Simulation design of thin film lithium niobate electro-optic modulator with bimetallic layer electrodes

Qiulin Wu, Xinkai Feng, Jiaying Chen, Lei Ma, Huaixi Chen, Wanguo Liang

Optoelectronics Letters ›› 2024, Vol. 20 ›› Issue (6) : 339-345. DOI: 10.1007/s11801-024-3143-0
Article

Simulation design of thin film lithium niobate electro-optic modulator with bimetallic layer electrodes

Author information +
History +

Abstract

Thin-film lithium niobate electro-optical modulator will become the key device in the future optical communication, which has the advantages of high modulation rate, low half-wave voltage, large bandwidth, and easy integration compared with conventional bulk lithium niobate modulator. However, because the electrode gap of the lithium niobate film modulator is very narrow, when the microwave frequency gets higher, it leads to higher microwave loss, and the electro-optical performance of the modulator will be greatly reduced. Here, we propose a thin film lithium niobate electro-optic modulator with a bimetallic layer electrode structure to achieve microwave loss less than 8 dB/cm in the range of 200 GHz, exhibiting a voltage-length product of 1.1 V·cm and a 3 dB electro-optic bandwidth greater than 160 GHz. High-speed data transmission test has been performed, showing good performance.

Cite this article

Download citation ▾
Qiulin Wu, Xinkai Feng, Jiaying Chen, Lei Ma, Huaixi Chen, Wanguo Liang. Simulation design of thin film lithium niobate electro-optic modulator with bimetallic layer electrodes. Optoelectronics Letters, 2024, 20(6): 339‒345 https://doi.org/10.1007/s11801-024-3143-0

References

[[1]]
Haffner C, Chelladurai D, Fedoryshyn Y, et al.. Low-loss plasmon-assisted electro-optic modulator. Nature, 2018, 556(7702): 483-486, J]
CrossRef Google scholar
[[2]]
Phare C T, Lee Y H D, Cardenas J, et al.. Graphene electro-optic modulator with 30 GHz bandwidth. Nature photonics, 2015, 9(8): 511-514, J]
CrossRef Google scholar
[[3]]
Han J H, Boeuf F, Fujikata J, et al.. Efficient low-loss InGaAsP/Si hybrid MOS optical modulator. Nature photonics, 2017, 11(8): 486-490, J]
CrossRef Google scholar
[[4]]
Lee M, Katz H E, Erben C, et al.. Broadband modulation of light by using an electro-optic polymer. Science, 2002, 298(5597): 1401-1403, J]
CrossRef Google scholar
[[5]]
Alloatti L, Palmer R, Diebold S, et al.. 100 GHz silicon-organic hybrid modulator. Light: science & applications, 2014, 3(5): e173, J]
CrossRef Google scholar
[[6]]
Wang C, Zhang M, Chen X, et al.. Integrated lithium niobate electro-optic modulators operating at CMOS-compatible voltages. Nature, 2018, 562: 101-104, J]
CrossRef Google scholar
[[7]]
He M, Xu M, Ren Y, et al.. High-performance hybrid silicon and lithium niobate Mach-Zehnder modulators for 100 Gbits−1 and beyond. Nature photonics, 2019, 13: 359-364, J]
CrossRef Google scholar
[[8]]
Ahmed A N R, Shi S, Mercante A, et al.. High-efficiency lithium niobate modulator for K band operation. APL photonics, 2020, 5: 091302, J]
CrossRef Google scholar
[[9]]
Prashanta K, Christian R, Kevin L, et al.. Breaking voltage-bandwidth limits in integrated lithium niobate modulators using micro-structured electrodes. Optica, 2021, 8: 357-363, J]
CrossRef Google scholar
[[10]]
Ghione G. . Semiconductor devices for high-speed optoelectronics, 2009 Oxford Oxford University, M]
CrossRef Google scholar
[[11]]
Aoki K, Kondou J, Mitomi O, et al.. Velocity-matching conditions for ultrahigh-speed optical LiNbO3 modulators with traveling-wave electrode. Japanese journal of applied physics, 2006, 45: 8696-8698, J]
CrossRef Google scholar
[[12]]
Gu J H, Wu B Y. Analysis on the microwave attenuation coefficient of traveling-wave electrodes with complicated cross-sections in Ti: LiNbO3 optical modulators. Acta electronica sinica, 1998, 26(6): 58-61 [J]
[[13]]
Rao A, Fathpour S. Compact lithium niobate electrooptic modulators. IEEE journal of selected topics in quantum electronics, 2018, 24(4): 1-14, J]
CrossRef Google scholar
[[14]]
Frankel Y, Gupta S, Valdmanis J A, et al.. Terahertz attenuation and dispersion characteristics of coplanar transmission lines. IEEE transactions on microwave theory and techniques, 1991, 39(6): 910-916, J]
CrossRef Google scholar
[[15]]
Yu L Y, Shang J M, Luo K W, et al.. Design of high-speed mid-infrared electro-optic modulator based on thin film lithium niobate. IEEE photonics journal, 2022, 14(2): 1-6 [J]
[[16]]
Andrew J M, Yao P, Shi S Y, et al.. 110 GHz CMOS compatible thin film LiNbO3 modulator on silicon. Optics express, 2016, 24: 15590-15595, J]
CrossRef Google scholar
[[17]]
Han H, Yang F, Liu C, et al.. High-performance electro-optical Mach-Zehnder modulators in a silicon nitride-lithium niobate thin-film hybrid platform. Photonics, 2022, 9: 500, J]
CrossRef Google scholar
[[18]]
Sun S, He M, Xu M, et al.. Hybrid silicon and lithium niobate modulator. IEEE journal of selected topics in quantum electronics, 2021, 27(3): 1-12, J]
CrossRef Google scholar
[[19]]
Pan B C, Hu J Y, Huang Y S, et al.. Demonstration of high-speed thin-film lithium-niobate-on-insulator optical modulators at the 2-µm wavelength. Optics express, 2021, 29: 17710-17717, J]
CrossRef Google scholar
[[20]]
Cai J, Guo C, Lu C, et al.. Design optimization of silicon and lithium niobate hybrid integrated traveling-wave Mach-Zehnder modulator. IEEE photonics journal, 2021, 13(4): 1-6, J]
CrossRef Google scholar
[[21]]
Zhu D, Shao L B, Yu M, et al.. Integrated photonics on thin-film lithium niobate. Advances in optics and photonics, 2021, 13: 242-352, J]
CrossRef Google scholar
[[22]]
Weigel P O, Valdez F, Zhao J, et al.. Design of high-bandwidth, low-voltage and low-loss hybrid lithium niobate electro-optic modulators. Journal of physics: photonics, 2021, 3(1): 012001 [J]

Accesses

Citations

Detail

Sections
Recommended

/