Research of surface-enhanced Raman scattering on Ag@PMBA@C@Au hybrid nanoparticles

Enzhong Tan, Suye Lü

Optoelectronics Letters ›› 2024, Vol. 20 ›› Issue (2) : 65-69.

Optoelectronics Letters ›› 2024, Vol. 20 ›› Issue (2) : 65-69. DOI: 10.1007/s11801-024-3094-5
Article

Research of surface-enhanced Raman scattering on Ag@PMBA@C@Au hybrid nanoparticles

Author information +
History +

Abstract

Monodispersed, biocompatible, and readily-functionalized hybrid reporter-embedded core-shell nanopartilces (NPs) have been prepared in a simple route. This composite offers a potential platform for immunochemical detection using surface-enhanced Raman scattering (SERS) due to their high sensitivity, good stability and biocompatiblity. This also provides a new platform for insight into SERS enhancement mechanism.

Cite this article

Download citation ▾
Enzhong Tan, Suye Lü. Research of surface-enhanced Raman scattering on Ag@PMBA@C@Au hybrid nanoparticles. Optoelectronics Letters, 2024, 20(2): 65‒69 https://doi.org/10.1007/s11801-024-3094-5

References

[1]
NieS M, EmeryS R. Probing single molecules and single nanoparticles by surface-enhanced Raman scattering[J]. Science, 1997, 275(5303):1102-1106
CrossRef Google scholar
[2]
SitjarJ, XuH Z, LiuC Y, et al.. Synergistic surface-enhanced Raman scattering effect to distinguish live SARS-CoV-2 S pseudovirus[J]. Analytica chimica acta, 2022, 1193: 339406
CrossRef Google scholar
[3]
YadavS, KhanamR, SinghJ P. A purview into highly sensitive magnetic SERS detection of hemozoin biomarker for rapid malaria diagnosis[J]. Sensors and actuators B-chemical, 2022, 355: 131303
CrossRef Google scholar
[4]
McdonnellC, AlbarghouthiF M, SelhorstR, et al.. Aerosol jet printed surface-enhanced Raman substrates: application for high-sensitivity detection of perfluoroalkyl substances[J]. ACS omega, 2023, 8(1):1597-1605
CrossRef Google scholar
[5]
ZhaoW S, YangS, ZhangD X, et al.. Based on optimized aptamers-functionalized magnetic capture probes and graphene oxide-Au nanostars SERS tags[J]. Journal of colloid and interface science, 2022, 634: 651-663
CrossRef Google scholar
[6]
LiP Z, XiaX H, ChenJ N, et al.. Morphology-regulated core-shell Ag@Au NPs for rapid SERS detection of 1-amino-hydantoin (AHD) in crayfish[J]. Food and agricultural immunology, 2022, 33(1):832-847
CrossRef Google scholar
[7]
ZhaoM M, LiuW Y, DuJ G, et al.. Multidimensional Co3O4 nano sponge for the highly sensitive SERS applications[J]. Optoelectronics letters, 2017, 13(1):38-41
CrossRef Google scholar
[8]
DoeringW E, NieS M. Spectroscopic tags using dye-embedded nanoparticles and surface-enhanced Raman scattering[J]. Analytical chemistry, 2003, 75(22):6171-6176
CrossRef Google scholar
[9]
CaoY W, JinR C, MirkinC A. Nanoparticles with Raman spectroscopic fingerprints for DNA and RNA detection[J]. Science, 2002, 297: 1536-1540
CrossRef Google scholar
[10]
YanM M, LiH D, LiM, et al.. Advances in surface-enhanced Raman scattering-based aptasensors for food safety detection[J]. Journal of agricultureal and food chemistry, 2021, 69(47):14049-14064
CrossRef Google scholar
[11]
ShanmukhS, JonesL, DriskellJ, et al.. Rapid and sensitive detection of respiratory virus molecular signatures using a silver nanorod array SERS substrate[J]. Nano letters, 2006, 6(11):2630-2636
CrossRef Google scholar
[12]
DoeringW E, PiottiM E, NatanM J, et al.. SERS as a foundation for nanoscale optically detected biological labels[J]. Advanced materials, 2007, 19: 3100-3108
CrossRef Google scholar
[13]
WangC G, ChenY, WangT T, et al.. Monodispersed gold nanorod-embedded silica particles as novel Raman labels for biosensing[J]. Advanced functional materials, 2008, 18(2):55-361
CrossRef Google scholar
[14]
KongK V, LamZ Y, LauW K O, et al.. A transition metal carbonyl probe for use in a highly specific and sensitive SERS-based assay for glucose[J]. Journal of the American chemical society, 2013, 135(48):18028-18031
CrossRef Google scholar
[15]
NieB B, LuoY Y, ShiJ P, et al.. Bowl-like pore array made of hollow Au/Ag alloy nanoparticles for SERS detection of melamine in solid milk powder[J]. Sensors and actuators B-chemical, 2019, 301: 127087
