Research of surface-enhanced Raman scattering on Ag@PMBA@C@Au hybrid nanoparticles

Enzhong Tan, Suye Lü

Optoelectronics Letters ›› 2024, Vol. 20 ›› Issue (2) : 65-69. DOI: 10.1007/s11801-024-3094-5
Article

Research of surface-enhanced Raman scattering on Ag@PMBA@C@Au hybrid nanoparticles

Author information +
History +

Abstract

Monodispersed, biocompatible, and readily-functionalized hybrid reporter-embedded core-shell nanopartilces (NPs) have been prepared in a simple route. This composite offers a potential platform for immunochemical detection using surface-enhanced Raman scattering (SERS) due to their high sensitivity, good stability and biocompatiblity. This also provides a new platform for insight into SERS enhancement mechanism.

Cite this article

Download citation ▾
Enzhong Tan, Suye Lü. Research of surface-enhanced Raman scattering on Ag@PMBA@C@Au hybrid nanoparticles. Optoelectronics Letters, 2024, 20(2): 65‒69 https://doi.org/10.1007/s11801-024-3094-5

References

[[1]]
Nie S M, Emery S R. Probing single molecules and single nanoparticles by surface-enhanced Raman scattering[J]. Science, 1997, 275(5303): 1102-1106,
CrossRef Google scholar
[[2]]
Sitjar J, Xu H Z, Liu C Y, et al.. Synergistic surface-enhanced Raman scattering effect to distinguish live SARS-CoV-2 S pseudovirus[J]. Analytica chimica acta, 2022, 1193: 339406,
CrossRef Google scholar
[[3]]
Yadav S, Khanam R, Singh J P. A purview into highly sensitive magnetic SERS detection of hemozoin biomarker for rapid malaria diagnosis[J]. Sensors and actuators B-chemical, 2022, 355: 131303,
CrossRef Google scholar
[[4]]
Mcdonnell C, Albarghouthi F M, Selhorst R, et al.. Aerosol jet printed surface-enhanced Raman substrates: application for high-sensitivity detection of perfluoroalkyl substances[J]. ACS omega, 2023, 8(1): 1597-1605,
CrossRef Google scholar
[[5]]
Zhao W S, Yang S, Zhang D X, et al.. Based on optimized aptamers-functionalized magnetic capture probes and graphene oxide-Au nanostars SERS tags[J]. Journal of colloid and interface science, 2022, 634: 651-663,
CrossRef Google scholar
[[6]]
Li P Z, Xia X H, Chen J N, et al.. Morphology-regulated core-shell Ag@Au NPs for rapid SERS detection of 1-amino-hydantoin (AHD) in crayfish[J]. Food and agricultural immunology, 2022, 33(1): 832-847,
CrossRef Google scholar
[[7]]
Zhao M M, Liu W Y, Du J G, et al.. Multidimensional Co3O4 nano sponge for the highly sensitive SERS applications[J]. Optoelectronics letters, 2017, 13(1): 38-41,
CrossRef Google scholar
[[8]]
Doering W E, Nie S M. Spectroscopic tags using dye-embedded nanoparticles and surface-enhanced Raman scattering[J]. Analytical chemistry, 2003, 75(22): 6171-6176,
CrossRef Google scholar
[[9]]
Cao Y W, Jin R C, Mirkin C A. Nanoparticles with Raman spectroscopic fingerprints for DNA and RNA detection[J]. Science, 2002, 297: 1536-1540,
CrossRef Google scholar
[[10]]
Yan M M, Li H D, Li M, et al.. Advances in surface-enhanced Raman scattering-based aptasensors for food safety detection[J]. Journal of agricultureal and food chemistry, 2021, 69(47): 14049-14064,
CrossRef Google scholar
[[11]]
Shanmukh S, Jones L, Driskell J, et al.. Rapid and sensitive detection of respiratory virus molecular signatures using a silver nanorod array SERS substrate[J]. Nano letters, 2006, 6(11): 2630-2636,
CrossRef Google scholar
[[12]]
Doering W E, Piotti M E, Natan M J, et al.. SERS as a foundation for nanoscale optically detected biological labels[J]. Advanced materials, 2007, 19: 3100-3108,
CrossRef Google scholar
[[13]]
Wang C G, Chen Y, Wang T T, et al.. Monodispersed gold nanorod-embedded silica particles as novel Raman labels for biosensing[J]. Advanced functional materials, 2008, 18(2): 55-361,
CrossRef Google scholar
[[14]]
Kong K V, Lam Z Y, Lau W K O, et al.. A transition metal carbonyl probe for use in a highly specific and sensitive SERS-based assay for glucose[J]. Journal of the American chemical society, 2013, 135(48): 18028-18031,
CrossRef Google scholar
[[15]]
Nie B B, Luo Y Y, Shi J P, et al.. Bowl-like pore array made of hollow Au/Ag alloy nanoparticles for SERS detection of melamine in solid milk powder[J]. Sensors and actuators B-chemical, 2019, 301: 127087,
CrossRef Google scholar
[[16]]
