEE transactions on image processing, 2013, 22(12): 4996-5009,
CrossRef Google scholar
[[17]]
Sun Y, Yang J, Long Y, et al.. Infrared small target detection via spatial-temporal total variation regularization and weighted tensor nuclear norm[J]. IEEE access, 2019, 7: 56667-56682,
CrossRef Google scholar
[[18]]
Dai Y, Wu Y. Reweighted infrared patch-tensor model with both nonlocal and local priors for single-frame small target detection[J]. IEEE journal of selected topics in applied earth observations and remote sensing, 2017, 10(8): 3752-3767,
CrossRef Google scholar
[[19]]
Zhang T, Wu H, Liu Y, et al.. Infrared small target detection based on non-convex optimization with LP-norm constraint[J]. Remote sensing, 2019, 11(5): 559,
CrossRef Google scholar
[[20]]
Akhtar M J, Mahum R, Butt F S, et al.. A robust framework for object detection in a traffic surveillance system[J]. Electronics, 2022, 11(21): 3425,
CrossRef Google scholar
[[21]]
Song F, Li Y, Cheng W, et al.. An improved dynamic programming tracking-before-detection algorithm based on LSTM network value function[J]. Systems science & control engineering, 2023, 11(1): 2223227,
CrossRef Google scholar
[[22]]
Man Y, Yang Q, Chen T. Infrared single-frame small target detection based on block-matching[J]. Sensors, 2022, 22(21): 8300,
CrossRef Google scholar
[[23]]
Luo Y, Li X, Chen S, et al.. . LEC-MTNN: a novel multi-frame infrared small target detection method based on spatial-temporal patch-tensor[C], 2023 Washington SPIE 144-154
[[24]]
Wan M, Kan R, Gu G, et al.. Infrared small moving target detection via saliency histogram and geometrical invariability[J]. Applied sciences, 2017, 7(6): 569,
CrossRef Google scholar
[[25]]
Zhao B, Xiao S, Lu H, et al.. Spatial-temporal local contrast for moving point target detection in space-based infrared imaging system[J]. Infrared physics & technology, 2018, 95: 53-60,
CrossRef Google scholar
[[26]]
Du P, Hamdulla A. Infrared moving small-target detection using spatial-temporal local difference measure[J]. IEEE geoscience and remote sensing letters, 2020, 17(10): 1817-1821,
CrossRef Google scholar
[[27]]
Pang D, Shan T, Ma P, et al.. A novel spatiotemporal saliency method for low-altitude slow small infrared target detection[J]. IEEE geoscience and remote sensing letters, 2021, 19(1): 1-5
[[28]]
Xu Y, Hao R, Yin W, et al.. Parallel matrix factorization for low-rank tensor completion[J]. Inverse problems and imaging, 2013, 9(2): 1-25

Accesses

Citations

Detail

Sections
Recommended

/