Research of surface-enhanced Raman scattering on Ag@PMBA@C@Au hybrid nanoparticles

Enzhong Tan , Suye Lü

Optoelectronics Letters ›› 2024, Vol. 20 ›› Issue (2) : 65 -69.

PDF
Optoelectronics Letters ›› 2024, Vol. 20 ›› Issue (2) : 65 -69. DOI: 10.1007/s11801-024-3094-5
Article

Research of surface-enhanced Raman scattering on Ag@PMBA@C@Au hybrid nanoparticles

Author information +
History +
PDF

Abstract

Monodispersed, biocompatible, and readily-functionalized hybrid reporter-embedded core-shell nanopartilces (NPs) have been prepared in a simple route. This composite offers a potential platform for immunochemical detection using surface-enhanced Raman scattering (SERS) due to their high sensitivity, good stability and biocompatiblity. This also provides a new platform for insight into SERS enhancement mechanism.

Cite this article

Download citation ▾
Enzhong Tan, Suye Lü. Research of surface-enhanced Raman scattering on Ag@PMBA@C@Au hybrid nanoparticles. Optoelectronics Letters, 2024, 20(2): 65-69 DOI:10.1007/s11801-024-3094-5

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

NieS M, EmeryS R. Probing single molecules and single nanoparticles by surface-enhanced Raman scattering[J]. Science, 1997, 275(5303):1102-1106

[2]

SitjarJ, XuH Z, LiuC Y, et al.. Synergistic surface-enhanced Raman scattering effect to distinguish live SARS-CoV-2 S pseudovirus[J]. Analytica chimica acta, 2022, 1193: 339406

[3]

YadavS, KhanamR, SinghJ P. A purview into highly sensitive magnetic SERS detection of hemozoin biomarker for rapid malaria diagnosis[J]. Sensors and actuators B-chemical, 2022, 355: 131303

[4]

McdonnellC, AlbarghouthiF M, SelhorstR, et al.. Aerosol jet printed surface-enhanced Raman substrates: application for high-sensitivity detection of perfluoroalkyl substances[J]. ACS omega, 2023, 8(1):1597-1605

[5]

ZhaoW S, YangS, ZhangD X, et al.. Based on optimized aptamers-functionalized magnetic capture probes and graphene oxide-Au nanostars SERS tags[J]. Journal of colloid and interface science, 2022, 634: 651-663

[6]

LiP Z, XiaX H, ChenJ N, et al.. Morphology-regulated core-shell Ag@Au NPs for rapid SERS detection of 1-amino-hydantoin (AHD) in crayfish[J]. Food and agricultural immunology, 2022, 33(1):832-847

[7]

ZhaoM M, LiuW Y, DuJ G, et al.. Multidimensional Co3O4 nano sponge for the highly sensitive SERS applications[J]. Optoelectronics letters, 2017, 13(1):38-41

[8]

DoeringW E, NieS M. Spectroscopic tags using dye-embedded nanoparticles and surface-enhanced Raman scattering[J]. Analytical chemistry, 2003, 75(22):6171-6176

[9]

CaoY W, JinR C, MirkinC A. Nanoparticles with Raman spectroscopic fingerprints for DNA and RNA detection[J]. Science, 2002, 297: 1536-1540

[10]

YanM M, LiH D, LiM, et al.. Advances in surface-enhanced Raman scattering-based aptasensors for food safety detection[J]. Journal of agricultureal and food chemistry, 2021, 69(47):14049-14064

[11]

ShanmukhS, JonesL, DriskellJ, et al.. Rapid and sensitive detection of respiratory virus molecular signatures using a silver nanorod array SERS substrate[J]. Nano letters, 2006, 6(11):2630-2636

[12]

DoeringW E, PiottiM E, NatanM J, et al.. SERS as a foundation for nanoscale optically detected biological labels[J]. Advanced materials, 2007, 19: 3100-3108

[13]

WangC G, ChenY, WangT T, et al.. Monodispersed gold nanorod-embedded silica particles as novel Raman labels for biosensing[J]. Advanced functional materials, 2008, 18(2):55-361

[14]

KongK V, LamZ Y, LauW K O, et al.. A transition metal carbonyl probe for use in a highly specific and sensitive SERS-based assay for glucose[J]. Journal of the American chemical society, 2013, 135(48):18028-18031

[15]

NieB B, LuoY Y, ShiJ P, et al.. Bowl-like pore array made of hollow Au/Ag alloy nanoparticles for SERS detection of melamine in solid milk powder[J]. Sensors and actuators B-chemical, 2019, 301: 127087

