Advancements and applications of position-sensitive detector (PSD): a review

Shaher Dwik, G. Sasikala, S. Natarajan

Optoelectronics Letters ›› 2024, Vol. 20 ›› Issue (6) : 330-338. DOI: 10.1007/s11801-024-3117-2
Article

Advancements and applications of position-sensitive detector (PSD): a review

Author information +
History +

Abstract

This paper presents a review of the position-sensitive detector (PSD) sensor, covering different types of PSD and recent works related to this field. Furthermore, it explains the theoretical concepts and provides information about its structure and principles of operation. Moreover, it includes the main information about the available commercial PSDs from different companies, along with a comparison between the common modules. The PSD features include high position resolution, fast response, and a wide dynamic range. These features make it suitable for various fields and applications, such as imaging, spectrometry, spectroscopy and others.

Cite this article

Download citation ▾
Shaher Dwik, G. Sasikala, S. Natarajan. Advancements and applications of position-sensitive detector (PSD): a review. Optoelectronics Letters, 2024, 20(6): 330‒338 https://doi.org/10.1007/s11801-024-3117-2

References

[[1]]
Ndjiongue A R, Ferreira H C, Ngatched T. Proskurnikov A, Ming C. Visible light communications (VLC) technology[M]. Wiley encyclopedia of electrical and electronics engineering, 2000 New York Wiley
[[2]]
He C, Chen C. A review of advanced transceiver technologies in visible light communications[J]. Photonics, 2023, 10(6): 648,
CrossRef Google scholar
[[3]]
Liu Z, Guan W, Wen S. Improved target signal source tracking and extraction method based on outdoor visible light communication using an improved particle filter algorithm based on Cam-Shift algorithm[J]. IEEE photonics journal, 2019, 11(6): 1-20
[[4]]
Do T H, Yoo M. An in-depth survey of visible light communication based positioning systems[J]. Sensors, 2016, 16(5): 678,
CrossRef Google scholar
[[5]]
Burchardt H, Serafimovski N, Tsonev D, et al.. VLC: beyond point-to-point communication[J]. IEEE communications magazine, 2014, 52(7): 98-105,
CrossRef Google scholar
[[6]]
Luo J, Fan L, Li H. Indoor positioning systems based on visible light communication: state of the art[J]. IEEE communications surveys & tutorials, 2017, 19(4): 2871-2893,
CrossRef Google scholar
[[7]]
Clăiean A M, Dimian M. Current challenges for visible light communications usage in vehicle applications: a survey[J]. IEEE communications surveys & tutorials, 2017, 19(4): 2681-2703,
CrossRef Google scholar
[[8]]
Sheoran S, Garg P, Sharma P K. Location tracking for indoor VLC systems using intelligent photodiode receiver[J]. IET communications, 2018, 12(13): 1589-1594,
CrossRef Google scholar
[[9]]
Kaymak Y, Rojas-Cessa R, Feng J, et al.. A survey on acquisition, tracking, and pointing mechanisms for mobile free-space optical communications[J]. IEEE communications surveys & tutorials, 2018, 20(2): 1104-1123,
CrossRef Google scholar
[[10]]
Kong M, Kang C H, Alkhazragi O, et al.. Survey of energy-autonomous solar cell receivers for satellite-air-ground-ocean optical wireless communication[J]. Progress in quantum electronics, 2020, 74: 100300,
CrossRef Google scholar
[[11]]
Schmidt C, Horwath J. Wide-field-of-regard pointing, acquisition and tracking-system for small laser communication terminals[C]. 2012 IEEE International Conference on Space Optical Systems and Applications (ICSOS), October 9–12, 2012, Ajaccio, France, 2012 New York IEEE
[[12]]
Abadi M M, Cox M A, Alsaigh R E, et al.. A space division multiplexed free-space-optical communication system that can auto-locate and fully self-align with a remote transceiver[J]. Scientific reports, 2019, 9(1): 1-8,
