InGaN multiple quantum well based light-emitting diodes with indium composition gradient InGaN quantum barriers

Xien Sang, Yuan Xu, Mengshuang Yin, Fang Wang, Juin J. Liou, Yuhuai Liu

Optoelectronics Letters ›› 2024, Vol. 20 ›› Issue (2) : 89-93. DOI: 10.1007/s11801-024-3099-0
Article

InGaN multiple quantum well based light-emitting diodes with indium composition gradient InGaN quantum barriers

Author information +
History +

Abstract

To improve the internal quantum efficiency (IQE) and light output power of InGaN light-emitting diodes (LEDs), we proposed an In-composition gradient increase and decrease InGaN quantum barrier structure. Through analysis of its P-I graph, carrier concentration, and energy band diagram, the results showed that when the current was 100 mA, the In-composition gradient decrease quantum barrier (QB) structure could effectively suppress electron leakage while improving hole injection efficiency, resulting in an increase in carrier concentration in the active region and an improvement in the effective recombination rate in the quantum well (QW). As a result, the IQE and output power of the LED were effectively improved.

Cite this article

Download citation ▾
Xien Sang, Yuan Xu, Mengshuang Yin, Fang Wang, Juin J. Liou, Yuhuai Liu. InGaN multiple quantum well based light-emitting diodes with indium composition gradient InGaN quantum barriers. Optoelectronics Letters, 2024, 20(2): 89‒93 https://doi.org/10.1007/s11801-024-3099-0

