Ultrasensitive plasmonic sensor based on MDM waveguide containing Persian Orsi window cavities for refractive index and blood plasma sensing

Mohammad Ghanavati , Mohammad Azim Karami

Optoelectronics Letters ›› 2024, Vol. 20 ›› Issue (7) : 406 -411.

PDF
Optoelectronics Letters ›› 2024, Vol. 20 ›› Issue (7) : 406 -411. DOI: 10.1007/s11801-024-3138-x
Article

Ultrasensitive plasmonic sensor based on MDM waveguide containing Persian Orsi window cavities for refractive index and blood plasma sensing

Author information +
History +
PDF

Abstract

We developed a plasmonic refractive index (RI) with a metal-dielectric-metal (MDM) structure that utilizes two Persian Orsi windows-like separated cavities with a high figure of merit (FoM) and ultrasensitivity. The simulated and optimized Ag-air-Ag MDM sensor for surface plasmon resonance (SPR) offers high RI sensitivity (SRI) and the ability to detect blood plasma concentration (BPC). The results verified that structural parameters have an effect on SRI, full width at half maximum (FWHM), FoM, sensitivity of blood plasma (Sp) for right and left peaks, whose values are 1 345.45 nm·RIU−1, 32 nm, 42.04 RIU−1, 0.26 and 0.19 nm·L·g−1, respectively. The proposed design opens a new horizon in sensor development.

Cite this article

Download citation ▾
Mohammad Ghanavati, Mohammad Azim Karami. Ultrasensitive plasmonic sensor based on MDM waveguide containing Persian Orsi window cavities for refractive index and blood plasma sensing. Optoelectronics Letters, 2024, 20(7): 406-411 DOI:10.1007/s11801-024-3138-x

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

KhaniS, HayatiM. An ultra-high sensitive plasmonic refractive index sensor using an elliptical resonator and MIM waveguide[J]. Superlattices and microstructures, 2021, 156: 106970

[2]

JanipourM, KaramiM A, SofianiR, et al.. A novel adjustable plasmonic filter realization by split mode ring resonators[J]. Journal of electromagnetic analysis and applications, 2013, 5(12):405-414

[3]

RakhshaniM R, Mansouri-BirjandiM A. High sensitivity plasmonic refractive index sensing and its application for human blood group identification[J]. Sensors and actuators B: chemical, 2017, 249: 168-176

[4]

LemkeC, LeißnerT, KlickA, et al.. The complex dispersion relation of surface plasmon polaritons at gold/para-hexaphenylene interfaces[J]. Applied physics B, 2014, 116(3):585-591

[5]

RakhshaniM R. Optical refractive index sensor with two plasmonic double-square resonators for simultaneous sensing of human blood groups[J]. Photonics and nanostructures-fundamentals and applications, 2020, 39: 100768

[6]

Chou ChaoC T, Chou ChauY F, ChiangH P, et al.. Breaking the symmetry of a metal-insulator-metal-based resonator for sensing applications[J]. Nanoscale research letters, 2022, 17(1):1-14

[7]

GonçalvesM R, MinassianH, MelikyanA. Plasmonic resonators: fundamental properties and applications[J]. Journal of physics D: applied physics, 2020, 53(44):443002

[8]

NegahdariR, RafieeE, EmamiF. Sensitive biosensors based on plasmonic-graphene nanocombinations for detection of biological elements in blood samples[J]. Plasmonics, 2023, 18(3): 909-919

[9]

NegahdariR, RafieeE, EmamiF. Realization of all-optical plasmonic MIM split square ring resonator switch[J]. Optical and quantum electronics, 2019, 51: 1-14

[10]

MaierS A. Plasmonics: fundamentals and applications[M], 2007, Berlin, Heidelberg, Springer

[11]

GhanavatiM, KaramiM A. Ellipsoid defect in trapezoidal-shaped cavities coupled to multi-resonance plasmonic metal-insulator-metal waveguide toward ultrasensitive temperature sensor[J]. Plasmonics, 2023, 18(3):1047-1057

[12]

ButtM A. Numerical assessment of a metal-insulator-metal waveguide-based plasmonic sensor system for the recognition of tuberculosis in blood plasma[J]. Micromachines, 2023, 14(4):729

[13]