CrossRef Google scholar
[[13]]
Raj A B, Majumder A K. Historical perspective of free space optical communications: from the early dates to today’s developments[J]. IET communications, 2019, 13(16): 2405-2419,
CrossRef Google scholar
[[14]]
De-La-Llana-Calvo Á, Lázaro-Galilea J L, Gardel-Vicente A, et al.. Indoor positioning system based on LED lighting and PSD sensor[C]. 2019 International Conference on Indoor Positioning and Indoor Navigation (IPIN), September 30–October 3, 2019, Pisa, Italy, 2019 New York IEEE 1-8
[[15]]
Mccallen D, Petrone F, Coates J, et al.. A laser-based optical sensor for broad-band measurements of building earthquake drift[J]. Earthquake spectra, 2017, 33(4): 1573-1598,
CrossRef Google scholar
[[16]]
Zhang P, Liu J, Yang H, et al.. Position measurement of laser center by using 2-D PSD and fixed-axis rotating device[J]. IEEE access, 2019, 7: 140319-140327,
CrossRef Google scholar
[[17]]
Cui S, Soh Y C. Linearity indices and linearity improvement of 2-D tetralateral position-sensitive detector[J]. IEEE transactions on electron devices, 2010, 57(9): 2310-2316,
CrossRef Google scholar
[[18]]
Dwik S, Somasundaram N. Modeling and simulation of two-dimensional position sensitive detector (PSD) sensor[J]. International journal of innovative technology and exploring engineering (IJITEE), 2019, 9(1): 744-753,
CrossRef Google scholar
[[19]]
Khaled T A, Elkhatib M M, El-Sherif A. Design and simulation of an intelligent laser tracking system[J]. International journal of signal processing systems, 2016, 4(4): 328-333,
CrossRef Google scholar
[[20]]
Heweage M F, Wen X, Eldamarawy A. Developing laser spot position determination circuit modeling and measurements with a quad detector[J]. International journal of modeling and optimization, 2016, 16(6): 310-316,
CrossRef Google scholar
[[21]]
Ivan I A, Ardeleanu M, Laurent G J. High dynamics and precision optical measurement using a position sensitive detector (PSD) in reflection-mode: application to 2D object tracking over a smart surface[J]. Sensors, 2012, 12(12): 16771-16784,
CrossRef Google scholar
[[22]]
Rosencher E, Vinter B. . Optoelectronics[M], 2002 Cambridge Cambridge University Press,
CrossRef Google scholar
[[23]]
Andersson H. . Position sensitive detectors: device technology and applications in spectroscopy[D], 2008 Sundsvall Mid Sweden University
[[24]]
Kim J K, Kim M S, Bae J H, et al.. Gap measurement by position-sensitive detectors[J]. Applied optics, 2000, 39(16): 2584-2591,
CrossRef Google scholar
[[25]]
Solal M, Ménard L, Charon Y, et al.. A silicon continuous position sensitive diode and associated electronics: modelling and simulation[J]. Nuclear instruments and methods in physics research section A: accelerators, spectrometers, detectors and associated equipment, 2002, 477(1–3): 491-498,
CrossRef Google scholar
[[26]]
Wang X, Ye M. Modeling and nonlinear correction of two-dimensional photoelectric position-sensitive detector[C]. Advanced Materials and Devices for Sensing and Imaging, October 14–18, 2002, Shanghai, China, 2002 Washington SPIE 452-460
[[27]]
Solal M C. The origin of duo-lateral position-sensitive detector distortions[J]. Nuclear instruments and methods in physics research section A: accelerators, spectrometers, detectors and associated equipment, 2007, 572(3): 1047-1055,
CrossRef Google scholar
[[28]]
Rahimi M, Luo Y, Harris F C, et al.. Improving measurement accuracy of position sensitive detector (PSD) for a new scanning PSD microscopy system[C]. Proceedings of 2014 IEEE International Conference on Robotics and Biomimetics (ROBIO 2014), December 5–10, 2014, Bali, Indonesia, 2014 New York IEEE 1685-1690