[16]

LiS Z, PedanoM L, ChangS H, et al.. Gap structure effects on surface-enhanced Raman scattering intensities for gold gapped rods[J]. Nano letters, 2010, 10(5):1722-1727

[17]

YamamotoY S, ItohT. Why and how do the shapes of surface-enhanced Raman scattering spectra change? Recent progress from mechanistic studies[J]. Journal of Raman spectroscopy, 2016, 47(1):78-88

[18]

ItohT, YoshidaK, IshikawaM. Experimental demonstration of the electromagnetic mechanism underlying surface enhanced Raman scattering using single nanoparticle spectroscopy[J]. Journal of photochemistry and photobiology A-chemistry, 2011, 219(2–3):167-179

[19]

DvoynenkoM M, WangJ K. Finding electromagnetic and chemical enhancement factors of surface-enhanced Raman scattering[J]. Nano letters, 2007, 32(24):3552-3554

[20]

ShinK S. Effect of surface morphology on surface-enhanced Raman scattering of 4-aminobenzenethiol adsorbed on gold substrates[J]. Journal of Raman spectroscopy, 2008, 39(4):468-473

[21]

KimJ, JangY, KimN J, et al.. Study of chemical enhancement mechanism in non-plasmonic surface enhanced Raman spectroscopy (SERS)[J]. Frontiers in chemistry, 2019, 7: 582

[22]

LanL L, GaoY M, FanX, et al.. The origin of ultrasensitive SERS sensing beyond plasmonics[J]. Frontiers of physics, 2021, 16(4):43300

[23]

LiW Y, CamargoP H C, LuX M, et al.. Dimers of silver nanospheres: facile synthesis and their use as hot spots for surface-enhanced Raman scattering[J]. Nano letters, 2009, 9(1): 485-490

[24]

DadoshT, SperlingJ, BryantG W, et al.. Plasmonic control of the shape of the Raman spectrum of a single molecule in a silver nanoparticle dimer[J]. ACS nano, 2009, 3(7):1988-1994

[25]

ShenA G, ChenL F, XieW, et al.. Triplex Au-Ag-C core shell nanoparticles as a novel Raman label[J]. Advanced functional materials, 2010, 20(6):969-975

[26]

SunX M, LiY D. Ag@C core/shell structured nanoparticles: controlled synthesis, characterization, and assembly[J]. Langmuir, 2005, 21: 6019-6024

[27]

ZhangX J, LuZ Y, SimD H, et al.. Controlled synthesis of Ag/Ag/C hybrid nanostructures and their surface-enhanced Raman scattering properties[J]. Chemistry-A European journal, 2011, 17(48):13386-13390

[28]

OrendorffC J, GoleA, SauT K, et al.. Surface-enhanced Raman spectroscopy of self-assembled monolayers: sandwich architecture and nanoparticle shape dependence[J]. Analytical chemistry, 2005, 77(10):3261-3266

[29]

MayeM M, NykypanchukD, CuisinierM, et al.. Stepwise surface encoding for high-throughput assembly of nanoclusters[J]. Nature materials, 2009, 8: 388-391

[30]

CaoM, WangM, GuN. Calculated optical properties of dielectric shell coated gold nanorods[J]. Chinese physics letters, 2009, 26(4):045201

[31]

Pena-RodriguezO, PalU. Enhanced plasmonic behavior of bimetallic (Ag-Au) multilayered spheres[J]. Nanoscale research letters, 2011, 6: 279

[32]

YangM, Alvarez-PueblaR, KimH S, et al.. SERS-active gold lace nanoshells with built-in hotspots[J]. Nano letters, 2010, 10(10): 4013-4019

[33]

KleinmanS L, RingeE, ValleyN, et al.. Single-molecule surface-enhanced Raman spectroscopy of crystal violet isotopologues: theory and experiment[J]. Journal of the American chemistry society, 2011, 133(11):4115-4122

[34]

ZhuC H, MengG W, HuangQ, et al.. Au hierarchical micro/nanotower arrays and their improved SERS effect by Ag nanoparticle decoration[J]. Crystal growth & design, 2011, 11(3):748-752

[35]

KaminskaA, DziecielewskiI, WeyherJ L, et al.. Highly reproducible, stable and multiply regenerated surface-enhanced Raman scattering substrate for biomedical applications[J]. Journal of materials chemistry, 2011, 21(24):8662-8669

AI Summary AI Mindmap
PDF

171

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/