DanaieM, ShahzadiA. Design of a high-resolution metal-insulator-metal plasmonic refractive index sensor based on a ring-shaped Si resonator[J]. Plasmonics, 2019, 14(6): 1453-1465

[14]

KazanskiyN L, KhoninaS N, ButtM A, et al.. A numerical investigation of a plasmonic sensor based on a metal-insulator-metal waveguide for simultaneous detection of biological analytes and ambient temperature[J]. Nanomaterials, 2021, 11(10):2551

[15]

ZhangZ, YangJ, HeX, et al.. Plasmonic refractive index sensor with high figure of merit based on concentric-rings resonator[J]. Sensors, 2018, 18(1): 116

[16]

WangL, ZengY P, WangZ Y, et al.. A refractive index sensor based on an analogy T shaped metal-insulator-metal waveguide[J]. Optik, 2018, 172: 1199-1204

[17]

ButtM A, KazanskiyN L, KhoninaS N. Highly sensitive refractive index sensor based on plasmonic bow tie configuration[J]. Photonic sensors, 2020, 10(3):223-232

[18]

Chou ChauY F, MingT Y, Chou ChaoC T, et al.. Significantly enhanced coupling effect and gap plasmon resonance in a MIM-cavity based sensing structure[J]. Scientific reports, 2021, 11(1):1-17

[19]

XieY Y, HuangY X, ZhaoW L, et al.. A novel plasmonic sensor based on metal-insulator-metal waveguide with side-coupled hexagonal cavity[J]. IEEE photonics journal, 2015, 7(2):1-12

[20]

ChenL, LiuY, YuZ, et al.. Numerical analysis of a near-infrared plasmonic refractive index sensor with high figure of merit based on a fillet cavity[J]. Optics express, 2016, 24(9):9975-9983

[21]

HuangY X, XieY Y, ZhaoW L, et al.. A plasmonic refractive index sensor based on a MIM waveguide with a side-coupled nanodisk resonator[C], 2014, New York, IEEE: 1-5

[22]

ShenY, KimJ, StrittmatterE F, et al.. Characterization of the human blood plasma proteome[J]. Proteomics, 2005, 5(15):4034-4045

[23]

AndersonN L, AndersonN G. The human plasma proteome: history, character, and diagnostic prospects[J]. Molecular & cellular proteomics, 2002, 1(11):845-867

[24]

AndersonN L, PolanskiM, PieperR, et al.. The human plasma proteome: a nonredundant list developed by combination of four separate sources[J]. Molecular & cellular proteomics, 2004, 3(4):311-326

[25]

ReddyN M. A study on refractive index of plasma of blood of patients suffering from tuberculosis[J]. International journal of innovative technology & creative engineering, 2012, 2(8):23

[26]

WANG M, TIAN H, LIU X, et al. Multiparameter sensing based on tunable Fano resonances in MIM waveguide structure with square-ring and triangular cavities[J]. Photonics, 2022: 291.

[27]

RohimahS, TianH, WangJ, et al.. Tunable multiple Fano resonances based on a plasmonic metal-insulator-metal structure for nano-sensing and plasma blood sensing applications[J]. Applied optics, 2022, 61(6): 1275-1283

[28]

ZhangZ, LuoL, XueC, et al.. Fano resonance based on metal-insulator-metal waveguide-coupled double rectangular cavities for plasmonic nanosensors[J]. Sensors, 2016, 16(5):642

[29]

ButtM, KhoninaS, KazanskiyN. Hybrid plasmonic waveguide-assisted metal-insulator-metal ring resonator for refractive index sensing[J]. Journal of modern optics, 2018, 65(9): 1135-1140

[30]

LiuY, TianH, ZhangX, et al.. Quadruple Fano resonances in MIM waveguide structure with ring cavities for multisolution concentration sensing[J]. Applied optics, 2022, 61(35):10548-10555

[31]

ButtM, KhoninaS, KazanskiyN. Plasmonic refractive index sensor based on MIM square ring resonator[C], 2019, New York, IEEE: 1-4

[32]

RafieeE, NegahdariR, EmamiF. Plasmonic multi channel filter based on split ring resonators: application to photothermal therapy[J]. Photonics and nanostructures-fundamentals and applications, 2019, 33: 21-28

AI Summary AI Mindmap
PDF

279

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/