[[29]]
Niu F, Liu Z, O’neil D, et al.. Study of a novel density well-logging tool using a position-sensitive detector[J]. Applied radiation and isotopes, 2019, 154: 108844,
CrossRef Google scholar
[[30]]
Berens F, Elser S, Reischl M. Genetic algorithm for the optimal LiDAR sensor configuration on a vehicle[J]. IEEE sensors journal, 2021, 22(3): 2735-2743,
CrossRef Google scholar
[[31]]
De-La-Llana-Calvo Á, Lázaro-Galilea J L, Gardel-Vicente A, et al.. Weak calibration of a visible light positioning system based on a position-sensitive detector: positioning error assessment[J]. Sensors, 2021, 21(11): 3924,
CrossRef Google scholar
[[32]]
Qu L, Liu J, Deng Y, et al.. Analysis and adjustment of positioning error of PSD system for mobile SOF-FTIR[J]. Sensors, 2019, 19(23): 5081,
CrossRef Google scholar
[[33]]
Massari N, Gonzo L, Gottardi M, et al.. High speed digital CMOS 2D optical position sensitive detector[C]. Proceedings of the 28th European Solid-State Circuits Conference, September 24–26, 2002, Florence, Italy, 2002 New York IEEE 723-726
[[34]]
Makynen A, Rahkonen T, Kostamovaara J. Digital optical position-sensitive detector (PSD)[C]. Proceedings of the 21st IEEE Instrumentation and Measurement Technology Conference, May 18–20, 2004, Como, Italy, 2004 New York IEEE 2358-2360
[[35]]
Kimata M. Trends in small-format infrared array sensors[C]. Proceedings of Sensors, November 3–6, 2013, Baltimore, MD, USA, 2013 New York IEEE 215-220
[[36]]
Takahata A, Shimada Y, Yoshioka F, et al.. Infrared position sensitive detector (IRPSD)[C]. Proceedings Infrared Technology and Applications XXXIV, March 16–20, 2008, Orlando, Florida, USA, 2008 Washington SPIE 1002-1012
[[37]]
Takahata A, Shimada Y, Yoshioka F, et al.. Improved infrared position sensitive detector[J]. IEEJ transactions on sensors and micromachines, 2009, 129(7): 215-220,
CrossRef Google scholar
[[38]]
Khan M, Yuksel M. Maintaining a free-space-optical communication link between two autonomous mobiles[C]. Proceedings of 2014 IEEE Wireless Communications and Networking Conference (WCNC), April 6–9, 2014, Istanbul, Turkey, 2008 New York IEEE 3154-3159
[[39]]
Zekavat S, Buehrer R M, Durgin G D, et al.. An overview on position location: past, present, future[J]. International journal of wireless information networks, 2021, 28: 45-76,
CrossRef Google scholar
[[40]]
Al-Akkoumi M K, Refai H, Sluss J J Jr. A tracking system for mobile FSO[C]. Proceedings of Free-space Laser Communication Technologies XX, January 19–24, 2008, San Jose, California, USA, 2008 Washington SPIE 199-206
[[41]]
Harris A, Sluss J J, Refai H H, et al.. Alignment and tracking of a free-space optical communications link to a UAV[C]. Proceedings of 24th Digital Avionics Systems Conference, October 30–November 3, 2005, Washington, DC, USA, 2005 New York IEEE 1-C
[[42]]
Xu G, Zhong Z, Wang B, et al.. Design of PSD based solar direction sensor[C]. Proceedings of 6th International Symposium on Precision Mechanical Measurements, October 10, 2013, Guiyang, China, 2013 Washington SPIE 676-682
[[43]]
Juqing Y, Dayong W, Weihu Z. Precision laser tracking servo control system for moving target position measurement[J]. Optik, 2017, 131: 994-1002,
CrossRef Google scholar
[[44]]
Mallick K, Mandal P, Mukherjee R, et al.. Generation of 40 GHz/80 GHz OFDM based MMW source and the OFDM-FSO transport system based on special fine tracking technology[J]. Optical fiber technology, 2020, 54: 102130,
CrossRef Google scholar
[[45]]
Dwik S, Somasundaram N, Al Musalli T, et al.. Simple LASER tracking algorithm using programmable system on chip (PSoC) for visible light communication (VLC)[J]. Optical memory and neural networks, 2022, 3: 296-308,