CrossRef Google scholar
[16]
LiS Z, PedanoM L, ChangS H, et al.. Gap structure effects on surface-enhanced Raman scattering intensities for gold gapped rods[J]. Nano letters, 2010, 10(5):1722-1727
CrossRef Google scholar
[17]
YamamotoY S, ItohT. Why and how do the shapes of surface-enhanced Raman scattering spectra change? Recent progress from mechanistic studies[J]. Journal of Raman spectroscopy, 2016, 47(1):78-88
CrossRef Google scholar
[18]
ItohT, YoshidaK, IshikawaM. Experimental demonstration of the electromagnetic mechanism underlying surface enhanced Raman scattering using single nanoparticle spectroscopy[J]. Journal of photochemistry and photobiology A-chemistry, 2011, 219(2–3):167-179
CrossRef Google scholar
[19]
DvoynenkoM M, WangJ K. Finding electromagnetic and chemical enhancement factors of surface-enhanced Raman scattering[J]. Nano letters, 2007, 32(24):3552-3554
[20]
ShinK S. Effect of surface morphology on surface-enhanced Raman scattering of 4-aminobenzenethiol adsorbed on gold substrates[J]. Journal of Raman spectroscopy, 2008, 39(4):468-473
CrossRef Google scholar
[21]
KimJ, JangY, KimN J, et al.. Study of chemical enhancement mechanism in non-plasmonic surface enhanced Raman spectroscopy (SERS)[J]. Frontiers in chemistry, 2019, 7: 582
CrossRef Google scholar
[22]
LanL L, GaoY M, FanX, et al.. The origin of ultrasensitive SERS sensing beyond plasmonics[J]. Frontiers of physics, 2021, 16(4):43300
CrossRef Google scholar
[23]
LiW Y, CamargoP H C, LuX M, et al.. Dimers of silver nanospheres: facile synthesis and their use as hot spots for surface-enhanced Raman scattering[J]. Nano letters, 2009, 9(1): 485-490
CrossRef Google scholar
[24]
DadoshT, SperlingJ, BryantG W, et al.. Plasmonic control of the shape of the Raman spectrum of a single molecule in a silver nanoparticle dimer[J]. ACS nano, 2009, 3(7):1988-1994
CrossRef Google scholar
[25]
ShenA G, ChenL F, XieW, et al.. Triplex Au-Ag-C core shell nanoparticles as a novel Raman label[J]. Advanced functional materials, 2010, 20(6):969-975
CrossRef Google scholar
[26]
SunX M, LiY D. Ag@C core/shell structured nanoparticles: controlled synthesis, characterization, and assembly[J]. Langmuir, 2005, 21: 6019-6024
CrossRef Google scholar
[27]
ZhangX J, LuZ Y, SimD H, et al.. Controlled synthesis of Ag/Ag/C hybrid nanostructures and their surface-enhanced Raman scattering properties[J]. Chemistry-A European journal, 2011, 17(48):13386-13390
CrossRef Google scholar
[28]
OrendorffC J, GoleA, SauT K, et al.. Surface-enhanced Raman spectroscopy of self-assembled monolayers: sandwich architecture and nanoparticle shape dependence[J]. Analytical chemistry, 2005, 77(10):3261-3266
CrossRef Google scholar
[29]
MayeM M, NykypanchukD, CuisinierM, et al.. Stepwise surface encoding for high-throughput assembly of nanoclusters[J]. Nature materials, 2009, 8: 388-391
CrossRef Google scholar
[30]
CaoM, WangM, GuN. Calculated optical properties of dielectric shell coated gold nanorods[J]. Chinese physics letters, 2009, 26(4):045201
CrossRef Google scholar
[31]
Pena-RodriguezO, PalU. Enhanced plasmonic behavior of bimetallic (Ag-Au) multilayered spheres[J]. Nanoscale research letters, 2011, 6: 279
CrossRef Google scholar
[32]
YangM, Alvarez-PueblaR, KimH S, et al.. SERS-active gold lace nanoshells with built-in hotspots[J]. Nano letters, 2010, 10(10): 4013-4019
CrossRef Google scholar
[33]
KleinmanS L, RingeE, ValleyN, et al.. Single-molecule surface-enhanced Raman spectroscopy of crystal violet isotopologues: theory and experiment[J]. Journal of the American chemistry society, 2011, 133(11):4115-4122
CrossRef Google scholar
[34]
ZhuC H, MengG W, HuangQ, et al.. Au hierarchical micro/nanotower arrays and their improved SERS effect by Ag nanoparticle decoration[J]. Crystal growth & design, 2011, 11(3):748-752
CrossRef Google scholar
[35]
KaminskaA, DziecielewskiI, WeyherJ L, et al.. Highly reproducible, stable and multiply regenerated surface-enhanced Raman scattering substrate for biomedical applications[J]. Journal of materials chemistry, 2011, 21(24):8662-8669
CrossRef Google scholar

Accesses

Citations

Detail

Sections
Recommended

/