Fabrication and characterization of high-damage resistance Zn-diffused MgO: PPLN ridge waveguides

Xing Cheng, Xinkai Feng, Lei Ma, Jiaying Chen, Huaixi Chen, Wanguo Liang

Optoelectronics Letters ›› 2023, Vol. 20 ›› Issue (1) : 12-17. DOI: 10.1007/s11801-024-3051-3
Article

Fabrication and characterization of high-damage resistance Zn-diffused MgO: PPLN ridge waveguides

Author information +
History +

Abstract

This study investigates the fabrication process of Zn-diffused ridge waveguides in periodically poled magnesium-doped lithium niobate (PPMgO: LN). A controlled variable method is used to study the effects of diffusion temperature, diffusion time, ZnO film thickness, and barrier layer thickness on the surface domain depolarization and waveguide quality of PPMgO: LN. A special barrier layer is proposed that can automatically lift off from the sample surface, which increases the depth of Zn doping and reduces the surface loss of the waveguide. By optimizing the process parameters, we fabricate Zn-diffused PPMgO: LN ridge waveguides with a length of 22.80 mm and a period of 18.0 µm. The above waveguides can make a second harmonic generation (SHG) at 775 nm with an output power of 90.20 mW by a pump power of 741 mW at 1 550 nm. The corresponding conversion efficiency is 3.160%/W·cm2, and the waveguide loss is approximately 0.81 dB/cm. These results demonstrate that high-efficiency devices can be obtained through the fabrication process described in this paper.

Cite this article

Download citation ▾
Xing Cheng, Xinkai Feng, Lei Ma, Jiaying Chen, Huaixi Chen, Wanguo Liang. Fabrication and characterization of high-damage resistance Zn-diffused MgO: PPLN ridge waveguides. Optoelectronics Letters, 2023, 20(1): 12‒17 https://doi.org/10.1007/s11801-024-3051-3

References

[[1]]
Yuan J, Du J, Liu J, et al.. Arayed-waveguide-grating based on proton exchange and etching combined fabrication over bulk lithium-niobate substrate[C]. 2022 IEEE 24th International Workshop on Multimedia Signal Processing (MMSP), September 26–28, 2022, Shanghai, China, 2022 New York IEEE 1-4
[[2]]
NIU Y, YAN X, CHEN J, et al. Research progress on periodically poled lithium niobate for nonlinear frequency conversion[J]. Infrared physics & technology, 2022:104243.
[[3]]
Takushi K, Takeshi U, Shimpi S, et al.. Over-30-dB gain and 1-dB noise figure phase-sensitive amplification using a pump-combiner-integrated fiber I/O PPLN module[J]. Optics express, 2021, 29(18): 28824-28834,
CrossRef Google scholar
[[4]]
Chen Z Y, Cheng J X, Chen H X, et al.. High performance Zn diffused Mg doped LN crystal ridge waveguide devices[J]. Journal of synthetic crystals, 2022, 51(11): 1823
[[5]]
Lewis G C, Sam A B, Alan C G, et al.. CW demonstration of SHG spectral narrowing in a PPLN waveguide generating 2.5 W at 780 nm[J]. Optics express, 2020, 28(15/20): 21382
[[6]]
Berry S A, Carpenter L G, Gray A C, et al.. Zn-indiffused diced ridge waveguides in MgO: PPLN generating 1 watt 780 nm SHG at 70% efficiency[J]. OSA continuum, 2019, 2(12): 3456-3464,
CrossRef Google scholar
[[7]]
Lu M, Corin B E G, Katia G, et al.. High conversion efficiency single-pass second harmonic generation in a zinc-diffused periodically poled lithium niobate wave-guide[J]. Optics express, 2005, 13(13): 4862,
CrossRef Google scholar
[[8]]
Alan C G, Sam A B, Lewis G C, et al.. Upconversion detection of 1.25 Gb/s mid-infrared telecommunications using a silicon avalanche photodiode[J]. Optics express, 2020, 28(23/9): 34279
[[9]]
Alan C G, Jonathan R C W, Lewis G C, et al.. Zinc-indiffused MgO: PPLN waveguides for blue/UV generation via VECSEL pumping[J]. Applied optics, 2020, 59(16/1): 4921
[[10]]
Alan C G, Sam A B, Lewis G C, et al.. Investigation of PPLN waveguide uniformity via second harmonic generation spectra[J]. IEEE photonics technology letters, 2019, 32(1): 1041-1135
[[11]]
Carpenter L G, Berry S A, Bannerman R H S, et al.. ZnO indiffused MgO: PPLN ridge wave-guides[J]. Optics express, 2019, 27(17): 24538-24544,
CrossRef Google scholar
[[12]]
GRAY A C, CARPENTER L G, BERRY S A, et al. Development of periodically poled lithium niobate zinc-indiffused ridge waveguides at blue wave-lengths[C]//2019 Conference on Lasers and Electro-Optics Europe & European Quantum Electronics Conference (CLEO/Europe-EQEC), June 23–27, 2019, Munich, Germany. New York: IEEE, 201: 1–1.
[[13]]
Carpenter L G, Berry S A, Gawith C. Ductile dicing of LiNbO3 ridge waveguide facets to achieve 0.29 nm surface roughness in single process step[J]. Electronics letters, 2017, 53(25): 1672-1674,
CrossRef Google scholar
[[14]]
Pecheur V, Porte H, Hauden J, et al.. Watt-level SHG in undoped high step-index PPLN ridge wave-guides[J]. OSA continuum, 2021, 4(5): 1404-1414,
CrossRef Google scholar
[[15]]
Shantanu P, Bijoy K D, Wolfgang S. Photorefractive damage resistance in Ti: PPLN waveguides with ridge geometry[J]. Applied physics B, 2015, 120(4): 737-749,
CrossRef Google scholar
[[16]]
Suntsov S, Ruter C E, Bruske D, et al.. Watt-level 775 nm SHG with 70% conversion efficiency and 97% pump depletion in annealed/reverse proton exchanged diced PPLN ridge waveguides[J]. Optics express, 2021, 29(8): 11386-11393,
CrossRef Google scholar

Accesses

Citations

Detail

Sections
Recommended

/