Li S Z, Pedano M L, Chang S H, et al.. Gap structure effects on surface-enhanced Raman scattering intensities for gold gapped rods[J]. Nano letters, 2010, 10(5): 1722-1727,
CrossRef Google scholar
[[17]]
Yamamoto Y S, Itoh T. Why and how do the shapes of surface-enhanced Raman scattering spectra change? Recent progress from mechanistic studies[J]. Journal of Raman spectroscopy, 2016, 47(1): 78-88,
CrossRef Google scholar
[[18]]
Itoh T, Yoshida K, Ishikawa M. Experimental demonstration of the electromagnetic mechanism underlying surface enhanced Raman scattering using single nanoparticle spectroscopy[J]. Journal of photochemistry and photobiology A-chemistry, 2011, 219(2–3): 167-179,
CrossRef Google scholar
[[19]]
Dvoynenko M M, Wang J K. Finding electromagnetic and chemical enhancement factors of surface-enhanced Raman scattering[J]. Nano letters, 2007, 32(24): 3552-3554
[[20]]
Shin K S. Effect of surface morphology on surface-enhanced Raman scattering of 4-aminobenzenethiol adsorbed on gold substrates[J]. Journal of Raman spectroscopy, 2008, 39(4): 468-473,
CrossRef Google scholar
[[21]]
Kim J, Jang Y, Kim N J, et al.. Study of chemical enhancement mechanism in non-plasmonic surface enhanced Raman spectroscopy (SERS)[J]. Frontiers in chemistry, 2019, 7: 582,
CrossRef Google scholar
[[22]]
Lan L L, Gao Y M, Fan X, et al.. The origin of ultrasensitive SERS sensing beyond plasmonics[J]. Frontiers of physics, 2021, 16(4): 43300,
CrossRef Google scholar
[[23]]
Li W Y, Camargo P H C, Lu X M, et al.. Dimers of silver nanospheres: facile synthesis and their use as hot spots for surface-enhanced Raman scattering[J]. Nano letters, 2009, 9(1): 485-490,
CrossRef Google scholar
[[24]]
Dadosh T, Sperling J, Bryant G W, et al.. Plasmonic control of the shape of the Raman spectrum of a single molecule in a silver nanoparticle dimer[J]. ACS nano, 2009, 3(7): 1988-1994,
CrossRef Google scholar
[[25]]
Shen A G, Chen L F, Xie W, et al.. Triplex Au-Ag-C core shell nanoparticles as a novel Raman label[J]. Advanced functional materials, 2010, 20(6): 969-975,
CrossRef Google scholar
[[26]]
Sun X M, Li Y D. Ag@C core/shell structured nanoparticles: controlled synthesis, characterization, and assembly[J]. Langmuir, 2005, 21: 6019-6024,
CrossRef Google scholar
[[27]]
Zhang X J, Lu Z Y, Sim D H, et al.. Controlled synthesis of Ag/Ag/C hybrid nanostructures and their surface-enhanced Raman scattering properties[J]. Chemistry-A European journal, 2011, 17(48): 13386-13390,
CrossRef Google scholar
[[28]]
Orendorff C J, Gole A, Sau T K, et al.. Surface-enhanced Raman spectroscopy of self-assembled monolayers: sandwich architecture and nanoparticle shape dependence[J]. Analytical chemistry, 2005, 77(10): 3261-3266,
CrossRef Google scholar
[[29]]
Maye M M, Nykypanchuk D, Cuisinier M, et al.. Stepwise surface encoding for high-throughput assembly of nanoclusters[J]. Nature materials, 2009, 8: 388-391,
CrossRef Google scholar
[[30]]
Cao M, Wang M, Gu N. Calculated optical properties of dielectric shell coated gold nanorods[J]. Chinese physics letters, 2009, 26(4): 045201,
CrossRef Google scholar
[[31]]
Pena-Rodriguez O, Pal U. Enhanced plasmonic behavior of bimetallic (Ag-Au) multilayered spheres[J]. Nanoscale research letters, 2011, 6: 279,
CrossRef Google scholar
[[32]]
Yang M, Alvarez-Puebla R, Kim H S, et al.. SERS-active gold lace nanoshells with built-in hotspots[J]. Nano letters, 2010, 10(10): 4013-4019,
CrossRef Google scholar
[[33]]
Kleinman S L, Ringe E, Valley N, et al.. Single-molecule surface-enhanced Raman spectroscopy of crystal violet isotopologues: theory and experiment[J]. Journal of the American chemistry society, 2011, 133(11): 4115-4122,
CrossRef Google scholar
[[34]]
Zhu C H, Meng G W, Huang Q, et al.. Au hierarchical micro/nanotower arrays and their improved SERS effect by Ag nanoparticle decoration[J]. Crystal growth & design, 2011, 11(3): 748-752,
CrossRef Google scholar
[[35]]
Kaminska A, Dziecielewski I, Weyher J L, et al.. Highly reproducible, stable and multiply regenerated surface-enhanced Raman scattering substrate for biomedical applications[J]. Journal of materials chemistry, 2011, 21(24): 8662-8669,
CrossRef Google scholar

Accesses

Citations

Detail

Sections
Recommended

/