References

[[1]]
Kneissl M, Seong T Y, Han J, et al.. The emergence and prospects of deep-ultraviolet light-emitting diode technologies Han[J]. Nature photonics, 2019, 13(4): 233-244,
CrossRef Google scholar
[[2]]
Hinds L M, O’Donnel C P, Akhte M, et al.. Principles and mechanisms of ultraviolet light emitting diode technology for food industry applications[J]. Innovative food science & emerging technologies, 2019, 56: 102153,
CrossRef Google scholar
[[3]]
Muramoto Y, Kimur M, Nouda S. Development and future of ultraviolet light-emitting diodes: UV-LED will replace the UV lamp[J]. Semiconductor science and technology, 2014, 29(8): 084004,
CrossRef Google scholar
[[4]]
Song K, Mphseni M, Taghipou F. Application of ultraviolet light-emitting diodes (UV-LEDs) for water disinfection: a review[J]. Water research, 2016, 94: 341-349,
CrossRef Google scholar
[[5]]
Yu H B, Ren Z J, Memon M H, et al.. Cascaded deep ultraviolet light-emitting diode via tunnel junction[J]. Chinese optics letters, 2021, 19(8): 082503,
CrossRef Google scholar
[[6]]
Nakamura S. Future technologies and applications of III-nitride materials and devices[J]. Engineering, 2015, 1(2): 161,
CrossRef Google scholar
[[7]]
Zheng H, Sun H, Yang M, et al.. Effect of polarization field and nonradiative recombination lifetime on the performance improvement of step stage InGaN/GaN multiple quantum well LEDs[J]. Journal of display technology, 2015, 11(9): 776-782,
CrossRef Google scholar
[[8]]
Kuo Y K, Chang J Y, Tsai M C, et al.. Enhancement in hole-injection efficiency of blue InGaN light-emitting diodes from reduced polarization by some specific designs for the electron blocking layer[J]. Optics letters, 2010, 35(19): 3285-3287,
CrossRef Google scholar
[[9]]
Xu J R, Schubert M F, Noenaun A N, et al.. Reduction in efficiency droop, forward voltage, ideality factor, and wavelength shift in polarization-matched GaInN/GaInN multi-quantum-well light-emitting diodes[J]. Applied physics letters, 2009, 94(1): 011113,
CrossRef Google scholar
[[10]]
Yen S H, Tsai M C, Tsai M L, et al.. Effect of n-type Algan layer on carrier transportation and efficiency drop of blue InGaN light-emitting diodes[J]. IEEE photonics technology letters, 2009, 21(14): 975-977,
CrossRef Google scholar
[[11]]
Kuo Y K, Chang J Y, Tsai M C, et al.. Advantages of blue InGaN multiple-quantum well light-emitting diodes with InGaN barriers[J]. Applied physics letters, 2009, 95: 1011116,
CrossRef Google scholar
[[12]]
Kuo Y K, Wang T H, Chang J Y, et al.. Advantages of InGaN light-emitting diodes with GaN-InGaN-GaN barriers[J]. Applied physics letters, 2011, 99(9): 091107,
CrossRef Google scholar
[[13]]
Xiong J Y, Xu Y Q, Ding B B, et al.. Investigation of blue InGaN light-emitting diodes with p-AlGaN/InGaN superlattice interlayer[J]. Applied physics A-materials science and processing, 2014, 114(8): 309-313,
CrossRef Google scholar
[[14]]
Karan H, Biswas A. Improving performance of light-emitting diodes using InGaN/GaN MQWs with varying trapezoidal bottom well width[J]. Optik, 2021, 247: 167888,
CrossRef Google scholar
[[15]]
Hengsteter J, Prajoon P, Nirmal D. Analysis of high efficiency InGaN multiple quantum-well light-emitting-diodes using InGaN step-graded barriers[J]. Journal of nanoelectronics and optoelectronics, 2018, 13(6): 939-943,
CrossRef Google scholar
[[16]]
Jia C Y, Yu T J, Feng X H, et al.. Performance improvement of GaN-based near-UV LEDs with InGaN/AlGaN superlattices strain relief layer and AlGaN barrier[J]. Superlattices and microstructures, 2016, 97: 417-423,
CrossRef Google scholar
[[17]]
Wolny P, Turski H, Muziol G, et al.. Impact of interfaces on photoluminescence efficiency of high-indium-content (In, Ga)N quantum wells[J]. Physical review applied, 2023, 19(1): 014044,
CrossRef Google scholar
[[18]]
Sharif M N, Wali Q, Rehman H U, et al.. Sensitivity of indium molar fraction in InGaN quantum wells for near-UV light-emitting diodes[J]. Micro and nanostructures, 2022, 165: 207208,
CrossRef Google scholar
[[19]]
Jiang Y R, Cheng L W, Lin X Y, et al.. Composition-graded quantum barriers improve performance in InGaN-based laser diodes[J]. Semiconductor science and technology, 2021, 36(11): 115001,
CrossRef Google scholar
[[20]]
Fang G T, Zhang M, Xiong D Y. On the near-pole hole insertion layer and the far-pole hole insertion layer for multi-quantum-well deep ultraviolet light-emitting diodes[J]. Nanomaterials, 2022, 12(4): 629,
CrossRef Google scholar
[[21]]
Maeda N, Jo M, Hirayama H. Improving the light-extraction efficiency of AlGaN DUV-LEDs by using a superlattice hole spreading layer and an Al reflector[J]. Physica status solidi A-applications and materials science, 2018, 215: 1700436,
CrossRef Google scholar
[[22]]
Sharif M N, Usman M, Niass M I, et al.. Compositionally graded AlGaN hole source layer for deep-ultraviolet nanowire light-emitting diode without electron blocking layer[J]. Nanotechnology, 2021, 33(7): 075205,
CrossRef Google scholar
[[23]]
Niass M I, Sharif M N, Wang Y F, et al.. Enhance ment of the optoelectronic characteristics of deep ultraviolet nanowire laser diodes by induction of bulk polarization charge with graded AlN composition in AlxGa1−xN waveguide[J]. Superlattices and microstructures, 2020, 145: 106643,
CrossRef Google scholar
[[24]]
Turin V O. A modified transferred-electron high-field mobility model for GaN devices simulation[J]. Solid state electronics, 2005, 49(10): 1678-1682,
CrossRef Google scholar
[[25]]
Liu J P, Ryou J H, Dupuis R D, et al.. Barrier effect on hole transport and carrier distribution in InGaN/GaN multiple quantum well visible light-emitting diodes[J]. Applied physics letters, 2008, 93(2): 021102,
CrossRef Google scholar
[[26]]
Bercha A, Trzeciakowsk W, Muzio G, et al.. Evidence for “dark charge” from photoluminescence measurements in wide InGaN quantum wells[J]. Optics express, 2023, 31(2): 3227-3236,
CrossRef Google scholar

Accesses

Citations

Detail

Sections
Recommended

/