CrossRef Google scholar
[[46]]
Ganesh N, Schutt K, Nayak P K, et al.. 2D position-sensitive hybrid-perovskite detectors[J]. ACS applied materials & interfaces, 2021, 13(45): 54527-54535,
CrossRef Google scholar
[[47]]
Wang W, Lu J, Ni Z. Position-sensitive detectors based on two-dimensional materials[J]. Nano research, 2021, 14: 1889-1900,
CrossRef Google scholar
[[48]]
Wang W H, Du R X, Guo X T, et al.. Interfacial amplification for graphene-based position-sensitive-detectors[J]. Light: science & applications, 2017, 6(10): e17113,
CrossRef Google scholar
[[49]]
Wang W, Yan Z, Zhang J, et al.. High-performance position-sensitive detector based on graphene-silicon heterojunction[J]. Optica, 2018, 5(1): 27-31,
CrossRef Google scholar
[[50]]
Wang W, Liu K, Jiang J, et al.. Ultrasensitive graphene-Si position-sensitive detector for motion tracking[J]. InfoMat, 2020, 2(4): 761-768,
CrossRef Google scholar
[[51]]
Liu K, Wang W, Yu Y, et al.. Graphene-based infrared position-sensitive detector for precise measurements and high-speed trajectory tracking[J]. Nano letters, 2019, 19(11): 8132-8137,
CrossRef Google scholar
[[52]]
Hu C, Wang X, Miao P, et al.. Origin of the ultrafast response of the lateral photovoltaic effect in amorphous MoS2/Si junctions[J]. ACS applied materials & interfaces, 2017, 9(21): 18362-18368,
CrossRef Google scholar
[[53]]
Hao L Z, Liu Y J, Han Z D, et al.. Giant lateral photovoltaic effect in MoS2/SiO2/Si pin junction[J]. Journal of alloys and compounds, 2018, 735: 88-97,
CrossRef Google scholar
[[54]]
Zhao X, Zhang L, Gai Q, et al.. High-performance position-sensitive detector based on the lateral photovoltaic effect in MoSe2/p-Si junctions[J]. Applied optics, 2019, 58(19): 5200-5205,
CrossRef Google scholar
[[55]]
Wang X, Zhao X, Hu C, et al.. Large lateral photovoltaic effect with ultrafast relaxation time in SnSe/Si junction[J]. Applied physics letters, 2016, 109(2): 023502,
CrossRef Google scholar
[[56]]
Hao L, Liu Y, Han Z, et al.. Large lateral photovoltaic effect in MoS2/GaAs heterojunction[J]. Nanoscale research letters, 2017, 12: 1-9,
CrossRef Google scholar
[[57]]
Dwik S, Sasikala G, Natarajan S. Design and simulation of a reconfigurable multifunctional optical sensor[J]. Optical memory and neural networks, 2023, 32(2): 147-157,
CrossRef Google scholar
[[58]]
Chen W, Chen S H, Luo D. Development of a new signal processing system for pin-cushion position sensitive detector[J]. Applied mechanics and materials, 2015, 738: 93-96,
CrossRef Google scholar
[[59]]
Shiroka T, Renzi R D, Bucci C, et al.. Position-sensitive detectors for muon spectroscopy: design goals, constraints and perspectives[J]. Physica B: condensed matter, 2006, 374: 494-497,
CrossRef Google scholar
[[60]]
De-La-Llana-Calvo Á, Lázaro-Galilea J L, Gardel-Vicente A, et al.. Analysis of multiple-access discrimination techniques for the development of a PSD-based VLP system[J]. Sensors, 2020, 20(6): 1717,
CrossRef Google scholar
[[61]]
Henry J, Livingstone J. Thin-film amorphous silicon position-sensitive detectors[J]. Advanced materials, 2001, 13(12–13): 1022-1026,
CrossRef Google scholar
[[62]]
Popov V. Advanced data readout technique for multianode position sensitive photomultiplier tube applicable in radiation imaging detectors[J]. Journal of instrumentation, 2011, 6(01): c01061,
CrossRef Google scholar
[[63]]
Henry J, Livingstone J. Improved position sensitive detectors using high resistivity substrates[J]. Journal of physics D: applied physics, 2008, 41(16): 165106,
CrossRef Google scholar

Accesses

Citations

Detail

Sections
Recommended

/